cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 161 results. Next

A338950 Number of chiral pairs of colorings of the 24 octahedral facets (or 24 vertices) of the 4-D 24-cell using subsets of a set of n colors.

Original entry on oeis.org

12232, 241146903, 243616903380, 51700252145825, 4112117375683170, 166286156041490247, 4099088542944703728, 69240138924298950135, 868045130573811864300, 8550057218442459279340, 69007402402972868503812
Offset: 2

Views

Author

Robert A. Russell, Nov 17 2020

Keywords

Comments

Each member of a chiral pair is a reflection but not a rotation of the other. The Schläfli symbol of the 24-cell is {3,4,3}. It is self-dual.

Crossrefs

Cf. A338948 (oriented), A338949 (unoriented), A338951 (achiral), A338954 (edges, faces), A000389 (5-cell), A337954 (8-cell vertices, 16-cell facets), A234249(16-cell vertices, 8-cell facets), A338966 (120-cell, 600-cell).

Programs

  • Mathematica
    Table[(96n^2+144n^3-48n^4-52n^6-228n^7-24n^8+36n^9+21n^12+60n^13+18n^14-12n^15-12n^18+n^24)/1152,{n,2,15}]

Formula

a(n) = (96*n^2 + 144*n^3 - 48*n^4 - 52*n^6 - 228*n^7 - 24*n^8 + 36*n^9 + 21*n^12 + 60*n^13 + 18*n^14 - 12*n^15 - 12*n^18 + n^24) / 1152.
a(n) = 12232*C(n,2) + 241110207*C(n,3) + 242652389160*C(n,4) + 50484578975635*C(n,5) + 3805565293604340*C(n,6) + 138578521555036815*C(n,7) + 2881060406691096840*C(n,8) + 37995709352029326765*C(n,9) + 340998954354320550750*C(n,10) + 2186417251809922893300*C(n,11) + 10365972799754686653000*C(n,12) + 37236906263669699386800*C(n,13) + 103077047681129825503200*C(n,14) + 222282209861028829512000*C(n,15) + 375541963275099452832000*C(n,16) + 497391179860822639392000*C(n,17) + 513995707264282955712000*C(n,18) + 409785508676334510720000*C(n,19) + 247034122336026305280000*C(n,20) + 108861226736398456320000*C(n,21) + 33078014473191367680000*C(n,22) + 6193712343691192320000*C(n,23) + 538583682060103680000*C(n,24), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors.
a(n) = A338948(n) - A338949(n) = (A338948(n) - A338951(n)) / 2 = A338949(n) - A338951(n).

A005995 Alkane (or paraffin) numbers l(8,n).

Original entry on oeis.org

1, 3, 12, 28, 66, 126, 236, 396, 651, 1001, 1512, 2184, 3108, 4284, 5832, 7752, 10197, 13167, 16852, 21252, 26598, 32890, 40404, 49140, 59423, 71253, 85008, 100688, 118728, 139128, 162384, 188496, 218025, 250971, 287964, 329004, 374794, 425334, 481404, 543004
Offset: 0

Views

Author

N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

Comments

From M. F. Hasler, May 01 2009: (Start)
Also, number of 5-element subsets of {1,...,n+5} whose elements sum to an odd integer, i.e. column 5 of A159916.
A linear recurrent sequence with constant coefficients and characteristic polynomial x^9 - 3*x^8 + 8*x^6 - 6*x^5 - 6*x^4 + 8*x^3 - 3*x + 1. (End)
Equals (1/2)*((1, 6, 21, 56, 126, 252, ...) + (1, 0, 3, 0, 6, 0, 10, ...)), see A000389 and A000217.
Equals row sums of triangle A160770.
F(1,5,n) is the number of bracelets with 1 blue, 5 identical red and n identical black beads. If F(1,5,1) = 3 and F(1,5,2) = 12 taken as a base, F(1,5,n) = n(n+1)(n+2)(n+3)/24 + F(1,3,n) + F(1,5,n-2). [F(1,3,n) is the number of bracelets with 1 blue, 3 identical red and n identical black beads. If F(1,3,1) = 2 and F(1,3,2) = 6 taken as a base F(1,3,n) = n(n+1)/2 + [|n/2|] + 1 + F(1,3,n-2)], where [|x|]: if a is an integer and a<=x

References

  • S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Winston C. Yang (paper in preparation).

Crossrefs

Cf. A160770, A053132 (bisection), A271870 (bisection), A018210 (partial sums).

Programs

  • Maple
    a:= n-> (Matrix([[1, 0$6, -3, -9]]). Matrix(9, (i,j)-> if (i=j-1) then 1 elif j=1 then [3, 0, -8, 6, 6, -8, 0, 3, -1][i] else 0 fi)^n)[1, 1]: seq(a(n), n=0..40); # Alois P. Heinz, Jul 31 2008
  • Mathematica
    a[n_?OddQ] := 1/240*(n+1)*(n+2)*(n+3)*(n+4)*(n+5); a[n_?EvenQ] := 1/240*(n+2)*(n+4)*(n+6)*(n^2+3*n+5); Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Mar 17 2014, after M. F. Hasler *)
    LinearRecurrence[{3, 0, -8, 6, 6, -8, 0, 3, -1},{1, 3, 12, 28, 66, 126, 236, 396, 651},40] (* Ray Chandler, Sep 23 2015 *)
  • PARI
    a(k)= if(k%2,(k+1)*(k+3)*(k+5),(k+6)*(k^2+3*k+5))*(k+2)*(k+4)/240 \\ M. F. Hasler, May 01 2009

Formula

G.f.: (1+3*x^2)/((1-x)^3*(1-x^2)^3).
a(2n-1) = n(n+1)(n+2)(2n+1)(2n+3)/30, a(2n) = (n+1)(n+2)(n+3)(4n^2+6n+5)/ 30. [M. F. Hasler, May 01 2009]
a(n) = (1/240)*(n+1)*(n+2)*(n+3)*(n+4)*(n+5) + (1/16)*(n+2)*(n+4)*(1/2)*(1+(-1)^n). [Yosu Yurramendi, Jun 20 2013]
a(n) = A038163(n)+3*A038163(n-2). - R. J. Mathar, Mar 29 2018

A056005 Number of 3-element ordered antichains on an unlabeled n-element set; T_1-hypergraphs with 3 labeled nodes and n hyperedges.

Original entry on oeis.org

0, 0, 0, 2, 19, 90, 302, 820, 1926, 4068, 7920, 14454, 25025, 41470, 66222, 102440, 154156, 226440, 325584, 459306, 636975, 869858, 1171390, 1557468, 2046770, 2661100, 3425760, 4369950, 5527197, 6935814, 8639390, 10687312, 13135320, 16046096, 19489888
Offset: 0

Author

Vladeta Jovovic, Goran Kilibarda, Jul 24 2000

Keywords

Comments

T_1-hypergraph is a hypergraph (not necessarily without empty hyperedges or multiple hyperedges) which for every ordered pair of distinct nodes have a hyperedge containing one but not the other node.

Examples

			There are 19 3-element ordered antichains on an unlabeled 4-element set: ({4},{3},{2}), ({4},{3},{1,2}), ({4},{2,3},{1}), ({4},{2,3},{1,3}), ({3,4},{2},{1}), ({3,4},{2},{1,4}), ({3,4},{2,4},{2,3}), ({3,4},{2,4},{1}), ({3,4},{2,4},{1,4}), ({3,4},{2,4},{1,3}), ({3,4},{2,4},{1,2}), ({3,4},{2,4},{1,2,3}), ({3,4},{1,2},{2,4}), ({3,4},{1,2,4},{2,3}), ({3,4},{1,2,4},{1,2,3}), ({2,3,4},{1,4},{1,3}), ({2,3,4},{1,4},{1,2,3}), ({2,3,4},{1,3,4},{1,2}), ({2,3,4},{1,3,4},{1,2,4}).
		

Crossrefs

Cf. A047707 for 3-element (unordered) antichains on a labeled n-element set.

Programs

  • Magma
    [n*(n-2)*(n-1)*(n+1)*(n^3 + 30*n^2 + 131*n - 270)/5040: n in [0..30]]; // G. C. Greubel, Nov 22 2017
  • Mathematica
    Table[Binomial[n+7,7]-6Binomial[n+5,5]+6Binomial[n+4,4]+3Binomial[n+3,3]- 6Binomial[n+2,2]+ 2Binomial[n+1,1],{n,0,40}] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{0,0,0,2,19,90,302,820},40] (* Harvey P. Dale, Jul 27 2011 *)
  • PARI
    x='x+O('x^50); concat([0,0,0], Vec(x^3*(2+3*x-6*x^2+2*x^3)/(1-x)^8)) \\ G. C. Greubel, Oct 06 2017
    

Formula

a(n) = C(n+7, 7) - 6*C(n+5, 5) + 6*C(n+4, 4) + 3*C(n+3, 3) - 6*C(n+2, 2) + 2*C(n+1, 1).
a(n) = n*(n-2)*(n-1)*(n+1)*(n^3 + 30*n^2 + 131*n - 270)/5040.
G.f.: 1/(1-x)^8 - 6/(1-x)^6 + 6/(1-x)^5 + 3/(1-x)^4 - 6/(1-x)^3 + 2/(1-x)^2.
G.f.: x^3*(2 + 3*x - 6*x^2 + 2*x^3)/(1-x)^8.
Recurrence: a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
Generally, recurrence for the number of m-element ordered antichains on an unlabeled n-element set is a(m, n) = C(2^m, 1)*a(m, n - 1) - C(2^m, 2)*a(m, n - 2) + C(2^m, 3)*a(m, n - 3) + ... + ( - 1)^(k - 1)*C(2^m, k)*a(m, n - k) + ... - a(m, n - 2^m).
a(n) = A000580(n+7) - 6*A000389(n+5) + 6*A000332(n+4) + 3*A000292(n+1) - 6*A000217(n+1) + 2*A000027(n+1). - R. J. Mathar, Nov 16 2007

Extensions

More terms from Harvey P. Dale, Jul 27 2011

A087108 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of binomial coefficients C(n,4). The p-th row (p>=1) contains a(i,p) for i=1 to 4*p-3, where a(i,p) satisfies Sum_{i=1..n} C(i+3,4)^p = 5 * C(n+4,5) * Sum_{i=1..4*p-3} a(i,p) * C(n-1,i-1)/(i+4).

Original entry on oeis.org

1, 1, 4, 6, 4, 1, 1, 24, 176, 624, 1251, 1500, 1070, 420, 70, 1, 124, 3126, 33124, 191251, 681000, 1596120, 2543520, 2780820, 2058000, 987000, 277200, 34650, 1, 624, 49376, 1350624, 18308751, 146500500, 763418870, 2749648020, 7101675070, 13440210000
Offset: 1

Author

André F. Labossière, Aug 11 2003

Keywords

Comments

From Peter Bala, Mar 11 2018: (Start)
The table entries T(n,k) are the coefficients when expressing the polynomial C(x+4,4)^p of degree 4*p in terms of falling factorials: C(x+4,4)^p = Sum_{k = 0..4*p} T(p,k)*C(x,k). It follows that Sum_{i = 0..n-1} C(i+4,4)^p = Sum_{k = 0..4*p} T(p,k)*C(n,k+1). (End)

Examples

			Row 3 contains 1,24,176,...,70, so Sum_{i=1..n} C(i+3,4)^3 = 5 * C(n+4,5) * [ a(1,3)/5 + a(2,3)*C(n-1,1)/6 + a(3,3)*C(n-1,2)/7 + ... + a(9,3)*C(n-1,8)/13 ] = 5 * C(n+4,5) * [ 1/5 + 24*C(n-1,1)/6 + 176*C(n-1,2)/7 + ... + 70*C(n-1,8)/13 ]. Cf. A086024 for more details.
From _Peter Bala_, Mar 11 2018: (Start)
Table begins
  n = 0 | 1
  n = 1 | 1   4    6     4      1
  n = 2 | 1  24  176   624   1251   1500    1070  420  70
  n = 3 | 1 124 3126 33124 191251 681000 1596120 ...
  ...
Row 2: C(i+4,4)^2 = C(i,0) + 24*C(i,1) + 176*C(i,2) + 624*C(i,3) + 1251*C(i,4) + 1500*C(i,5) + 1070*C(i,6) + 420*C(i,7) + 70*C(i,8). Hence, Sum_{i = 0..n-1} C(i+4,4)^2 =  C(n,1) + 24*C(n,2) + 176*C(n,3) + 624*C(n,4) + 1251*C(n,5) + 1500*C(n,6) + 1070*C(n,7) + 420*C(n,8) + 70*C(n,9) .(End)
		

Programs

  • Maple
    seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+4, 4)^n, i = 0..k), k = 0..4*n), n = 0..6); # Peter Bala, Mar 11 2018
  • Mathematica
    a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 5, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 4, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 4*p - 3}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
  • PARI
    {a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 5, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 4, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 4*p-3, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017

Formula

a(i, p) = Sum_{k=1..[2*i+1+(-1)^(i-1)]/4} [ C(i-1, 2*k-2)*C(i-2*k+5, i-2*k+1)^(p-1) -C(i-1, 2*k-1)*C(i-2*k+4, i-2*k)^(p-1) ]
From Peter Bala, Mar 11 2018: (Start)
The following remarks assume the row and column indices start at 0.
T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i) * binomial(i+4,4)^n. Equivalently, let v_n denote the sequence (1, 5^n, 15^n, 35^n, ...) regarded as an infinite column vector, where 1, 5, 15, 35, ... is the sequence binomial(n+4,4) - see A000332. Then the n-th row of this table is determined by the matrix product P^(-1)*v_n, where P denotes Pascal's triangle A007318.
Recurrence: T(n+1,k) = C(k+4,4)*T(n,k) + 4*C(k+3,4)*T(n,k-1) + 6*C(k+2,4)*T(n,k-2) + 4*C(k+1,4)*T(n,k-3) + C(k,4)*T(n,k-4) with boundary conditions T(n,0) = 1 for all n and T(n,k) = 0 for k > 4*n.
n-th row polynomial R(n,x) = (1 + x)^4 o (1 + x)^4 o ... o (1 + x)^4 (n factors), where o denotes the black diamond product of power series defined in Dukes and White.
R(n,x) = Sum_{i >= 0} binomial(i+4,4)^n*x^i/(1 + x)^(i+1).
R(n+1,x) = 1/4! * (1 + x)^4 * (d/dx)^4(x^4*R(n,x)).
(1 - x)^(4*n)*R(n,x/(1 - x)) appears to equal the n-th row polynomial of A236463. (End)

Extensions

Edited by Dean Hickerson, Aug 16 2003

A087109 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of binomial coefficients C(n,5). The p-th row (p>=1) contains a(i,p) for i=1 to 5*p-4, where a(i,p) satisfies Sum_{i=1..n} C(i+4,5)^p = 6 * C(n+5,6) * Sum_{i=1..5*p-4} a(i,p) * C(n-1,i-1)/(i+5).

Original entry on oeis.org

1, 1, 5, 10, 10, 5, 1, 1, 35, 370, 1920, 5835, 11253, 14240, 11830, 6230, 1890, 252, 1, 215, 8830, 148480, 1352615, 7665757, 29224020, 78518790, 152794740, 218270220, 229279512, 175227360, 94864770, 34504470, 7567560, 756756, 1, 1295, 191890
Offset: 1

Author

André F. Labossière, Aug 11 2003

Keywords

Comments

From Peter Bala, Mar 11 2018: (Start)
The table entries T(n,k) are the coefficients when expressing the polynomial C(x+5,5)^p of degree 5*p in terms of falling factorials: C(x+5,5)^p = Sum_{k = 0..5*p} T(p,k)*C(x,k). It follows that Sum_{i = 0..n-1} C(i+5,5)^p = Sum_{k = 0..5*p} T(p,k)*C(n,k+1). (End)

Examples

			Row 3 contains 1,35,370,...,252, so Sum_{i=1..n} C(i+4,5)^3 = 6 * C(n+5,6) * [ a(1,3)/6 + a(2,3)*C(n-1,1)/7 + a(3,3)*C(n-1,2)/8 + ... + a(11,3)*C(n-1,10)/16 ] = 6 * C(n+5,6) * [ 1/6 + 35*C(n-1,1)/7 + 370*C(n-1,2)/8 + ... + 252*C(n-1,10)/16 ]. Cf. A086026 for more details.
From _Peter Bala_, Mar 11 2018: (Start)
Table begins
1
1  5  10   10    5     1
1 35 370 1920 5835 11253 14240 11830 6230 1890 252
...
Row 2: C(i+5,5)^2 = C(i,0) + 35*C(i,1) + 370*C(i,2) + 1920*C(i,3) + 5835*C(i,4) + 11253*C(i,5) + 14240*C(i,6) + 11830*C(i,7) + 6230*C(i,8) + 1890*C(i,9) + 252*C(i,10). Hence, Sum_{i = 0..n-1} C(i+5,5)^2 = C(n,1) + 35*C(n,2) + 370*C(n,3) + 1920*C(n,4) + 5835*C(n,5) + 11253*C(n,6) + 14240*C(n,7) + 11830*C(n,8) + 6230*C(n,9) + 1890*C(n,10) + 252*C(n,11). (End)
		

Programs

  • Maple
    seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+5, 5)^n, i = 0..k), k = 0..5*n), n = 0..5); # Peter Bala, Mar 11 2018
  • Mathematica
    a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 6, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 5, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 5*p - 4}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
  • PARI
    {a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 6, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 5, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 5*p-4, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017

Formula

a(i, p) = Sum_{k=1..[2*i+1+(-1)^(i-1)]/4} [ C(i-1, 2*k-2)*C(i-2*k+6, i-2*k+1)^(p-1) -C(i-1, 2*k-1)*C(i-2*k+5, i-2*k)^(p-1) ]
From Peter Bala, Mar 11 2018: (Start)
The following remarks assume the row and column indices start at 0.
T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i) * binomial(i+5,5)^n. Equivalently, let v_n denote the sequence (1, 6^n, 21^n, 56^n, ...) regarded as an infinite column vector, where 1, 6, 21, 56, ... is the sequence binomial(n+5,5) - see A000389. Then the n-th row of this table is determined by the matrix product P^(-1)*v_n, where P denotes Pascal's triangle A007318.
Recurrence: T(n+1,k) = Sum_{i = 0..5} C(5,i)*C(k+5-i,5)*T(n,k-i) with boundary conditions T(n,0) = 1 for all n and T(n,k) = 0 for k > 5*n.
n-th row polynomial R(n,x) = (1 + x)^5 o (1 + x)^5 o ... o (1 + x)^5 (n factors), where o denotes the black diamond product of power series defined in Dukes and White.
R(n+1,x) = 1/5!*(1 + x)^5 * (d/dx)^5(x^5*R(n,x)).
R(n,x) = Sum_{i >= 0} binomial(i+5,5)^n*x^i/(1 + x)^(i+1).
(1 - x)^(5*n)*R(n,x/(1 - x)) appears to equal the n-th row polynomial of A237202. (End)

Extensions

Edited by Dean Hickerson, Aug 16 2003

A087110 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of binomial coefficients C(n,6). The p-th row (p>=1) contains a(i,p) for i=1 to 6*p-5, where a(i,p) satisfies Sum_{i=1..n} C(i+5,6)^p = 7 * C(n+6,7) * Sum_{i=1..6*p-5} a(i,p) * C(n-1,i-1)/(i+6).

Original entry on oeis.org

1, 1, 6, 15, 20, 15, 6, 1, 1, 48, 687, 4850, 20385, 55908, 104959, 137886, 127050, 80640, 33642, 8316, 924, 1, 342, 21267, 527876, 7020525, 58015362, 324610399, 1297791264, 3839203452, 8595153000, 14760228672, 19560928464, 19987430694
Offset: 1

Author

André F. Labossière, Aug 11 2003

Keywords

Comments

From Peter Bala, Mar 11 2018: (Start)
The table entries T(n,k) are the coefficients when expressing the polynomial C(x+6,6)^p of degree 6*p in terms of falling factorials: C(x+6,6)^p = Sum_{k = 0..6*p} T(p,k)*C(x,k). It follows that Sum_{i = 0..n-1} C(i+6,6)^p = Sum_{k = 0..6*p} T(p,k)*C(n,k+1). (End)

Examples

			Row 3 contains 1,48,687,...,924, so Sum_{i=1..n} C(i+5,6)^3 = 7 * C(n+6,7) * [ a(1,3)/7 + a(2,3)*C(n-1,1)/8 + a(3,3)*C(n-1,2)/9 + ... + a(13,3)*C(n-1,12)/19 ] = 7 * C(n+6,7) * [ 1/7 + 48*C(n-1,1)/8 + 687*C(n-1,2)/9 + ... + 924*C(n-1,12)/19 ]. Cf. A086028 for more details.
		

Programs

  • Maple
    seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+6, 6)^n, i = 0..k), k = 0..6*n), n = 0..5); # Peter Bala, Mar 11 2018
  • Mathematica
    a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 7, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 6, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 6*p - 5}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
  • PARI
    {a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 7, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 6, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 6*p-5, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017

Formula

a(i, p) = Sum_{k=1..[2*i+1+(-1)^(i-1)]/4} [ C(i-1, 2*k-2)*C(i-2*k+7, i-2*k+1)^(p-1) -C(i-1, 2*k-1)*C(i-2*k+6, i-2*k)^(p-1) ]
From Peter Bala, Mar 11 2018: (Start)
The following remarks assume the row and column indices start at 0.
T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i) * binomial(i+6,6)^n. Equivalently, let v_n denote the sequence (1, 7^n, 28^n, 84^n, ...) regarded as an infinite column vector, where 1, 7, 28, 84, ... is the sequence binomial(n+6,6) - see A000579. Then the n-th row of this table is determined by the matrix product P^(-1)*v_n, where P denotes Pascal's triangle A007318.
Recurrence: T(n+1,k) = Sum_{i = 0..6} C(6,i)*C(k+6-i,6)*T(n,k-i) with boundary conditions T(n,0) = 1 for all n and T(n,k) = 0 for k > 6*n.
n-th row polynomial R(n,x) = (1 + x)^6 o (1 + x)^6 o ... o (1 + x)^6 (n factors), where o denotes the black diamond product of power series defined in Dukes and White.
R(n+1,x) = 1/6!*(1 + x)^6 * (d/dx)^6(x^6*R(n,x)).
R(n,x) = Sum_{i >= 0} binomial(i+6,6)^n*x^i/(1 + x)^(i+1).
(1 - x)^(6*n)*R(n,x/(1 - x)) appears to equal the n-th row polynomial of A237252. (End)

Extensions

Edited by Dean Hickerson, Aug 16 2003

A128767 Number of inequivalent n-colorings of the 4D hypercube under the full orthogonal group of the cube (of order 2^4*4! = 384).

Original entry on oeis.org

1, 402, 132102, 11756666, 405385550, 7416923886, 86986719477, 735192450952, 4834517667381, 26073250910950, 119759687845446, 481750080584202, 1733588303252702, 5673534527793146, 17109303241791825, 48047227408513056
Offset: 1

Author

Ricardo Perez-Aguila (ricardo.perez.aguila(AT)gmail.com), Apr 04 2007

Keywords

Comments

I assume this refers to colorings of the vertices of the cube. - N. J. A. Sloane, Apr 06 2007
Number of unoriented colorings of the 16 tetrahedral facets of a hyperoctahedron or of the 16 vertices of a tesseract (4-D cube) using up to n colors. Each chiral pair is counted as one when enumerating unoriented arrangements. The Schläfli symbols for the tesseract and the hyperoctahedron are {4,3,3} and {3,3,4} respectively. Both figures are regular 4-D polyhedra and they are mutually dual. - Robert A. Russell, Oct 03 2020

Examples

			a(2)=402 because there are 402 inequivalent 2-colorings of the 4D hypercube.
		

References

  • Banks, D. C.; Linton, S. A. & Stockmeyer, P. K. Counting Cases in Substitope Algorithms. IEEE Transactions on Visualization and Computer Graphics, Vol. 10, No. 4, pp. 371-384. 2004.
  • Perez-Aguila, Ricardo. Enumerating the Configurations in the n-Dimensional Orthogonal Polytopes Through Polya's Counting and A Concise Representation. Proceedings of the 3rd International Conference on Electrical and Electronics Engineering and XII Conference on Electrical Engineering ICEEE and CIE 2006, pp. 63-66.
  • Polya, G. & Read R. C. Combinatorial Enumeration of Groups, Graphs and Chemical Compounds. Springer-Verlag, 1987.

Crossrefs

Cf. A337952 (oriented), A337954 (chiral), A337955 (achiral).
Other elements: A331359 (tesseract edges, hyperoctahedron faces), A331355 (tesseract faces, hyperoctahedron edges), A337957 (tesseract facets, hyperoctahedron vertices).
Other polychora: A000389(n+4) (4-simplex facets/vertices), A338949 (24-cell), A338965 (120-cell, 600-cell).
Row 4 of A325013 (orthoplex facets, orthotope vertices).

Programs

  • Mathematica
    Table[(1/384)*( 48*n^2 + 180*n^4 + 48*n^6 + 83*n^8 + 12*n^10 + 12*n^12 + n^16),{n,30}]

Formula

a(n) = (1/384)*(48*n^2 + 180*n^4 + 48*n^6 + 83*n^8 + 12*n^10 + 12*n^12 + n^16)
G.f.: -x*(x +1)*(x^14 +384*x^13 +125020*x^12 +9439904*x^11 +213777216*x^10 +1821620108*x^9 +6527222787*x^8 +10098845160*x^7 +6527222787*x^6 +1821620108*x^5 +213777216*x^4 +9439904*x^3 +125020*x^2 +384*x +1) / (x -1)^17. [Colin Barker, Dec 04 2012]
From Robert A. Russell, Oct 03 2020: (Start)
a(n) = 1*C(n,1) + 400*C(n,2) + 130899*C(n,3) + 11230666*C(n,4) + 347919225*C(n,5) + 5158324560*C(n,6) + 43174480650*C(n,7) + 225086553300*C(n,8) + 775894225050*C(n,9) + 1831178115900*C(n,10) + 3008073915000*C(n,11) + 3439243962000*C(n,12) + 2685727044000*C(n,13) + 1366701336000*C(n,14) + 408648240000*C(n,15) + 54486432000*C(n,16), where the coefficient of C(n,k) is the number of unoriented colorings using exactly k colors.
a(n) = A337952(n) - A337954(n) = (A337952(n) + A337955(n)) / 2 = A337954(n) + A337955(n).
(End)

A221857 Number A(n,k) of shapes of balanced k-ary trees with n nodes, where a tree is balanced if the total number of nodes in subtrees corresponding to the branches of any node differ by at most one; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 1, 1, 0, 1, 1, 4, 3, 4, 1, 0, 1, 1, 5, 6, 1, 4, 1, 0, 1, 1, 6, 10, 4, 9, 4, 1, 0, 1, 1, 7, 15, 10, 1, 27, 1, 1, 0, 1, 1, 8, 21, 20, 5, 16, 27, 8, 1, 0, 1, 1, 9, 28, 35, 15, 1, 96, 81, 16, 1, 0, 1, 1, 10, 36, 56, 35, 6, 25, 256, 81, 32, 1, 0
Offset: 0

Author

Alois P. Heinz, Apr 10 2013

Keywords

Examples

			: A(2,2) = 2  : A(2,3) = 3      : A(3,3) = 3          :
:   o     o   :   o    o    o   :   o      o      o   :
:  / \   / \  :  /|\  /|\  /|\  :  /|\    /|\    /|\  :
: o         o : o      o      o : o o    o   o    o o :
:.............:.................:.....................:
: A(3,4) = 6                                          :
:    o        o        o        o       o        o    :
:  /( )\    /( )\    /( )\    /( )\   /( )\    /( )\  :
: o o      o   o    o     o    o o     o   o      o o :
Square array A(n,k) begins:
  1, 1, 1,  1,   1,   1,  1,  1,  1,   1,   1, ...
  1, 1, 1,  1,   1,   1,  1,  1,  1,   1,   1, ...
  0, 1, 2,  3,   4,   5,  6,  7,  8,   9,  10, ...
  0, 1, 1,  3,   6,  10, 15, 21, 28,  36,  45, ...
  0, 1, 4,  1,   4,  10, 20, 35, 56,  84, 120, ...
  0, 1, 4,  9,   1,   5, 15, 35, 70, 126, 210, ...
  0, 1, 4, 27,  16,   1,  6, 21, 56, 126, 252, ...
  0, 1, 1, 27,  96,  25,  1,  7, 28,  84, 210, ...
  0, 1, 8, 81, 256, 250, 36,  1,  8,  36, 120, ...
		

Crossrefs

Rows n=0+1, 2-3, give: A000012, A001477, A179865.
Diagonal and upper diagonals give: A028310, A000217, A000292, A000332, A000389, A000579, A000580, A000581, A000582, A001287, A001288.
Lower diagonals give: A000012, A000290, A092364(n) for n>1.

Programs

  • Maple
    A:= proc(n, k) option remember; local m, r; if n<2 or k=1 then 1
          elif k=0 then 0 else r:= iquo(n-1, k, 'm');
          binomial(k, m)*A(r+1, k)^m*A(r, k)^(k-m) fi
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    a[n_, k_] := a[n, k] = Module[{m, r}, If[n < 2 || k == 1, 1, If[k == 0, 0, {r, m} = QuotientRemainder[n-1, k]; Binomial[k, m]*a[r+1, k]^m*a[r, k]^(k-m)]]]; Table[a[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 17 2013, translated from Maple *)

A231303 Recurrence a(n) = a(n-2) + n^M for M=4, starting with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 16, 82, 272, 707, 1568, 3108, 5664, 9669, 15664, 24310, 36400, 52871, 74816, 103496, 140352, 187017, 245328, 317338, 405328, 511819, 639584, 791660, 971360, 1182285, 1428336, 1713726, 2042992, 2421007, 2852992, 3344528, 3901568, 4530449, 5237904
Offset: 0

Author

Stanislav Sykora, Nov 07 2013

Keywords

Comments

In physics, a(n)/2^(M-1) is the trace of the spin operator |S_z|^M for a particle with spin S=n/2. For example, when S=3/2, the S_z eigenvalues are -3/2, -1/2, +1/2, +3/2 and therefore the sum of their 4th powers is 2*82/16 = a(3)/8 (analogously for other values of M).
Partial sums of A062392. - Bruce J. Nicholson, Jun 29 2019

Examples

			a(4) = 4^4 + 2^4 = 272; a(5) = 5^4 + 3^4 + 1^4 = 707.
		

Crossrefs

Cf. A001477 (M=1), A000292 (M=2), A105636 (M=3), A231304 (M=5), A231305 (M=6), A231306 (M=7), A231307 (M=8), A231308 (M=9), A231309 (M=10).

Programs

  • GAP
    List([0..40], n-> n*(3*n^4+15*n^3+20*n^2-8)/30); # G. C. Greubel, Jul 01 2019
  • Magma
    [1/30*n*(3*n^4+15*n^3+20*n^2-8): n in [0..40]]; // Vincenzo Librandi, Dec 23 2015
    
  • Mathematica
    Table[SeriesCoefficient[x*(1+10*x+x^2)/(1-x)^6, {x, 0, n}], {n, 0, 40}] (* Michael De Vlieger, Dec 22 2015 *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 16, 82, 272, 707}, 40] (* Vincenzo Librandi, Dec 23 2015 *)
  • PARI
    nmax=40;a = vector(nmax);a[2]=1;for(i=3,#a,a[i]=a[i-2]+(i-1)^4); print(a);
    
  • PARI
    concat(0, Vec(x*(1+10*x+x^2)/(1-x)^6 + O(x^40))) \\ Colin Barker, Dec 22 2015
    
  • Sage
    [n*(3*n^4+15*n^3+20*n^2-8)/30 for n in (0..40)] # G. C. Greubel, Jul 01 2019
    

Formula

a(n) = Sum_{k=0..floor(n/2)} (n - 2*k)^4.
From Colin Barker, Dec 22 2015: (Start)
a(n) = (1/30)*n*(3*n^4 + 15*n^3 + 20*n^2 - 8).
G.f.: x*(1 + 10*x + x^2) / (1-x)^6.
(End)
E.g.f.: x*(30 + 210*x + 185*x^2 + 45*x^3 + 3*x^4)*exp(x)/30. - G. C. Greubel, Apr 24 2016
From Bruce J. Nicholson, Jun 29 2019: (Start)
a(n) = 12*A000389(n+3) + A000292(n);
a(n) = (12*A000579(n+4)+A000332(n+3)) - (12*A000579(n+3)+A000332(n+2));
a(n) - a(n-2) = A000583(n). (End)

A005583 Coefficients of Chebyshev polynomials.

Original entry on oeis.org

2, 11, 36, 91, 196, 378, 672, 1122, 1782, 2717, 4004, 5733, 8008, 10948, 14688, 19380, 25194, 32319, 40964, 51359, 63756, 78430, 95680, 115830, 139230, 166257, 197316, 232841, 273296, 319176, 371008, 429352, 494802, 567987, 649572, 740259, 840788
Offset: 1

Keywords

Comments

If X is an n-set and Y a fixed 2-subset of X then a(n-5) is equal to the number of (n-5)-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
a(n-1) = risefac(n,5)/5! - risefac(n,3)/3! is for n >= 1 also the number of independent components of a symmetric traceless tensor of rank 5 and dimension n. Here risefac is the rising factorial. Put a(0) = 0. - Wolfdieter Lang, Dec 10 2015

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), Table 22.7, p. 797.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A005583:=-(-2+z)/(z-1)**6; # Simon Plouffe in his 1992 dissertation (this g.f. assumes offset 0)
  • PARI
    conv(u,v)=local(w); w=vector(length(u),i,sum(j=1,i,u[j]*v[i+1-j])); w;
    t(n)=n*(n+1)/2;
    u=vector(10,i,t(i));
    v=vector(10,i,t(i)-1);
    conv(u,v)
    
  • PARI
    a(n) = (1/120)*n*(n+9)*(n+3)*(n+2)*(n+1); \\ Joerg Arndt, Mar 05 2018

Formula

G.f.: x*(2-x)/(1-x)^6.
a(n) = binomial(n+4, n-1) + binomial(n+3, n-1) = (1/120)*n*(n+9)*(n+3)*(n+2)*(n+1).
a(n+1) = -A127672(10+n, n), n >= 0, with the coefficients of the Chebyshev C-polynomials A127672(n, k). - Wolfdieter Lang, Dec 10 2015
a(n) = Sum_{i=1..n} A000217(i)*A000096(n+1-i). - Bruno Berselli, Mar 05 2018
a(n) = binomial(n+3,5) + 2*binomial(n+3,4). - Yuchun Ji, May 23 2019
From Amiram Eldar, Feb 17 2023: (Start)
Sum_{n>=1} 1/a(n) = 40751/63504.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1360*log(2)/63 - 922961/63504. (End)

Extensions

More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 07 1999
More terms from Zerinvary Lajos, Jul 21 2006
Previous Showing 61-70 of 161 results. Next