cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 261 results. Next

A113775 Number of sets of lists (cf. A000262) whose list sizes are not a multiple of 3.

Original entry on oeis.org

1, 1, 3, 7, 49, 321, 2131, 19783, 195777, 2101249, 25721731, 340358151, 4902173233, 75688032577, 1253701725459, 22347046050631, 418439924732161, 8318748086461953, 175769214730290307, 3871849719998940679, 89734800330818444721, 2187944831367633226561
Offset: 0

Views

Author

Vladeta Jovovic, Jan 19 2006

Keywords

Crossrefs

Programs

  • Maple
    nmax := 30: B := x*(1+x)/(1-x^3) : egf := 0 : for i from 0 to nmax do egf := convert(egf+taylor(B^i,x=0,nmax+1)/i!,polynom) : od: for i from 0 to nmax do printf("%d ", i!*coeftayl(egf,x=0,i)) ; od: # R. J. Mathar, Feb 06 2008
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(`if`(0=
          irem(j, 3), 0, a(n-j)*j!*binomial(n-1, j-1)), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 10 2016
  • Mathematica
    CoefficientList[Series[E^(x*(1+x)/(1-x^3)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 25 2013 *)

Formula

E.g.f.: exp(x*(1+x)/(1-x^3)).
a(n) = a(n-1) + 2*(n-1)*a(n-2) + 2*(n-3)*(n-2)*(n-1)*a(n-3) + 2*(n-3)*(n-2)*(n-1)*a(n-4) + (n-4)*(n-3)*(n-2)*(n-1)*a(n-5) - (n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-6). - Vaclav Kotesovec, Sep 25 2013
a(n) ~ 6^(-1/4) * n^(n-1/4) * exp(2/3*sqrt(6*n)-n) * (1 - 43/(48*sqrt(6*n))). - Vaclav Kotesovec, Sep 25 2013

Extensions

2 more terms from R. J. Mathar, Feb 06 2008

A096965 Number of sets of even number of even lists, cf. A000262.

Original entry on oeis.org

1, 1, 1, 7, 37, 241, 2101, 18271, 201097, 2270017, 29668681, 410815351, 6238931821, 101560835377, 1765092183037, 32838929702671, 644215775792401, 13441862819232001, 293976795292186897, 6788407001443004647, 163735077313046119861, 4142654439686285737201
Offset: 0

Views

Author

Vladeta Jovovic, Aug 18 2004

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;  `if`(n<4, [1$3, 7][n+1], ((2*n-3)
          *a(n-1)+(n-1)*(2*n^2-8*n+7)*a(n-2) + (n-2)*(n-1)*(2*n-5)
          *a(n-3)-(n-4)*(n-3)*(n-2)^2*(n-1)*a(n-4))/(n-2))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 01 2021
  • Mathematica
    Drop[ Range[0, 20]! CoefficientList[ Series[ Exp[(x/(1 - x^2))]Cosh[x^2/(1 - x^2)], {x, 0, 20}], x], 1] (* Robert G. Wilson v, Aug 19 2004 *)

Formula

E.g.f.: exp(x/(1-x^2))*cosh(x^2/(1-x^2)).
a(n) = (n!*sum(m=floor((n+1)/2)..n, (binomial(n-1,2*m-n-1))/(2*m-n)!)). - Vladimir Kruchinin, Mar 10 2013
Recurrence: (n-2)*a(n) = (2*n-3)*a(n-1) + (n-1)*(2*n^2 - 8*n + 7)*a(n-2) + (n-2)*(n-1)*(2*n-5)*a(n-3) - (n-4)*(n-3)*(n-2)^2*(n-1)*a(n-4). - Vaclav Kotesovec, Sep 29 2013
a(n) ~ exp(2*sqrt(n)-n-1/2)*n^(n-1/4)/(2*sqrt(2)) * (1-5/(48*sqrt(n))). - Vaclav Kotesovec, Sep 29 2013
From Alois P. Heinz, Dec 01 2021: (Start)
a(n) = A000262(n) - A096939(n).
a(n) = |Sum_{k=0..n} (-1)^k * A349776(n,k)|. (End)

Extensions

More terms from Robert G. Wilson v, Aug 19 2004
a(0)=1 prepended by Alois P. Heinz, Dec 01 2021

A097146 Total sum of maximum list sizes in all sets of lists of n-set, cf. A000262.

Original entry on oeis.org

0, 1, 5, 31, 217, 1781, 16501, 172915, 1998641, 25468777, 352751941, 5292123431, 85297925065, 1472161501981, 27039872306357, 527253067633531, 10865963240550241, 236088078855319505, 5390956470528548101, 129102989125943058607, 3234053809095307670201, 84596120521251178630981, 2305894874979300173268085
Offset: 0

Views

Author

Vladeta Jovovic, Jul 27 2004

Keywords

Examples

			For n=4 we have 73 sets of lists (cf. A000262): (1234) (24 ways), (123)(4) (6*4 ways), (12)(34) (3*4 ways), (12)(3)(4) (6*2 ways), (1)(2)(3)(4) (1 way); so a(4)= 24*4+24*3+12*2+12*2+1*1 = 217.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, m, add(j!*
          b(n-j, max(m, j))*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, May 10 2016
  • Mathematica
    b[n_, m_] := b[n, m] = If[n == 0, m, Sum[j! b[n-j, Max[m, j]] Binomial[n-1, j-1], {j, 1, n}]];
    a[n_] := b[n, 0];
    a /@ Range[0, 25] (* Jean-François Alcover, Nov 05 2020, after Alois P. Heinz *)
  • PARI
    N=50; x='x+O('x^N);
    egf=exp(x/(1-x))*sum(k=1,N, (1-exp(x^k/(x-1))) );
    Vec( serlaplace(egf) ) /* show terms */

Formula

E.g.f.: exp(x/(1-x))*Sum_{k>0} (1-exp(x^k/(x-1))).

Extensions

a(0)=0 prepended by Alois P. Heinz, May 10 2016

A113236 Number of partitions of {1,..,n} into any number of lists of size not equal to 3, where a list means an ordered subset, cf. A000262.

Original entry on oeis.org

1, 1, 3, 7, 49, 321, 2851, 24823, 256257, 2887489, 36759331, 507010791, 7597222513, 122184356737, 2106356007939, 38693238713431, 754792977928321, 15572911248409473, 338800604611562947, 7749991799652960199, 185934065196259734321, 4667877395135551746241
Offset: 0

Views

Author

Karol A. Penson, Oct 19 2005

Keywords

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x*(1-x^2+x^3)/(1-x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 17 2018
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          `if`(j=3, 0, a(n-j)*binomial(n-1, j-1)*j!), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, May 10 2016
  • Mathematica
    Range[0, 18]!*CoefficientList[ Series[ Exp[x*(1-x^2+x^3)/(1 - x)], {x, 0, 18}], x] (* Zerinvary Lajos, Mar 23 2007 *)
    a[n_] := a[n] = If[n==0, 1, Sum[If[j==3, 0, a[n-j]*Binomial[n-1, j-1]*j!], {j, 1, n}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 11 2017, after Alois P. Heinz *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(x*(1-x^2+x^3)/(1-x)))) \\ G. C. Greubel, May 17 2018
    

Formula

E.g.f.: exp(x*(1-x^2+x^3)/(1-x)).
Expression as a sum involving generalized Laguerre polynomials, in Mathematica notation: a(n)=n!*Sum[(-1)^k*LaguerreL[n - 3*k, -1, -1]/k!, {k, 0, Floor[n/3]}], n=0, 1....
a(n) ~ exp(-3/2+2*sqrt(n)-n)*n^(n-1/4)/sqrt(2). - Vaclav Kotesovec, Jun 22 2013

A133289 Riordan matrix T from A084358 (lists of sets of lists) inverse to the Riordan matrix TI = 2I-A129652 formed from A000262 (number of sets of lists) and reciprocal under a partition transform.

Original entry on oeis.org

1, 1, 1, 5, 2, 1, 37, 15, 3, 1, 363, 148, 30, 4, 1, 4441, 1815, 370, 50, 5, 1, 65133, 26646, 5445, 740, 75, 6, 1, 1114009, 455931, 93261, 12705, 1295, 105, 7, 1, 21771851, 8912072, 1823724, 248696, 25410, 2072, 140, 8, 1
Offset: 0

Views

Author

Tom Copeland, Oct 16 2007, Nov 30 2007

Keywords

Comments

T(n,k) is simply constructed from Pascal's triangle PT and A084358 through multiplication along the diagonals. Taking the matrix inverse gives TI = 2I-A129652 = PT times diagonal multiplication by -A000262 with the sign of the first term flipped to positive.
T and TI are also reciprocals under the list partition transform described in A133314.

Examples

			Triangle starts:
1,
1, 1,
5, 2, 1,
37, 15, 3, 1,
363, 148, 30, 4, 1,
4441, 1815, 370, 50, 5, 1,
...
		

Crossrefs

Cf. A131202.

Programs

  • Mathematica
    max = 7; s = Series[Exp[x*t]/(2-Exp[x/(1-x)]), {x, 0, max}, {t, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {t, 0, k}]*n!; t[0, 0] = 1; Table[t[n, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 23 2014 *)

Formula

T(n,k) = binomial(n,k) * A084358(n-k).
E.g.f.: exp(xt) / { 2 - exp[x/(1-x)] }.

A096939 Number of sets of odd number of even lists, cf. A000262.

Original entry on oeis.org

0, 2, 6, 36, 260, 1950, 19362, 193256, 2326536, 29272410, 413257790, 6231230412, 101415565836, 1769925341366, 32734873484250, 646218442877520, 13404753632014352, 294656673023216946, 6775966692145553526
Offset: 1

Views

Author

Vladeta Jovovic, Aug 18 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[ Range[0, 20]! CoefficientList[ Series[ Exp[(x/(1 - x^2))] Sinh[x^2/(1 - x^2)], {x, 0, 20}], x], 1] (* Robert G. Wilson v, Aug 19 2004 *)

Formula

E.g.f.: exp(x/(1-x^2))*sinh(x^2/(1-x^2)).
Recurrence: (n-2)*a(n) = (2*n-3)*a(n-1) + (n-1)*(2*n^2 - 8*n + 7)*a(n-2) + (n-2)*(n-1)*(2*n-5)*a(n-3) - (n-4)*(n-3)*(n-2)^2*(n-1)*a(n-4). - Vaclav Kotesovec, Sep 29 2013
a(n) ~ exp(2*sqrt(n)-n-1/2)*n^(n-1/4)/(2*sqrt(2)) * (1-5/(48*sqrt(n))). - Vaclav Kotesovec, Sep 29 2013
a(n) = A000262(n) - A096965(n). - Alois P. Heinz, Dec 01 2021

Extensions

More terms from Robert G. Wilson v, Aug 19 2004

A102760 Number of partitions of n-set into "lists", in which every even list appears an even number of times, cf. A000262.

Original entry on oeis.org

1, 1, 1, 7, 37, 241, 1381, 13231, 140617, 1483777, 16211881, 217551511, 3384215341, 50221272817, 782154787597, 13913712591871, 272739557719441, 5282625708305281, 106588332600443857, 2354480141600267047, 56238135934525073461, 1338131691952924913521
Offset: 0

Views

Author

Vladeta Jovovic, Feb 10 2005

Keywords

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(`if`(i::even and j::odd, 0, b(n-i*j, i-1)*
          multinomial(n, n-i*j, i$j)/j!*i!^j), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, May 10 2016
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[If[EvenQ[i] && OddQ[j], 0, b[n-i*j, i- 1] * multinomial[n, Join[{n - i*j}, Array[i &, j]]]/j!*i!^j], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 05 2017, after Alois P. Heinz *)

Formula

E.g.f.: exp(x/(1-x^2))*Product_{k>0} cosh(x^(2*k)).

Extensions

a(0)=1 prepended by Alois P. Heinz, May 10 2016

A114329 Triangle T(n,k) is the number of partitions of an n-set into lists (cf. A000262) with k lists of size 1.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 6, 6, 0, 1, 36, 24, 12, 0, 1, 240, 180, 60, 20, 0, 1, 1920, 1440, 540, 120, 30, 0, 1, 17640, 13440, 5040, 1260, 210, 42, 0, 1, 183120, 141120, 53760, 13440, 2520, 336, 56, 0, 1, 2116800, 1648080, 635040, 161280, 30240, 4536, 504, 72, 0, 1
Offset: 0

Views

Author

Vladeta Jovovic, Feb 06 2006

Keywords

Comments

The average number of size 1 lists goes to 1 as n->infinity. In other words, lim_{n->infinity} Sum_{k>=1} T(n,k)*k/A000262(n) = 1. - Geoffrey Critzer, Feb 20 2022 (after asymptotic limits by Vaclav Kotesovec given in A000262)

Examples

			Triangle begins:
    1;
    0,   1;
    2,   0,  1;
    6,   6,  0,  1;
   36,  24, 12,  0, 1;
  240, 180, 60, 20, 0, 1;
  ...
		

Crossrefs

Programs

  • Maple
    t:=taylor(exp(x/(1-x)+(y-1)*x),x,11):for n from 0 to 10 do for k from 0 to n do printf("%d, ",coeff(n!*coeff(t,x,n),y,k)): od: printf("\n"): od: # Nathaniel Johnston, Apr 27 2011
    # second Maple program:
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(j!*
         `if`(j=1, x, 1)*b(n-j)*binomial(n-1, j-1), j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Feb 19 2022
  • Mathematica
    nn = 10; Table[Take[(Range[0, nn]! CoefficientList[ Series[Exp[ x/(1 - x) - x + y x], {x, 0, nn}], {x, y}])[[i]], i], {i, 1, nn}] // Grid (* Geoffrey Critzer, Feb 19 2022 *)

Formula

E.g.f.: exp(x/(1-x)+(y-1)*x). More generally, e.g.f. for number of partitions of n-set into lists with k lists of size m is exp(x/(1-x)+(y-1)*x^m).

A131202 A coefficient tree from the list partition transform relating A111884, A084358, A000262, A094587, A128229 and A131758.

Original entry on oeis.org

1, -1, 3, 1, -8, 13, 1, 11, -61, 73, -19, 66, 66, -494, 501, 151, -993, 2102, -298, -4293, 4051, -1091, 9528, -33249, 52816, -21069, -39528, 37633, 7841, -82857, 378261, -929101, 1207299, -560187, -375289, 394353, -56519, 692422, -3832928, 12255802, -23834210, 26643994, -12620672, -3481562, 4596553
Offset: 1

Views

Author

Tom Copeland, Oct 22 2007, Nov 30 2007

Keywords

Comments

Construct the infinite array of polynomials
a(0,t) = 1
a(1,t) = 1
a(2,t) = -1 + 3*t
a(3,t) = 1 - 8*t + 13*t^2
a(4,t) = 1 + 11*t - 61*t^2 + 73*t^3
a(5,t) = -19 + 66*t + 66*t^2 - 494*t^3 + 501*t^4
a(6,t) = 151 - 993*t + 2102*t^2 - 298*t^3 - 4293*t^4 + 4051*t^5
This array is the reciprocal array of the following array b(n,t) under the list partition transform and its associated operations described in A133314.
b(0,t) = 1 and b(n,t) = -A000262(n)*(t-1)^(n-1) for n > 0.
Then A111884(n) = a(n,0).
Lower triangular matrix A094587 = binomial(n,k)*a(n-k,1).
A084358(n) = a(n,2).
Signed A128229 = matrix inverse of binomial(n,k)*a(n-k,1) = binomial(n,k)*b(n-k,1) = A132013.
As t tends to infinity, a(n,t)/t^(n-1) tends to A000262(n) for n > 0.
The P(n,t) of A131758 can be constructed from T(n,k,t) = binomial(n,k)*a(n-k,t) by letting T(n,k,t) multiply the column vector c(n,t) given by c(0,t) = 0! and c(n,t) = n!*(t-1)^(n-1) for n > 0. The P(n,t) have rich associations to other sequences.

Programs

  • Mathematica
    CoefficientList[#, t] & /@ (# Range@Length@#!) &@ Rest@CoefficientList[(t-1) / (t - Exp[x(t-1)/(1-x(t-1))]) + O[x]^10 // Simplify, x] // Flatten (* Andrey Zabolotskiy, Feb 19 2024 *)
  • PARI
    T(n) = [Vecrev(p) | p<-Vec(-1 + serlaplace((y-1) / (y - exp(x*(y-1)/(1-x*(y-1)) + O(x*x^n) ))))]
    { my(A=T(7)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Feb 19 2024

Formula

E.g.f. for the row polynomials, which are a(n, t) for n > 0, is:
(t-1) / (t - exp(x*(t-1)/(1-x*(t-1)))).
E.g.f. for the polynomials b(n, t), introduced above, is the reciprocal of that.

Extensions

Rows 7-9 added and offset changed by Andrey Zabolotskiy, Feb 19 2024

A102289 Total number of odd lists in all sets of lists, cf. A000262.

Original entry on oeis.org

0, 1, 2, 15, 76, 665, 5286, 56287, 597080, 7601841, 99702730, 1484554511, 23049638052, 393702612745, 7036703742446, 135702811542495, 2737989749177776, 58848546456947297, 1321063959370833810, 31310238786268648591, 773291778432688011260, 20031956775840631151481
Offset: 0

Views

Author

Vladeta Jovovic, Feb 19 2005

Keywords

Crossrefs

Programs

  • Maple
    G:=(x/(1-x^2))*exp(x/(1-x)): Gser:=series(G,x=0,25): seq(n!*coeff(Gser,x^n),n=1..22); # Emeric Deutsch
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, [1, 0], add(
          (p-> p+`if`(j::odd, [0, p[1]], 0))(b(n-j)*
            binomial(n-1, j-1)*j!), j=1..n))
        end:
    a:= n-> b(n, 0)[2]:
    seq(a(n), n=0..25);  # Alois P. Heinz, May 10 2016
  • Mathematica
    Rest[CoefficientList[Series[x/(1-x^2)*E^(x/(1-x)), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Sep 29 2013 *)
    nxt[{n_,a_,b_,c_}]:={n+1,b,c,(n+1)*c+(n+1)^2*b-(n-1)^2 (n+1)*a}; NestList[ nxt,{2,0,1,2},30][[All,2]] (* Harvey P. Dale, Jan 13 2019 *)

Formula

E.g.f.: x/(1-x^2)*exp(x/(1-x)).
a(n) = n*a(n-1) + n^2*a(n-2) - (n-2)^2*n*a(n-3). - Vaclav Kotesovec, Sep 29 2013
a(n) ~ sqrt(2)/4 * n^(n+1/4)*exp(2*sqrt(n)-n-1/2) * (1 + 7/(48*sqrt(n))). - Vaclav Kotesovec, Sep 29 2013

Extensions

More terms from Emeric Deutsch, Jun 24 2005
a(0)=0 pepended by Alois P. Heinz, May 10 2016
Previous Showing 11-20 of 261 results. Next