cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 104 results. Next

A083812 4n-1 is the digit reversal of n-1.

Original entry on oeis.org

18, 198, 1998, 19998, 199998, 1999998, 19999998, 199999998, 1999999998, 19999999998, 199999999998, 1999999999998, 19999999999998, 199999999999998, 1999999999999998, 19999999999999998, 199999999999999998, 1999999999999999998, 19999999999999999998
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 08 2003

Keywords

Comments

1. a(n) = 18 + 180 + 1800+ ...+ up to n terms. a(n) = sum of n terms of the geometric progression with the first term 18 and common ratio 10. 2. a(n) = 18*A000042(n).( the unary sequence).

Examples

			18 -1 = 17, 4*18 - 1 = 71.
		

Crossrefs

Programs

  • Mathematica
    Accumulate[NestList[10#&,18,20]] (* or *) LinearRecurrence[{11,-10},{18,198},20] (* Harvey P. Dale, Apr 24 2015 *)

Formula

a(n) = 2*(10^n - 1).
a(1)=18, a(2)=198, a(n)=11*a(n-1)-10*a(n-2). - Harvey P. Dale, Apr 24 2015

Extensions

Corrected and extended by Harvey P. Dale, Apr 24 2015

A087094 a(n) = smallest k such that (10^k-1)/9 == 0 mod prime(n)^2, or 0 if no such k exists.

Original entry on oeis.org

0, 9, 0, 42, 22, 78, 272, 342, 506, 812, 465, 111, 205, 903, 2162, 689, 3422, 3660, 2211, 2485, 584, 1027, 3403, 3916, 9312, 404, 3502, 5671, 11772, 12656, 5334, 17030, 1096, 6394, 22052, 11325, 12246, 13203, 27722, 7439, 31862, 32580, 18145, 37056, 19306
Offset: 1

Views

Author

Ray Chandler, Aug 10 2003

Keywords

Comments

For a given a(n)>0, all of the values of k such that (10^k-1)/9=0 mod prime(n)^2 is given by the sequence a(n)*A000027, i.e. integral multiples of a(n). For example, for n=2, prime(2)=3, a(n)=9, the set of values of k for which (10^k-1)/9=0 mod 3^2 is 9*A000027=9,18,27,36,45,...
The union of the collection of sequences formed from the nonzero terms of a(n)*A000027, gives the values of k for which (10^k-1)/9 is not squarefree, see A046412. All of terms of the sequence a(n) are integer multiples of prime(n) for primes <1000 except for a(93)=486 where prime(93)=487. Conjecture: there are no 0 terms after a(3).
That conjecture is easily proved, for a(n) is just the multiplicative order of 10 modulo (prime(n))^2 for n>3. - Jeppe Stig Nielsen, Dec 28 2015

Examples

			a(2)=9 since 9 is least value of k for which (10^k-1)/9=0 mod 3^2.
		

Crossrefs

Programs

  • Maple
    0,9,0,seq(numtheory:-order(10,ithprime(i)^2), i=4..100); # Robert Israel, Dec 30 2015
  • PARI
    a(n)=p=prime(n);10%p==0 && return(0);for(k=1,p^2,((10^k-1)/9) % p^2 == 0 && return(k));error() \\ Jeppe Stig Nielsen, Dec 28 2015
    
  • PARI
    a(n)=p=prime(n);if(10%p==0, 0, 10%p==1, 9, znorder(Mod(10,p^2))) \\ Jeppe Stig Nielsen, Dec 28 2015

Formula

For n>3, a(n) = A084680(prime(n)^2) = A084680(A001248(n)), Jeppe Stig Nielsen, Dec 28 2015

A196104 Repdigit semiprimes (semiprimes composed of identical digits).

Original entry on oeis.org

4, 6, 9, 22, 33, 55, 77, 111, 1111, 11111, 1111111, 11111111111, 11111111111111111, 2222222222222222222, 3333333333333333333, 5555555555555555555, 7777777777777777777, 22222222222222222222222, 33333333333333333333333, 55555555555555555555555
Offset: 1

Views

Author

Michel Lagneau, Oct 27 2011

Keywords

Comments

A semiprime can be repdigit (base 10) in only three ways. It can be a single-digit semiprime, a repunit semiprime (A102782), or a repunit prime times a prime digit {2, 3, 5, 7}. Occurs in proof that the sequence is infinite in which a(n) is the least semiprime > a(n-1) such that a(n) has no digit in common with a(n-1). - Jonathan Vos Post; corrected by Max Alekseyev, Sep 14 2022

Examples

			a(12) = 11111111111 = 21649 * 513239 is semiprime.
		

Crossrefs

Subsequence of A046328.
Except for initial terms, subsequence of A116063.

Programs

  • Maple
    with(numtheory):for n from 1 to 23 do:for b from 1 to 9 do:x:=(((10^n)- 1)/9)*b:if bigomega(x)=2 then printf(`%d, `,x):else fi:od:od:
  • Mathematica
    Select[FromDigits/@Flatten[Table[PadRight[{},i,n],{i,25},{n,9}],1], PrimeOmega[ #] ==2&] (* Harvey P. Dale, Mar 11 2019 *)
  • PARI
    print1("4, 6, 9");for(n=1,20,t=10^n\9;if(bigomega(t)==2,print1(", "t)); if(isprime(t),forprime(p=2,7,print1(", "p*t)))) \\ Charles R Greathouse IV, Oct 27 2011

Formula

Union of {4, 6, 9}, A102782, 2*A004022, 3*A004022, 5*A004022, and 7*A004022. - Jonathan Vos Post and R. J. Mathar, Oct 27 2011

Extensions

Edited by Max Alekseyev, Sep 14 2022

A258372 Smallest nonnegative number k not starting or ending with the digit 1 that forms a prime when it is sandwiched between n ones to the left of k and n ones to the right of k.

Original entry on oeis.org

0, 3, 4, 8, 36, 8, 5, 72, 28, 6, 79, 212, 23, 6, 73, 24, 52, 62, 3, 28, 220, 53, 75, 58, 228, 9, 265, 89, 214, 86, 215, 4, 7, 39, 295, 40, 87, 216, 97, 6, 264, 53, 287, 223, 4, 239, 259, 25, 57, 364, 49, 38, 93, 86, 27, 30, 80, 24, 6, 356, 50, 645, 395, 206
Offset: 1

Views

Author

Felix Fröhlich, May 28 2015

Keywords

Comments

n = 1 is the only case where a(n) = 0, since for any n > 1, A138148(n) is divisible by A002275(n).
No n exists such that a(n) = 2, since any number of the form A100706(n)+A011557(n) is of the form A000533(n)*A002275(n+1) (see comment by Robert Israel in A107123).
a(n) = 3 iff n is in A107123.
a(n) = 4 iff n is in A107124.
If k has an even number of digits and is a multiple of 11, then k is not a term. If k = (10^r+1)(10^m-1)/9 for some m > 0, r >= 0, then k is not a term. If A272232(k) = 0, then k is not a term. - Chai Wah Wu, Nov 08 2019

Examples

			a(1) = 0, because 101 is prime.
a(5) = 36, because the smallest x >= 0 such that 11111_x_11111 (where '_' denotes concatenation) is prime is 36. The decimal expansion of that prime is 111113611111.
		

Crossrefs

Programs

  • Mathematica
    Table[k = 0; s = Table[1, {n}]; While[Or[!PrimeQ[FromDigits[s ~Join~ IntegerDigits[k] ~Join~ s]], Or[First@ IntegerDigits@ k == 1, Last@ IntegerDigits@ k == 1]], k++]; k, {n, 64}] (* Michael De Vlieger, May 28 2015 *)
  • PARI
    a000042(n) = (10^n-1)/9
    a(n) = my(k=0); while(k==10 || k%10==1 || k\(10^(#Str(k)-1))==1 || !ispseudoprime(eval(Str(a000042(n), k, a000042(n)))), k++); k

A261544 a(n) = Sum_{k=0..n} 1000^k.

Original entry on oeis.org

1, 1001, 1001001, 1001001001, 1001001001001, 1001001001001001, 1001001001001001001, 1001001001001001001001, 1001001001001001001001001, 1001001001001001001001001001, 1001001001001001001001001001001, 1001001001001001001001001001001001
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 24 2015

Keywords

Comments

A sequence of palindromic numbers.

Examples

			From _Bruno Berselli_, Aug 25 2015: (Start)
a(n)   is the binary representation of    A023001
-------------------------------------------------
1  ...........................................  1
1001  ........................................  9
1001001 .....................................  73
1001001001  ................................  585
1001001001001  ............................  4681
1001001001001001  ........................  37449
1001001001001001001  ....................  299593
1001001001001001001001  ................  2396745
1001001001001001001001001  ............  19173961, etc.
(End)
		

Crossrefs

Subsequence of A033146.
Sums of 100^k: A094028; sums of 10^k: A000042.
Cf. similar sequences of the form (k^n-1)/(k-1) listed in A269025.

Programs

  • Magma
    [(1000^(n+1)-1)/999: n in [0..30]]; // Vincenzo Librandi, Aug 24 2015
  • Mathematica
    Table[(1000^(n + 1) - 1)/999, {n, 0, 15}]
    LinearRecurrence[{1001, -1000}, {1, 1001}, 20] (* Vincenzo Librandi, Aug 24 2015 *)
  • PARI
    Vec(1 / ((x-1)*(1000*x-1)) + O(x^20)) \\ Colin Barker, Aug 24 2015
    

Formula

a(n) = (1000^(n + 1) - 1)/999.
a(n) = 1001*a(n-1) - 1000*a(n-2). - Colin Barker, Aug 24 2015
G.f.: 1 / ((x-1)*(1000*x-1)). - Colin Barker, Aug 24 2015
E.g.f.: (1/999)*(1000000*exp(1000*x) - exp(x)). - G. C. Greubel, Aug 29 2015

A362118 a(n) = (10^(n*(n+1)/2)-1)/9.

Original entry on oeis.org

1, 111, 111111, 1111111111, 111111111111111, 111111111111111111111, 1111111111111111111111111111, 111111111111111111111111111111111111, 111111111111111111111111111111111111111111111, 1111111111111111111111111111111111111111111111111111111, 111111111111111111111111111111111111111111111111111111111111111111
Offset: 1

Views

Author

Keywords

Comments

Concatenate 1, 11, 111, ..., 11...1 (n ones). There are n*(n+1)/2 1's in a(n).
This is a kind of unary analog of A058935, A360502, A117640, etc.
When regarded as decimal numbers, which (if any) is the smallest prime?
Answer: All terms > 1 are composite, since 111 is composite, all triangular numbers > 3 are composite and a prime repunit must have a prime number of decimal digits (see A004023). - Chai Wah Wu, Apr 19 2023. [This result was independently obtained by Michael S. Branicky, see A362429. - N. J. A. Sloane, Apr 20 2023]
a(45) has more than 1000 digits, and so cannot be included in the b-file. - Jason Bard, Apr 12 2025

Examples

			a(3) = 111111 because 3(3+1)/2 = 6, and 111111 has 6 ones.
		

Crossrefs

Programs

Formula

a(n) = A000042(A000217(n)). - Jason Bard, Apr 12 2025

A383241 a(n) = p(n)*p(n+1)*(p(n+1) - p(n)) - 1, where p(n) = prime(n).

Original entry on oeis.org

5, 29, 69, 307, 285, 883, 645, 1747, 4001, 1797, 6881, 6067, 3525, 8083, 14945, 18761, 7197, 24521, 19027, 10365, 34601, 26227, 44321, 69063, 39187, 20805, 44083, 23325, 49267, 200913, 66547, 107681, 38085, 207109, 44997, 142241, 153545, 108883, 173345
Offset: 1

Views

Author

Clark Kimberling, May 07 2025

Keywords

Examples

			a(n) = A383242(n) - 2.
		

Crossrefs

Programs

  • Mathematica
    z = 60; p[n_] := Prime[n];
    f[n_] := p[n]*p[n + 1]*(p[n + 1] - p[n])
    Table[f[n] - 1, {n, 1, z}]  (* A383241 *)
    Table[f[n] + 1, {n, 1, z}]  (* A383242 *)

A383242 a(n) = p(n)*p(n+1)*(p(n+1) - p(n)) + 1, where p(n) = prime(n).

Original entry on oeis.org

7, 31, 71, 309, 287, 885, 647, 1749, 4003, 1799, 6883, 6069, 3527, 8085, 14947, 18763, 7199, 24523, 19029, 10367, 34603, 26229, 44323, 69065, 39189, 20807, 44085, 23327, 49269, 200915, 66549, 107683, 38087, 207111, 44999, 142243, 153547, 108885, 173347
Offset: 1

Views

Author

Clark Kimberling, May 07 2025

Keywords

Crossrefs

Programs

  • Mathematica
    z = 60; p[n_] := Prime[n];
    f[n_] := p[n]*p[n + 1]*(p[n + 1] - p[n])
    Table[f[n] - 1, {n, 1, z}]  (* A383241 *)
    Table[f[n] + 1, {n, 1, z}]  (* A383242 *)

Formula

a(n) = A383241(n) + 2.

A383243 Primes of the form p(k)*p(k+1)*(p(k+1) - p(k)) - 1 sorted by increasing k.

Original entry on oeis.org

5, 29, 307, 883, 1747, 4001, 6067, 26227, 108883, 152083, 424481, 311347, 396883, 848201, 580627, 1713709, 1814509, 864883, 5092973, 3046789, 3386989, 1664083, 2581961, 2196307, 2304307, 2377747, 6955309, 3526867, 4088467, 20916053, 4796083, 7339361
Offset: 1

Views

Author

Clark Kimberling, May 07 2025

Keywords

Comments

Conjecture: there are infinitely many such primes.

Crossrefs

Primes in A383241.

Programs

  • Maple
    q:= 2; R:= NULL: count:= 0:
    while count < 100 do
      p:= q;
      q:= nextprime(q);
      v:= p*q*(q-p)-1;
      if isprime(v) then R:= R,v; count:= count+1 fi;
    od:
    R; # Robert Israel, May 11 2025
  • Mathematica
    z = 200; p[n_] := Prime[n];
    f[n_] := p[n]*p[n + 1]*(p[n + 1] - p[n])
    t1 = Table[f[n] - 1, {n, 1, z}];    (* A383241 *)
    t2 = Table[f[n] + 1, {n, 1, z}];    (* A383242 *)
    Select[t1, PrimeQ[#] &]  (* A383243 *)
    Select[t2, PrimeQ[#] &]  (* A383244 *)

A383244 Primes of the form p(k)*p(k+1)*(p(k+1) - p(k)) + 1 sorted by increasing k.

Original entry on oeis.org

7, 31, 71, 647, 4003, 6883, 3527, 14947, 34603, 20807, 23327, 173347, 73727, 503869, 103967, 145799, 450403, 194687, 669283, 848203, 1193443, 1775563, 649799, 1976803, 2088547, 2131243, 4687069, 2534947, 2581963, 5338237, 3250123, 3411043, 1555847, 5346763
Offset: 1

Views

Author

Clark Kimberling, May 07 2025

Keywords

Comments

Conjecture: there are infinitely many such primes.

Crossrefs

Primes in A383242.

Programs

  • Maple
    =q:= 2; R:= NULL: count:= 0:
    while count < 100 do
      p:= q;
      q:= nextprime(q);
      v:= p*q*(q-p)+1;
      if isprime(v) then R:= R,v; count:= count+1 fi;
    od:
    R; # Robert Israel, May 11 2025
  • Mathematica
    z = 200; p[n_] := Prime[n];
    f[n_] := p[n]*p[n + 1]*(p[n + 1] - p[n])
    t1 = Table[f[n] - 1, {n, 1, z}];    (* A383241 *)
    t2 = Table[f[n] + 1, {n, 1, z}];    (* A383242 *)
    Select[t1, PrimeQ[#] &]  (* A383243 *)
    Select[t2, PrimeQ[#] &]  (* A383244 *)
  • PARI
    select(isprime, vector(200, k, prime(k)*prime(k+1)*(prime(k+1) - prime(k)) + 1)) \\ Michel Marcus, May 12 2025
Previous Showing 51-60 of 104 results. Next