cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 1497 results. Next

A135407 Partial products of A000032 (Lucas numbers beginning at 2).

Original entry on oeis.org

2, 2, 6, 24, 168, 1848, 33264, 964656, 45338832, 3445751232, 423827401536, 84341652905664, 27158012235623808, 14149324374760003968, 11927880447922683345024, 16269628930966540082612736
Offset: 0

Views

Author

Jonathan Vos Post, Dec 09 2007

Keywords

Comments

This is to A000032 as A003266 is to A000045. a(n) is asymptotic to C*phi^(n*(n+1)/2) where phi=(1+sqrt(5))/2 is the golden ratio and C = 1.3578784076121057013874397... (see A218490). - Corrected and extended by Vaclav Kotesovec, Oct 30 2012

Examples

			a(0) = L(0) = 2.
a(1) = L(0)*L(1) = 2*1 = 2.
a(2) = L(0)*L(1)*L(2) = 2*1*3 = 6.
a(3) = L(0)*L(1)*L(2)*L(3) = 2*1*3*4 = 24.
		

Crossrefs

Programs

  • Mathematica
    Rest[FoldList[Times,1,LucasL[Range[0,20]]]] (* Harvey P. Dale, Aug 21 2013 *)
    Table[Round[GoldenRatio^(n(n+1)/2) QPochhammer[-1, GoldenRatio-2, n+1]], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 14 2016 *)
  • PARI
    a(n) = prod(k=0, n, fibonacci(k+1)+fibonacci(k-1)); \\ Michel Marcus, Oct 13 2016

Formula

a(n) = Product_{k=0..n} A000032(k).
C = exp( Sum_{k>=1} 1/(k*(((3-sqrt(5))/2)^k-(-1)^k)) ). - Vaclav Kotesovec, Jun 08 2013

A247940 Least integer m > n such that m + n divides L(m) + L(n), where L(k) refers to the Lucas number A000032(k).

Original entry on oeis.org

5, 5, 15, 5, 19, 30, 17, 19, 15, 13, 13, 24, 35, 236, 33, 34, 31, 90, 29, 23, 27, 25, 25, 84, 47, 80, 45, 190, 43, 54, 41, 35, 39, 1216, 37, 72, 59, 212, 57, 43, 55, 66, 53, 86, 51, 76, 49, 60, 71, 53, 69, 55, 67, 222, 65, 122, 63, 112, 61, 264
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 27 2014

Keywords

Comments

Conjecture: Let A be any integer not congruent to 3 modulo 6. Define v(0) = 2, v(1) = A, and v(n+1) = A*v(n) + v(n-1) for n > 0. Then, for any integer n > 0, there are infinitely many positive integers m such that m + n divides v(m) + v(n).
This implies that a(n) exists for any n > 0.

Examples

			 a(3) = 15 since 15 + 3 = 18 divides L(15) + L(3) = 1364 + 4 = 18*76.
		

Crossrefs

Programs

  • Mathematica
    Do[m=n+1;Label[aa];If[Mod[LucasL[m]+LucasL[n],m+n]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}]

A130242 Minimal index k of a Lucas number such that Lucas(k)>=n (the 'upper' Lucas (A000032) Inverse).

Original entry on oeis.org

0, 0, 0, 2, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 0

Views

Author

Hieronymus Fischer, May 19 2007, Jul 02 2007

Keywords

Comments

Inverse of the Lucas sequence (A000032), nearly, since a(Lucas(n))=n except for n=1 (see A130241 and A130247 for other versions). For n>=2, a(n+1) is equal to the partial sum of the Lucas indicator sequence (see A102460).

Examples

			a(10)=5, since Lucas(5)=11>=10 but Lucas(4)=7<10.
		

Crossrefs

For partial sums see A130244.
Other related sequences: A000032, A130241, A130245, A130247, A130250, A130256, A130260.
Indicator sequence A102460.
Fibonacci inverse see A130233 - A130240, A104162.

Programs

  • Mathematica
    Join[{0, 0, 0}, Table[Ceiling[Log[GoldenRatio, n + 1/2]], {n, 2, 50}]] (* G. C. Greubel, Dec 24 2017 *)
  • Python
    from itertools import islice, count
    def A130242_gen(): # generator of terms
        yield from (0,0,0,2)
        a, b = 3, 4
        for i in count(3):
            yield from (i,)*(b-a)
            a, b = b, a+b
    A130242_list = list(islice(A130242_gen(),40)) # Chai Wah Wu, Jun 08 2022

Formula

a(n) = ceiling(log_phi((n+sqrt(n^2-4))/2))=ceiling(arccosh(n/2)/log(phi)) where phi=(1+sqrt(5))/2.
a(n) = A130241(n-1) + 1 = A130245(n-1) for n>=3.
G.f.: x/(1-x)*(2x^2+sum{k>=2, x^Lucas(k)}).
a(n) = ceiling(log_phi(n-1/2)) for n>=3, where phi is the golden ratio.

A005371 a(n) = L(L(n)), where L(n) are Lucas numbers A000032.

Original entry on oeis.org

3, 1, 4, 7, 29, 199, 5778, 1149851, 6643838879, 7639424778862807, 50755107359004694554823204, 387739824812222466915538827541705412334749, 19679776435706023589554719270187913247121278789615838446937339578603
Offset: 0

Views

Author

Keywords

References

  • T. Koshy (2001), Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, New York, 511-516
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [ Lucas(Lucas(n)): n in [0..20]]; // Vincenzo Librandi, Apr 16 2011
    
  • Maple
    L:= n-> (<<0|1>, <1|1>>^n. <<2,1>>)[1,1]:
    a:= n-> L(L(n)):
    seq(a(n), n=0..14);  # Alois P. Heinz, Jun 01 2016
  • Mathematica
    l[n_]:= l[n]= l[n-1] + l[n-2]; l[0]= 2; l[1]= 1; Table[l[l[n]], {n,0,12}]
    LucasL[LucasL[Range[0, 15]]] (* G. C. Greubel, Dec 21 2017 *)
  • PARI
    {lucas(n) = fibonacci(n+1) + fibonacci(n-1)};
    for(n=0,15, print1(lucas(lucas(n)), ", ")) \\ G. C. Greubel, Dec 21 2017
    
  • SageMath
    [lucas_number2(lucas_number2(n, 1,-1),1,-1) for n in range(15)] # G. C. Greubel Nov 14 2022

Extensions

More terms from Mario Catalani (mario.catalani(AT)unito.it), Mar 14 2003
Offset changed Feb 28 2007

A205114 Least k such that n divides L(k)-L(j) for some j satisfying 1<=jA000032).

Original entry on oeis.org

2, 2, 3, 4, 5, 4, 5, 5, 7, 5, 6, 8, 7, 6, 6, 10, 6, 7, 10, 8, 10, 7, 8, 9, 7, 7, 16, 7, 8, 10, 16, 11, 11, 11, 10, 8, 13, 10, 11, 8, 11, 14, 8, 8, 12, 8, 9, 11, 11, 16, 13, 13, 12, 16, 12, 10, 17, 9, 14, 10
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2012

Keywords

Comments

See A204892 for a discussion and guide to related sequences.

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = LucasL[n]; z1 = 500; z2 = 60;
    Table[s[n], {n, 1, 30}]    (* A000032 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]    (* A205112 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]     (* A205113 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]       (* A205114 *)
    Table[j[n], {n, 1, z2}]       (* A205115 *)
    Table[s[k[n]], {n, 1, z2}]    (* A205116 *)
    Table[s[j[n]], {n, 1, z2}]    (* A205117 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A205118 *)
    Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A205119 *)

A304092 Number of Lucas numbers (A000032: 2, 1, 3, 4, 7, 11, ...) dividing n.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 2, 3, 2, 2, 2, 4, 1, 3, 2, 3, 1, 4, 1, 3, 3, 3, 1, 4, 1, 2, 2, 4, 2, 3, 1, 3, 3, 2, 2, 5, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 2, 4, 2, 2, 2, 3, 1, 4, 2, 4, 2, 3, 1, 4, 1, 2, 3, 3, 1, 4, 1, 3, 2, 3, 1, 5, 1, 2, 2, 4, 3, 3, 1, 3, 2, 2, 1, 5, 1, 2, 3, 4, 1, 4, 2, 3, 2, 3, 1, 4, 1, 3, 3, 3, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A102460(d).
a(n) = A304091(n) + A102460(n).
a(n) = A304094(n) + A059841(n) = A304096(n) + A059841(n) + A079978(n) + 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A093540 + 1/2 = 2.462858... . - Amiram Eldar, Dec 31 2023

A339125 Odd composite integers m such that A000032(m-J(m,5)) == 2*J(m,5) (mod m), where J(m,5) is the Jacobi symbol.

Original entry on oeis.org

9, 49, 121, 169, 289, 361, 529, 841, 961, 1127, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 3751, 4181, 4489, 4901, 4961, 5041, 5329, 5777, 6241, 6721, 6889, 7381, 7921, 9409, 10201, 10609, 10877, 11449, 11881, 12769, 13201, 15251, 16129, 17161, 18081, 18769, 19321
Offset: 1

Views

Author

Ovidiu Bagdasar, Nov 24 2020

Keywords

Comments

The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy the identity
V(p-J(p,D)) == 2*J(p,D) (mod p) when p is prime, b=-1 and D=a^2+4.
This sequence has the odd composite integers with V(m-J(m,D)) == 2*J(m,D) (mod m).
For a=1 and b=-1, we have D=5 and V(m) recovers A000032(m) (Lucas numbers).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted)

Crossrefs

Cf. A339126 (a=3, b=-1), A339127 (a=5, b=-1), A339128 (a=7, b=-1), A339129 (a=3, b=1), A339130 (a=5, b=1), A339131 (a=7, b=1).

Programs

  • Mathematica
    Select[Range[3, 20000, 2], CompositeQ[#] && Divisible[LucasL[# - (j = JacobiSymbol[#, 5])] - 2*j, #] &] (* Amiram Eldar, Nov 26 2020 *)

A374654 a(n) = Product_{k=0..n} L(k)+1, where L=A000032 (Lucas numbers).

Original entry on oeis.org

3, 6, 24, 120, 960, 11520, 218880, 6566400, 315187200, 24269414400, 3009407385600, 601881477120000, 194407717109760000, 101480828331294720000, 85649819111612743680000, 116912003087351395123200000, 258141702816871880432025600000
Offset: 0

Views

Author

Clark Kimberling, Jul 25 2024

Keywords

Crossrefs

Programs

  • Mathematica
    w[n_] := Product[LucasL[k] + 1, {k, 0, n}]
    Table[w[n], {n, 0, 20}]

Formula

a(n) = Product_{k=0..n} L(k)+1, where L=A000032 (Lucas numbers).

A057854 Non-Lucas numbers: the complement of A000032.

Original entry on oeis.org

5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80
Offset: 1

Views

Author

Roger Cuculière, Nov 12 2000

Keywords

Comments

The formula is a consequence of the Lambek-Moser theorem.

Programs

  • Maple
    a := proc(n) floor(-1/ln(1/2+1/2*5^(1/2))*LambertW(-1,-ln(1/2+1/2*5^(1/2))/ ((1/2+1/2*5^(1/2))^(n+1/2)))+1/2) end; # Simon Plouffe, Nov 30 2017
    # alternative
    isA000032 := proc(n)
        local l1,l2 ;
        if n <= 0 then
            false;
        elif n <= 4 then
            true ;
        else
            l1 := 3 ; l2 := 4 ;
            while true do
                l := l1+l2 ;
                if l > n then
                    return false;
                elif l = n then
                    return true;
                else
                    l1 := l2 ; l2 := l ;
                end if;
            end do:
        end if;
    end proc:
    isA057854 := proc(n)
        not isA000032(n) ;
    end proc:
    A057854 := proc(n)
        option remember;
        if n = 1 then
            5 ;
        else
            for a from procname(n-1)+1 do
                if isA057854(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A057854(n),n=1..10) ; # R. J. Mathar, Feb 01 2019
  • Mathematica
    a[n_] := With[{phi = (1 + Sqrt[5])/2}, Floor[1/2 - LambertW[-1, -Log[phi]/phi^(n + 1/2)]/Log[phi]]];
    Table[a[n], {n, 1, 70}] (* Peter Luschny, Nov 30 2017 *)
    b:= Complement[Range[1, 100], LucasL[Range[20]]]; Table[b[[n+1]], {n, 1, 70}] (* G. C. Greubel, Jun 19 2019 *)
  • Python
    def A057854(n):
        def f(x):
            if x<=2: return n+2
            a, b, c = 1, 3, 0
            while b<=x:
                a, b = b, a+b
                c += 1
            return n+c+2
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Sep 10 2024

Formula

a(n) = floor(1/2 - LambertW(-1, -log(phi)/phi^(n+1/2))/log(phi)) with phi = (1+sqrt(5))/2. - Nicolas Normand (nicolas.normand (at) polytech.univ-nantes.fr)
a(n) = A090946(n+2). - R. J. Mathar, Jan 29 2019

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Nov 28 2000

A060929 Second convolution of Lucas numbers A000032(n+1), n >= 0.

Original entry on oeis.org

1, 9, 39, 120, 315, 753, 1687, 3612, 7470, 15040, 29634, 57366, 109421, 206115, 384105, 709152, 1298613, 2360943, 4264835, 7659870, 13686456, 24340184, 43102644, 76031100, 133636825, 234116493, 408900987
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,9,39,120,315,753]; [n le 6 select I[n] else 3*Self(n-1) - 5*Self(n-3) + 3*Self(n-5) + Self(n-6): n in [1..30]]; // G. C. Greubel, Dec 21 2017
  • Mathematica
    CoefficientList[Series[((1 + 2*x)/(1 - x - x^2))^3, {x, 0, 50}], x] (* or *) LinearRecurrence[{3,0,-5,0,3,1}, {1,9,39,120,315,753}, 30] (* G. C. Greubel, Dec 21 2017 *)
  • PARI
    x='x+O('x^30); Vec(((1+2*x)/(1-x-x^2))^3) \\ G. C. Greubel, Dec 21 2017
    

Formula

G.f.: ((1+2*x)/(1-x-x^2))^3.
a(n) = A060922(n+2, 2) (third column of Lucas triangle).
a(n) = (n+1)*((5*n+4)*L(n+2) + (5*n-2)*L(n+1))/10, n >= 1, with the Lucas numbers L(n)=A000032(n)=A000204(n), n >= 1.
Previous Showing 21-30 of 1497 results. Next