cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 1370 results. Next

A144293 Largest prime factor of n-th Bell number A000110(n) (or 1 if A000110(n) = 1).

Original entry on oeis.org

1, 1, 2, 5, 5, 13, 29, 877, 23, 53, 4639, 22619, 2423, 27644437, 1800937, 1101959, 43486067, 255755771, 5006399, 222527, 4326209287, 188633, 574631, 13369534669, 1204457631577, 171659, 11759883224809, 2479031, 171572636187431, 3516743833
Offset: 0

Views

Author

N. J. A. Sloane, Dec 03 2008

Keywords

Comments

From David Pasino, Dec 03 2008: (Start)
The number of refinements of a partition is the product of the Bell numbers of the cell sizes.
The number of encoarsements is the Bell number of the number of cells.
For these to be equal, a Bell number has to be a product of Bell numbers.
This happens if there are n-1 single-element cells and 1 n-element cell.
Does it ever happen otherwise? (End)

Programs

  • Magma
    [1,1] cat [Maximum(PrimeDivisors(Bell(n))): n in [2..30]]; // Vincenzo Librandi, Jan 04 2017
  • Mathematica
    Join[{1}, Table[FactorInteger[BellB[n]][[-1, 1]], {n, 40}]] (* Vincenzo Librandi, Jan 04 2017 *)

Extensions

a(15)-a(20) from David Pasino, Dec 03 2008
a(21) onwards from N. J. A. Sloane, Dec 04 2008
Corrected by David Pasino, Dec 14 2008

A168408 E.g.f.: Sum_{n>=0} (exp(3^n*x) - 1)^n/n!, an analog of the Bell numbers (A000110).

Original entry on oeis.org

1, 3, 90, 21897, 46281375, 882516062106, 153201395082609531, 241604140428719375972139, 3448358784659838019970862469260, 444238039567848645977924129826080612043
Offset: 0

Views

Author

Paul D. Hanna, Nov 25 2009, Feb 16 2010

Keywords

Examples

			E.g.f.: A(x) = 1 + 3*x + 90*x^2/2! + 21897*x^3/3! + 46281375*x^4/4! +...
A(x) = 1 + (exp(3*x) - 1) + (exp(9*x) - 1)^2/2! + (exp(27*x) - 1)^3/3! +...+ (exp(3^n*x) - 1)^n/n! +...
a(n) = coefficient of x^n/n! in Bell(x)^(3^n) where Bell(x) = exp(exp(x)-1):
Bell(x) = 1 + x + 2*x^2/2! + 5*x^3/3! + 15*x^4/4! + 52*x^5/5! + 203*x^6/6! +...+ A000110(n)*x^n/n! +...
		

Crossrefs

Programs

  • Mathematica
    Table[BellB[n, 3^n], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2025 *)
  • PARI
    {a(n)=local(infnty=n^5+10);round(exp(-3^n)*sum(k=0,infnty,(3^k*k)^n/k!))}
    
  • PARI
    {a(n)=n!*polcoeff(sum(k=0,n,(exp(3^k*x +x*O(x^n))-1)^k/k!),n)}
    
  • PARI
    {a(n)=n!*polcoeff(exp(3^n*(exp(x +x*O(x^n))-1)),n)}
    
  • PARI
    {S2(n,k)=(1/k!)*sum(i=0,k,(-1)^(k-i)*binomial(k,i)*i^n)}
    {a(n)=sum(k=0,n,S2(n,k)*3^(n*k))} \\ Paul D. Hanna, Feb 15 2010
    
  • PARI
    {a(n)=polcoeff(sum(k=0,n,(3^k*x)^k/prod(j=1,k,1-j*3^k*x+x*O(x^n))),n)}

Formula

a(n) = exp(-3^n)*Sum_{k>=0} (3^k*k)^n/k!.
a(n) = [x^n/n! ] Bell(x)^(3^n) where Bell(x) = exp(exp(x) - 1) is the e.g.f. of the Bell numbers.
a(n) = Sum_{k=0..n} S2(n,k)*3^(n*k), where S2(n,k) = A008277(n,k) are the Stirling numbers of the second kind.
G.f.: A(x) = Sum_{n>=0} 3^(n^2)*x^n/[Product_{k=1..n} (1-k*3^n*x)].
a(n) ~ 3^(n^2). - Vaclav Kotesovec, Jul 02 2025

A177255 a(n) = Sum_{j=1..n} j*B(j-1), where B(k) = A000110(k) are the Bell numbers.

Original entry on oeis.org

0, 1, 3, 9, 29, 104, 416, 1837, 8853, 46113, 257583, 1533308, 9676148, 64452909, 451475027, 3314964857, 25442301577, 203604718076, 1695172374548, 14654631691569, 131309475792709, 1217516798735521, 11664652754184043, 115319114738472472, 1174967255260496776
Offset: 0

Views

Author

Emeric Deutsch, May 07 2010

Keywords

Comments

Number of adjacent blocks in all partitions of the set {1,2,...,n}. An adjacent block is a block of the form (i, i+1, i+2, ...). Example: a(3)=9 because in 1-2-3, 1-23, 12-3, 13-2, and 123 we have 3, 2, 2, 1, and 1 adjacent blocks, respectively.

Crossrefs

Partial sums of A052889.

Programs

  • Magma
    [n eq 0 select 0 else (&+[j*Bell(j-1): j in [1..n]]): n in [0..30]]; // G. C. Greubel, May 11 2024
    
  • Maple
    with(combinat): a := proc (n) options operator, arrow: sum(j*bell(j-1), j = 1 .. n) end proc; seq(a(n), n = 0 .. 23);
  • Mathematica
    With[{nn=30},Join[{0},Accumulate[BellB[Range[0,nn-1]]Range[nn]]]] (* Harvey P. Dale, Nov 10 2014 *)
  • SageMath
    [sum(j*bell_number(j-1) for j in range(1,1+n)) for n in range(31)] # G. C. Greubel, May 11 2024

Formula

a(n) = Sum_{k=0..n} k * A177254(n,k).

A177257 a(n) = Sum_{j=0..n-1} (binomial(n,j) - (j+1))*A000110(j).

Original entry on oeis.org

0, 0, 0, 1, 8, 47, 258, 1426, 8154, 48715, 305012, 2001719, 13754692, 98801976, 740584196, 5782218745, 46942426080, 395607218279, 3455493024350, 31236784338746, 291836182128670, 2814329123555051, 27980637362452980
Offset: 0

Views

Author

Emeric Deutsch, May 07 2010

Keywords

Comments

Number of blocks not consisting of consecutive integers in all partitions of the set {1,2,...,n} (a singleton is considered a block of consecutive integers). Example: a(3)=1 because in 1-2-3, 1-23, 12-3, 13-2, and 123 only the block 13 does not consist of consecutive integers.

Crossrefs

Programs

  • Magma
    A177257:= func< n | n eq 0 select 0 else (&+[(Binomial(n,j)-(j+1))*Bell(j): j in [0..n-1]]) >;
    [A177257(n): n in [0..30]]; // G. C. Greubel, May 12 2024
    
  • Maple
    with(combinat): a:= proc(n) add((binomial(n, j)-j-1)*bell(j), j = 0 .. n-1) end proc: seq(a(n), n = 0 .. 22);
  • Mathematica
    Table[Sum[(Binomial[n,j]-j-1)BellB[j],{j,0,n-1}],{n,0,30}] (* Harvey P. Dale, Oct 15 2015 *)
  • SageMath
    def A177257(n): return sum((binomial(n,j) -(j+1))*bell_number(j) for j in range(n))
    [A177257(n) for n in range(31)] # G. C. Greubel, May 12 2024

Formula

a(n) = Sum_{j=0..n-1} (binomial(n,j) - (j+1))*Bell(j), where Bell(n) = A000110(n) are the Bell numbers.
a(n) = Sum_{k=0..floor(n/2)} k*A177256(n,k).
a(n) = A005493(n-1) - A177255(n).

A214810 Triangle read by rows: T(n,k) (n>=1, 0 <= k <= p where p = n-th prime) = Bell(k) mod p (cf. A000110).

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 2, 1, 1, 2, 0, 0, 2, 1, 1, 2, 5, 1, 3, 0, 2, 1, 1, 2, 5, 4, 8, 5, 8, 4, 5, 2, 2, 1, 1, 2, 5, 2, 0, 8, 6, 6, 9, 2, 9, 11, 2, 1, 1, 2, 5, 15, 1, 16, 10, 9, 16, 1, 15, 11, 6, 15, 11, 14, 2, 1, 1, 2, 5, 15, 14, 13, 3, 17, 0, 18, 4, 5, 7, 14, 16, 15, 1, 10, 2, 1, 1, 2, 5, 15, 6, 19, 3, 0, 10, 9, 1, 20, 1, 12, 9, 5, 6, 6, 9, 4, 16, 22, 2, 1, 1, 2, 5, 15, 23, 0
Offset: 1

Views

Author

N. J. A. Sloane, Jul 31 2012

Keywords

Comments

The n-th row gives Bell numbers mod prime(n) and has length prime(n)+1.

Examples

			Triangle begins:
  [1, 1, 0],
  [1, 1, 2, 2],
  [1, 1, 2, 0, 0, 2],
  [1, 1, 2, 5, 1, 3, 0, 2],
  [1, 1, 2, 5, 4, 8, 5, 8, 4, 5, 2, 2],
  [1, 1, 2, 5, 2, 0, 8, 6, 6, 9, 2, 9, 11, 2],
  [1, 1, 2, 5, 15, 1, 16, 10, 9, 16, 1, 15, 11, 6, 15, 11, 14, 2],
  [1, 1, 2, 5, 15, 14, 13, 3, 17, 0, 18, 4, 5, 7, 14, 16, 15, 1, 10, 2],
  ...
		

Crossrefs

Programs

  • Maple
    T:= n-> (p-> seq(combinat[bell](k) mod p, k=0..p))(ithprime(n)):
    seq(T(n), n=1..10);  # Alois P. Heinz, Jun 07 2023
  • Mathematica
    A214810row[n_]:=Mod[BellB[Range[0,Prime[n]]],Prime[n]];Array[A214810row,50] (* Paolo Xausa, Aug 07 2023 *)

A224922 O.g.f. satisfies: A(x) = Sum_{n>=0} A000110(n)*x^n*A(x)^n, where A000110 are the Bell numbers.

Original entry on oeis.org

1, 1, 3, 12, 56, 288, 1586, 9201, 55675, 349159, 2260209, 15063260, 103201968, 726380164, 5252083746, 39029442336, 298340012448, 2348365289852, 19058365017840, 159659978176454, 1382148854813222, 12373696834781918, 114606230432935860, 1098199966940781258
Offset: 0

Views

Author

Paul D. Hanna, Apr 19 2013

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 56*x^4 + 288*x^5 + 1586*x^6 +...
The o.g.f. satisfies:
(1) A(x) = 1 + x*A(x) + 2*x^2*A(x)^2 + 5*x^3*A(x)^3 + 15*x^4*A(x)^4 + 52*x^5*A(x)^5 + 203*x^6*A(x)^6 +...+ A000110(n)*x^n*A(x)^n +...
(2) A(x) = 1 + x*A(x)/(1-x*A(x)) + x^2*A(x)^2/((1-x*A(x))*(1-2*x*A(x))) + x^3*A(x)^3/((1-x*A(x))*(1-2*x*A(x))*(1-3*x*A(x))) + x^4*A(x)^4/((1-x*A(x))*(1-2*x*A(x))*(1-3*x*A(x))*(1-4*x*A(x))) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n<0, 0, polcoeff( 1/x*serreverse(x/serlaplace(exp(exp(x+x*O(x^n))-1))), n))}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*A^m/prod(k=1, m,1-k*x*A +x*O(x^n)) )); polcoeff(A, n)}
    for(n=0,30,print1(a(n), ", "))

Formula

O.g.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^n / Product_{k=1..n} (1 - k*x*A(x)).
O.g.f. satisfies: A(x) = 1/(1 - x*A(x)/(1 - 1*x*A(x)/(1 - x*A(x)/(1 - 2*x*A(x)/(1 - x*A(x)/(1 - 3*x*A(x)/(1 - x*A(x)/(1 - 4*x*A(x)/(1 - ... ))))))))), a continued fraction.
a(n) = [x^n] ( Sum_{k>=0} A000110(k)*x^k )^(n+1) / (n+1).

A305850 Weigh transform of the Bell numbers (A000110).

Original entry on oeis.org

1, 1, 2, 7, 21, 78, 305, 1304, 6007, 29854, 159012, 904986, 5479078, 35150263, 238033523, 1695554145, 12663533586, 98881246850, 805128085616, 6820302066048, 59983405937707, 546690232627480, 5154757226832625, 50208266917662433, 504482106565647708
Offset: 0

Views

Author

Alois P. Heinz, Jun 11 2018

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1)*g(n-j), j=1..n))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(g(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1,
         Sum[Binomial[n - 1, j - 1]*g[n - j], {j, 1, n}]];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
         Sum[Binomial[g[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 12 2022, after Alois P. Heinz *)

Formula

G.f.: Product_{k>=1} (1+x^k)^Bell(k).

A051131 Prime Bell numbers (A000110).

Original entry on oeis.org

2, 5, 877, 27644437, 35742549198872617291353508656626642567, 359334085968622831041960188598043661065388726959079837
Offset: 1

Views

Author

Keywords

Examples

			Bell(2)=2 and Bell(3)=5 are primes, Bell(4)..Bell(6) are composite, Bell(7)=877 is prime.
		

Crossrefs

A070906 Every third Bell number A000110.

Original entry on oeis.org

1, 5, 203, 21147, 4213597, 1382958545, 682076806159, 474869816156751, 445958869294805289, 545717047936059989389, 846749014511809332450147, 1629595892846007606764728147, 3819714729894818339975525681317
Offset: 0

Views

Author

Benoit Cloitre, May 19 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ BellB[3*n], {n, 0, 12}] (* Jean-François Alcover, Dec 13 2012 *)
    BellB[3*Range[0,15]] (* Harvey P. Dale, Apr 19 2020 *)
  • PARI
    for(n=0,50,print1(round(sum(i=0,1000,i^(3*n)/(i)!)/exp(1)),","))
    
  • Python
    from itertools import accumulate, islice
    def A070906_gen(): # generator of terms
        yield 1
        blist, b = (1,), 1
        while True:
            for _ in range(3):
                blist = list(accumulate(blist, initial=(b:=blist[-1])))
            yield b
    A070906_list = list(islice(A070906_gen(),30)) # Chai Wah Wu, Jun 22 2022
  • Sage
    [bell_number(3*n) for n in range(0, 13)] # Zerinvary Lajos, May 14 2009
    

Formula

a(n) = Bell(3*n) = A000110(3*n). - Vladeta Jovovic, Feb 02 2003
a(n) = exp(-1)*Sum_{k>=0} k^(3n)/k!.
E.g.f.: exp(x*(d_z)^3)*(exp(exp(z)-1)) |_{z=0}, with the derivative operator d_z := d/dz. Adapted from eqs. (14) and (15) of the 1999 C. M. Bender reference given in A000110.
E.g.f.: exp(-1)*Sum_{n>=0} exp(n^3*x)/n!. - Vladeta Jovovic, Aug 24 2006

A094070 a(n) = A000085(n) * A000110(n).

Original entry on oeis.org

1, 4, 20, 150, 1352, 15428, 203464, 3162960, 55405140, 1101298600, 24222234720, 590544046744, 15715973012248, 456341011254560, 14312979247985120, 484253161428902192, 17550722413456774848, 680244627812139042016, 28053748582811428182080, 1228896901162555453603712
Offset: 0

Views

Author

N. J. A. Sloane, May 01 2004

Keywords

Comments

Coefficients arising in combinatorial field theory.

References

  • P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Some useful combinatorial formulas for bosonic operators, J. Math. Phys. 46, 052110 (2005) (6 pages).
  • P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G E. H. Duchamp, Combinatorial field theories via boson normal ordering, preprint, Apr 27 2004.

Crossrefs

Programs

  • Maple
    with(combinat): with(orthopoly): seq((I/sqrt(2))^(n+1)*H(n+1,-I/sqrt(2))*bell(n+1),n=0..17); # Emeric Deutsch, Nov 22 2004
  • Mathematica
    a[n_] := Sum[StirlingS1[n+1, k] 2^k BellB[k, 1/2], {k, 0, n+1}] BellB[n+1];
    Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Aug 07 2018 *)

Formula

a(n) = (i/sqrt(2))^(n+1)*H(n+1, -i/sqrt(2))*Bell(n+1), where i=sqrt(-1), H(n, x) are the Hermite polynomials and Bell(n) are the Bell numbers. - Emeric Deutsch, Nov 22 2004

Extensions

More terms from Ralf Stephan, Oct 14 2004
Previous Showing 31-40 of 1370 results. Next