A081255 Duplicate of A005371.
3, 1, 4, 7, 29, 199, 5778, 1149851, 6643838879, 7639424778862807
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]: a:= n-> F(F(n)): seq(a(n), n=0..14); # Alois P. Heinz, Oct 09 2015
F[0] = 0; F[1] = 1; F[n_] := F[n] = F[n - 1] + F[n - 2]; Table[F[F[n]], {n, 0, 14}] Fibonacci[Fibonacci[Range[0, 20]]] (* Harvey P. Dale, May 05 2012 *)
a(n)=fibonacci(fibonacci(n)) \\ Charles R Greathouse IV, Feb 03 2014
from sympy import fibonacci def a(n): return fibonacci(fibonacci(n)) print([a(n) for n in range(15)]) # Michael S. Branicky, Feb 02 2022
[fibonacci(fibonacci(n)) for n in range(0, 14)] # Zerinvary Lajos, Nov 30 2009
val fibo: LazyList[BigInt] = (0: BigInt) #:: (1: BigInt) #:: fibo.zip(fibo.tail).map { n => n._1 + n._2 } val fiboLimited: LazyList[Int] = 0 #:: 1 #:: fiboLimited.zip(fiboLimited.tail).map { n => n._1 + n._2 } // Limited to 32-bit integers because that's the type for LazyList apply() (0 to 19).map(n => fibo(fiboLimited(n))) // Alonso del Arte, Apr 30 2020
b:= proc(n) local r, M, p; r, M, p:= <<1|0>, <0|1>>, <<0|1>, <1|1>>, n; do if irem(p, 2, 'p')=1 then r:= `if`(nargs=1, r.M, r.M mod args[2]) fi; if p=0 then break fi; M:= `if`(nargs=1, M.M, M.M mod args[2]) od; (r.<<2, 1>>)[1$2] end: a:= n-> (f-> b(f, n) mod n)(b(n)): seq(a(n), n=1..80);
b:= proc(n) local r, M, p; r, M, p:= <<1|0>, <0|1>>, <<0|1>, <1|1>>, n; do if irem(p, 2, 'p')=1 then r:= `if`(nargs=1, r.M, r.M mod args[2]) fi; if p=0 then break fi; M:= `if`(nargs=1, M.M, M.M mod args[2]) od; (r.<<2, 1>>)[1$2] end: a:= n-> (h-> b(h$2) mod h)(b(b(n))): seq(a(n), n=0..15);
[Fibonacci(Lucas(n)): n in [0..12]]; // Vincenzo Librandi, Sep 18 2017
Table[Fibonacci[LucasL[n]], {n, 0, 13}] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
a(n) = fibonacci(fibonacci(n+1)+fibonacci(n-1)) \\ Felix Fröhlich, Sep 17 2017
L:= n-> (<<0|1>, <1|1>>^n. <<2, 1>>)[1$2]: a:= n-> L(L(L(n))): seq(a(n), n=0..5);
A262361 = Nest[LucasL, #, 3] &; Array[A262361, 6, 0] (* JungHwan Min, Nov 09 2016 *)
from sympy import lucas as L def a(n): return L(L(L(n))) print([a(n) for n in range(6)]) # Michael S. Branicky, Apr 01 2021
b:= proc(n) local r, M, p; r, M, p:= <<1|0>, <0|1>>, <<0|1>, <1|1>>, n; do if irem(p, 2, 'p')=1 then r:= `if`(nargs=1, r.M, r.M mod args[2]) fi; if p=0 then break fi; M:= `if`(nargs=1, M.M, M.M mod args[2]) od; (r.<<2, 1>>)[1$2] end: a:= n-> (f-> b(f$2) mod f)(b(n)): seq(a(n), n=0..60);
Table[Mod[LucasL[LucasL[n]],LucasL[n]],{n,0,60}] (* Harvey P. Dale, Jul 04 2022 *)
[Lucas(1+Lucas(n+1)): n in [0..15]]; // G. C. Greubel, Nov 14 2022
L:= n-> (<<0|1>, <1|1>>^(n). <<2,1>>)[1,1]: a:= n-> L(L(n+1)+1): seq(a(n), n=0..12); # Alois P. Heinz, Jun 01 2016
LucasL[1 +LucasL[Range[16]]] (* G. C. Greubel, Nov 14 2022 *)
[lucas_number2(1+lucas_number2(n+1, 1,-1),1,-1) for n in range(15)] # G. C. Greubel, Nov 14 2022
Comments