cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A081255 Duplicate of A005371.

Original entry on oeis.org

3, 1, 4, 7, 29, 199, 5778, 1149851, 6643838879, 7639424778862807
Offset: 0

Views

Author

Keywords

A007570 a(n) = F(F(n)), where F is a Fibonacci number.

Original entry on oeis.org

0, 1, 1, 1, 2, 5, 21, 233, 10946, 5702887, 139583862445, 1779979416004714189, 555565404224292694404015791808, 2211236406303914545699412969744873993387956988653, 2746979206949941983182302875628764119171817307595766156998135811615145905740557
Offset: 0

Views

Author

Keywords

Comments

a(20) is approximately 2.830748520089124 * 10^1413, much too large to include even in the b-file. - Alonso del Arte, Apr 30 2020
Let M(0) denote the 2 X 2 identity matrix, and let M(1) = [[0, 1], [1, 1]]. Let M(n) = M(n-2) * M(n-1). Then a(n) is equal to both the (1, 2)-entry and the (2, 1)-entry of M(n). - John M. Campbell, Jul 02 2021
This is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. - Peter Bala, Dec 06 2022

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
    a:= n-> F(F(n)):
    seq(a(n), n=0..14);  # Alois P. Heinz, Oct 09 2015
  • Mathematica
    F[0] = 0; F[1] = 1; F[n_] := F[n] = F[n - 1] + F[n - 2]; Table[F[F[n]], {n, 0, 14}]
    Fibonacci[Fibonacci[Range[0, 20]]] (* Harvey P. Dale, May 05 2012 *)
  • PARI
    a(n)=fibonacci(fibonacci(n)) \\ Charles R Greathouse IV, Feb 03 2014
    
  • Python
    from sympy import fibonacci
    def a(n): return fibonacci(fibonacci(n))
    print([a(n) for n in range(15)]) # Michael S. Branicky, Feb 02 2022
  • Sage
    [fibonacci(fibonacci(n)) for n in range(0, 14)] # Zerinvary Lajos, Nov 30 2009
    
  • Scala
    val fibo: LazyList[BigInt] = (0: BigInt) #:: (1: BigInt) #:: fibo.zip(fibo.tail).map { n => n._1 + n._2 }
    val fiboLimited: LazyList[Int] = 0 #:: 1 #:: fiboLimited.zip(fiboLimited.tail).map { n => n._1 + n._2 } // Limited to 32-bit integers because that's the type for LazyList apply()
    (0 to 19).map(n => fibo(fiboLimited(n))) // Alonso del Arte, Apr 30 2020
    

Formula

a(n+1)/a(n) ~ phi^(F(n-1)), with phi = (1 + sqrt(5))/2 = A001622. - Carmine Suriano, Jan 24 2011
Sum_{n>=1} 1/a(n) = 3.7520024260... is transcendental (Stein, 2012). - Amiram Eldar, Oct 30 2020
Sum_{n>=1} (-1)^(F(n)+1)*a(n-1)/(a(n)*a(n+1)) = 1/phi (A094214) (Farhi, 2015). - Amiram Eldar, Apr 07 2021
Limit_{n->oo} a(n+1)/a(n)^phi = 5^((phi-1)/2) = 1.6443475285..., where phi is the golden ratio (A001622) (Ledin, 1968) - Amiram Eldar, Feb 02 2022

Extensions

One more term from Harvey P. Dale, May 05 2012

A338736 a(n) = L(L(n)) mod n, where L = Lucas numbers = A000032.

Original entry on oeis.org

0, 0, 1, 1, 4, 0, 3, 7, 7, 4, 10, 3, 9, 10, 7, 15, 12, 0, 10, 9, 7, 4, 22, 3, 1, 4, 7, 1, 4, 18, 30, 31, 7, 4, 29, 15, 1, 34, 34, 39, 35, 24, 29, 29, 7, 4, 46, 3, 1, 4, 7, 29, 29, 0, 21, 55, 7, 54, 35, 3, 45, 4, 7, 63, 64, 36, 2, 29, 7, 4, 6, 3, 43, 4, 7, 29
Offset: 1

Views

Author

Alois P. Heinz, Nov 05 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) local r, M, p; r, M, p:=
          <<1|0>, <0|1>>, <<0|1>, <1|1>>, n;
          do if irem(p, 2, 'p')=1 then r:=
            `if`(nargs=1, r.M, r.M mod args[2]) fi;
             if p=0 then break fi; M:=
            `if`(nargs=1, M.M, M.M mod args[2])
          od; (r.<<2, 1>>)[1$2]
        end:
    a:= n-> (f-> b(f, n) mod n)(b(n)):
    seq(a(n), n=1..80);

Formula

a(n) = A005371(n) mod n.

A338889 a(n) = L(L(L(n))) mod L(L(n)), where L = Lucas numbers = A000032.

Original entry on oeis.org

1, 0, 3, 1, 1, 1, 0, 1, 1, 29, 7, 1, 19679776435706023589554718882448088434898811874077010905231927243854, 1, 7
Offset: 0

Views

Author

Alois P. Heinz, Nov 14 2020

Keywords

Comments

a(21) = 2992285359..7163788371 has 5090 decimal digits.

Crossrefs

Programs

  • Maple
    b:= proc(n) local r, M, p; r, M, p:=
          <<1|0>, <0|1>>, <<0|1>, <1|1>>, n;
          do if irem(p, 2, 'p')=1 then r:=
            `if`(nargs=1, r.M, r.M mod args[2]) fi;
             if p=0 then break fi; M:=
            `if`(nargs=1, M.M, M.M mod args[2])
          od; (r.<<2, 1>>)[1$2]
        end:
    a:= n-> (h-> b(h$2) mod h)(b(b(n))):
    seq(a(n), n=0..15);

Formula

a(n) = A262361(n) mod A005371(n).

A068096 a(n) = F(L(n)) where F(n) = n-th Fibonacci number and L(n) = n-th Lucas number.

Original entry on oeis.org

1, 1, 2, 3, 13, 89, 2584, 514229, 2971215073, 3416454622906707, 22698374052006863956975682, 173402521172797813159685037284371942044301, 8801063578447437644962364569698707634360652047981718378070013667111
Offset: 0

Views

Author

Leroy Quet, Mar 22 2002

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{k=1..F(n-1)+1} binomial(F(n-1), k-1)*F(F(n)+k-1), where F(n) is A000045. - Tony Foster III, Sep 03 2018

A262361 a(n) = L(L(L(n))), where L(n) are Lucas numbers A000032.

Original entry on oeis.org

4, 1, 7, 29, 1149851, 387739824812222466915538827541705412334749
Offset: 0

Views

Author

Alois P. Heinz, Nov 09 2016

Keywords

Comments

a(6) = 3393011755..4322744978 has 1208 decimal digits and a(7) = 4437405101..8830136999 has 240305 decimal digits.

Crossrefs

Programs

  • Maple
    L:= n-> (<<0|1>, <1|1>>^n. <<2, 1>>)[1$2]:
    a:= n-> L(L(L(n))):
    seq(a(n), n=0..5);
  • Mathematica
    A262361 = Nest[LucasL, #, 3] &; Array[A262361, 6, 0] (* JungHwan Min, Nov 09 2016 *)
  • Python
    from sympy import lucas as L
    def a(n):  return L(L(L(n)))
    print([a(n) for n in range(6)]) # Michael S. Branicky, Apr 01 2021

A338638 a(n) = L(L(n)) mod L(n), where L = Lucas numbers = A000032.

Original entry on oeis.org

1, 0, 1, 3, 1, 1, 0, 1, 1, 7, 4, 1, 199, 1, 4, 843, 1, 1, 0, 1, 29, 123, 4, 1, 3, 199, 4, 39603, 29, 1, 5778, 1, 1, 7, 4, 17622890, 12752043, 1, 4, 39603, 7881196, 1, 5778, 1, 29, 7, 4, 1, 3, 1149851, 28143689044, 7, 29, 1, 0, 312119004790, 6643838879, 7, 4, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 04 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) local r, M, p; r, M, p:=
          <<1|0>, <0|1>>, <<0|1>, <1|1>>, n;
          do if irem(p, 2, 'p')=1 then r:=
            `if`(nargs=1, r.M, r.M mod args[2]) fi;
             if p=0 then break fi; M:=
            `if`(nargs=1, M.M, M.M mod args[2])
          od; (r.<<2, 1>>)[1$2]
        end:
    a:= n-> (f-> b(f$2) mod f)(b(n)):
    seq(a(n), n=0..60);
  • Mathematica
    Table[Mod[LucasL[LucasL[n]],LucasL[n]],{n,0,60}] (* Harvey P. Dale, Jul 04 2022 *)

Formula

a(n) = A005371(n) mod A000032(n).
a(n) = 0 for n in { A016089 }.

A005372 a(n) = L(L(n+1)+1), where L(n) are Lucas numbers A000032.

Original entry on oeis.org

3, 7, 11, 47, 322, 9349, 1860498, 10749957122, 12360848946698171, 82123488809519507169850807, 627376215338105766356982006981782561278127, 31842547163971605907183271059340725709462269514762215168643703957079
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Lucas(1+Lucas(n+1)): n in [0..15]]; // G. C. Greubel, Nov 14 2022
    
  • Maple
    L:= n-> (<<0|1>, <1|1>>^(n). <<2,1>>)[1,1]:
    a:= n-> L(L(n+1)+1):
    seq(a(n), n=0..12);  # Alois P. Heinz, Jun 01 2016
  • Mathematica
    LucasL[1 +LucasL[Range[16]]] (* G. C. Greubel, Nov 14 2022 *)
  • SageMath
    [lucas_number2(1+lucas_number2(n+1, 1,-1),1,-1) for n in range(15)] # G. C. Greubel, Nov 14 2022

Extensions

a(8) onwards corrected by Sean A. Irvine, Jun 01 2016
Name edited by Alois P. Heinz, Jun 01 2016
Showing 1-8 of 8 results.