cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 161 results. Next

A001779 Expansion of 1/((1+x)(1-x)^8).

Original entry on oeis.org

1, 7, 29, 91, 239, 553, 1163, 2269, 4166, 7274, 12174, 19650, 30738, 46782, 69498, 101046, 144111, 201993, 278707, 379093, 508937, 675103, 885677, 1150123, 1479452, 1886404, 2385644, 2993972
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of positive terms in the expansion of (a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 - z)^n. Also the convolution of A001769 and A000012; A001753 and A001477; A001752 and A000217; A002623 and A000292; A002620 and A000332; A004526 and A000389. - Sergio Falcon (sfalcon(AT)dma.ulpgc.es), Feb 13 2007

Crossrefs

Cf. A001769 (first differences), A169795 (binomial transf.)

Programs

  • Magma
    [1/80640*(2*n+9) *(4*n^6 +108*n^5 +1138*n^4 +5904*n^3 +15628*n^2 +19638*n +8925)+(-1)^n/256 : n in [0..30]]; // Vincenzo Librandi, Oct 08 2011
    
  • Maple
    A001779 := proc(n) 1/80640*(2*n+9) *(4*n^6 +108*n^5 +1138*n^4 +5904*n^3 +15628*n^2 +19638*n +8925)+(-1)^n/256 ; end proc:
    seq(A001779(n),n=0..50) ; # R. J. Mathar, Mar 22 2011
  • Mathematica
    CoefficientList[Series[1/((1 + x) (1 - x)^8), {x, 0, 50}], x] (* G. C. Greubel, Nov 24 2017 *)
    LinearRecurrence[{7,-20,28,-14,-14,28,-20,7,-1},{1,7,29,91,239,553,1163,2269,4166},30] (* Harvey P. Dale, Jan 21 2023 *)
  • PARI
    a(n)=(2*n+9)*(4*n^6+108*n^5+1138*n^4+5904*n^3+15628*n^2+19638*n + 8925)/80640 +(-1)^n/256 \\ Charles R Greathouse IV, Apr 17 2012

Formula

a(n) = (-1)^{7-n}*Sum_{i=0..n} ((-1)^(7-i)*binomial(7+i,i)). - Sergio Falcon, Feb 13 2007
a(n)+a(n+1) = A000580(n+8). - R. J. Mathar, Jan 06 2021

A039948 A triangle related to A000045 (Fibonacci numbers).

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 18, 12, 3, 1, 120, 72, 24, 4, 1, 960, 600, 180, 40, 5, 1, 9360, 5760, 1800, 360, 60, 6, 1, 105840, 65520, 20160, 4200, 630, 84, 7, 1, 1370880, 846720, 262080, 53760, 8400, 1008, 112, 8, 1, 19958400, 12337920, 3810240, 786240, 120960, 15120, 1512, 144, 9, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins :
    1;
    1,   1;
    4,   2,   1;
   18,  12,   3,  1;
  120,  72,  24,  4, 1;
  960, 600, 180, 40, 5, 1;
... - _Philippe Deléham_, Nov 08 2011
		

Crossrefs

Programs

  • Magma
    [(Factorial(n)/Factorial(k))*Fibonacci(n-k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2022
    
  • Mathematica
    T[n_,k_]:= (n!/k!)*Fibonacci[n-k+1];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2022 *)
  • SageMath
    def A039948(n, k): return factorial(n-k)*binomial(n,k)*fibonacci(n-k+1)
    flatten([[A039948(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 20 2022

Formula

T(n, m) = n!*Fibonacci(n-m+1)/m!, n >= m >= 0.
T(n, 0) = A005442(n).
T(n, 1) = A005443(n).
E.g.f. for column m: x^m/(m!*(1-x-x^2)), m >= 0.
From G. C. Greubel, Nov 20 2022: (Start)
T(n, n-1) = A000027(n).
T(n, n-2) = 4*A000217(n-1), n >= 2.
T(n, n-3) = 18*A000292(n-2), n >= 3.
T(n, n-4) = 5! * A000332(n), n >= 4.
T(n, n-5) = 8 * 5! * A000389(n), n >= 5.
T(n, n-6) = 13 * 6! * A000579(n), n >= 6.
T(n, n-7) = 21 * 7! * A000580(n), n >= 7.
T(n, n-8) = 34 * 8! * A000581(n), n >= 8.
T(n, n-9) = 55 * 9! * A000582(n), n >= 9.
T(n, n-10) = 89 * 10! * A001287(n), n >= 10.
T(n, n-11) = 12 * 12! * A001288(n), n >= 11.
T(n, n-12) = 233 * 12! * A010965(n), n >= 12.
T(n, n-13) = 89 * 13! * A010966(n), n >= 13.
Sum_{k=0..n} T(n, k) = A110313(n). (End)

A096959 Sixth column (m=5) of (1,6)-Pascal triangle A096956.

Original entry on oeis.org

6, 31, 96, 231, 476, 882, 1512, 2442, 3762, 5577, 8008, 11193, 15288, 20468, 26928, 34884, 44574, 56259, 70224, 86779, 106260, 129030, 155480, 186030, 221130, 261261, 306936, 358701, 417136, 482856, 556512, 638792, 730422, 832167, 944832
Offset: 0

Views

Author

Wolfdieter Lang, Aug 13 2004

Keywords

Crossrefs

Cf. A096958 (fifth column), A097297 (seventh column).

Programs

  • Magma
    [(n+30)*Binomial(n+4, 4)/5: n in [0..30]]; // G. C. Greubel, Nov 24 2017
  • Mathematica
    Table[(n + 30)*Binomial[n + 4, 4]/5, {n, 0, 50}] (* G. C. Greubel, Nov 24 2017 *)
  • PARI
    for(n=0,30, print1((n+30)*binomial(n+4, 4)/5, ", ")) \\ G. C. Greubel, Nov 24 2017
    

Formula

a(n) = A096956(n+5, 5).
a(n) = 6*b(n) - 5*b(n-1), with b(n) = A000389(n+5) = binomial(n+5, 5).
a(n) = (n+30)*binomial(n+4, 4)/5.
G.f.: (6-5*x)/(1-x)^6.
E.g.f.: x*(720 + 1140*x + 420*x^2 + 45*x^3 + x^4)*exp(x)/120. - G. C. Greubel, Nov 24 2017

A101095 Fourth difference of fifth powers (A000584).

Original entry on oeis.org

1, 28, 121, 240, 360, 480, 600, 720, 840, 960, 1080, 1200, 1320, 1440, 1560, 1680, 1800, 1920, 2040, 2160, 2280, 2400, 2520, 2640, 2760, 2880, 3000, 3120, 3240, 3360, 3480, 3600, 3720, 3840, 3960, 4080, 4200, 4320, 4440, 4560, 4680, 4800, 4920, 5040, 5160, 5280
Offset: 1

Views

Author

Cecilia Rossiter, Dec 15 2004

Keywords

Comments

Original Name: Shells (nexus numbers) of shells of shells of shells of the power of 5.
The (Worpitzky/Euler/Pascal Cube) "MagicNKZ" algorithm is: MagicNKZ(n,k,z) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n, with k>=0, n>=1, z>=0. MagicNKZ is used to generate the n-th accumulation sequence of the z-th row of the Euler Triangle (A008292). For example, MagicNKZ(3,k,0) is the 3rd row of the Euler Triangle (followed by zeros) and MagicNKZ(10,k,1) is the partial sums of the 10th row of the Euler Triangle. This sequence is MagicNKZ(5,k-1,2).

Crossrefs

Fourth differences of A000584, third differences of A022521, second differences of A101098, and first differences of A101096.
For other sequences based upon MagicNKZ(n,k,z):
...... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7 | n = 8
--------------------------------------------------------------------------------------
z = 0 | A000007 | A019590 | ....... MagicNKZ(n,k,0) = T(n,k+1) from A008292 .......
z = 1 | A000012 | A040000 | A101101 | A101104 | A101100 | ....... | ....... | .......
z = 2 | A000027 | A005408 | A008458 | A101103 | thisSeq | ....... | ....... | .......
z = 3 | A000217 | A000290 | A003215 | A005914 | A101096 | ....... | ....... | .......
z = 4 | A000292 | A000330 | A000578 | A005917 | A101098 | ....... | ....... | .......
z = 5 | A000332 | A002415 | A000537 | A000583 | A022521 | ....... | A255181 | .......
z = 12 | A001288 | A057788 | ....... | A254870 | A254471 | A254683 | A254646 | A254642
z = 13 | A010965 | ....... | ....... | ....... | A254871 | A254472 | A254684 | A254647
z = 14 | A010966 | ....... | ....... | ....... | ....... | A254872 | ....... | .......
--------------------------------------------------------------------------------------
Cf. A047969.

Programs

  • Magma
    I:=[1,28,121,240,360]; [n le 5 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, May 07 2015
    
  • Mathematica
    MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 5, 5}, {z, 2, 2}, {k, 0, 34}]
    CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/(1 - x)^2, {x, 0, 50}], x] (* Vincenzo Librandi, May 07 2015 *)
    Join[{1,28,121,240},Differences[Range[50]^5,4]] (* or *) LinearRecurrence[{2,-1},{1,28,121,240,360},50] (* Harvey P. Dale, Jun 11 2016 *)
  • PARI
    a(n)=if(n>3, 120*n-240, 33*n^2-72*n+40) \\ Charles R Greathouse IV, Oct 11 2015
  • Sage
    [1,28,121]+[120*(k-2) for k in range(4,36)] # Danny Rorabaugh, Apr 23 2015
    

Formula

a(k+1) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n; n = 5, z = 2.
For k>3, a(k) = Sum_{j=0..4} (-1)^j*binomial(4, j)*(k - j)^5 = 120*(k - 2).
a(n) = 2*a(n-1) - a(n-2), n>5. G.f.: x*(1+26*x+66*x^2+26*x^3+x^4) / (1-x)^2. - Colin Barker, Mar 01 2012

Extensions

MagicNKZ material edited, Crossrefs table added, SeriesAtLevelR material removed by Danny Rorabaugh, Apr 23 2015
Name changed and keyword 'uned' removed by Danny Rorabaugh, May 06 2015

A015650 Number of ordered 5-tuples of integers from [ 1..n ] with no global factor.

Original entry on oeis.org

1, 5, 19, 49, 118, 225, 434, 729, 1209, 1850, 2850, 4059, 5878, 8044, 11020, 14566, 19410, 24789, 32103, 40213, 50615, 62260, 77209, 93099, 113504, 135431, 162341, 191396, 227355, 264463, 310838, 359322, 417212, 478408, 551944, 626971, 718360, 812311, 922407, 1036667
Offset: 1

Views

Author

Keywords

Crossrefs

Column k=5 of A177976.
Partial sums of A117109.

Programs

  • Mathematica
    a[n_] := Sum[DivisorSum[k, MoebiusMu[k/#]*Binomial[# + 3, 4] &], {k, 1, n}]; Array[a, 40] (* Amiram Eldar, Jun 07 2025 *)
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, moebius(k/d)*binomial(d+3, 4))); \\ Seiichi Manyama, Jun 12 2021
    
  • PARI
    a(n) = binomial(n+4, 5)-sum(k=2, n, a(n\k)); \\ Seiichi Manyama, Jun 12 2021
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, moebius(k)*x^k/(1-x^k)^5)/(1-x)) \\ Seiichi Manyama, Jun 12 2021
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A015650(n):
        if n == 0:
            return 0
        c, j = n+1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A015650(k1)
            j, k1 = j2, n//j2
        return n*(n+1)*(n+2)*(n+3)*(n+4)//120-c+j # Chai Wah Wu, Apr 18 2021
    

Formula

G.f.: (1/(1 - x)) * Sum_{k>=1} mu(k) * x^k / (1 - x^k)^5. - Ilya Gutkovskiy, Feb 14 2020
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)/120 - Sum_{j=2..n} a(floor(n/j)) = A000389(n+4) - Sum_{j=2..n} a(floor(n/j)). - Chai Wah Wu, Apr 18 2021
a(n) ~ n^5 / (120*zeta(5)). - Amiram Eldar, Jun 08 2025

A027660 a(n) = C(n+2, 2) + C(n+2, 3) + C(n+2, 4) + C(n+2, 5).

Original entry on oeis.org

1, 4, 11, 26, 56, 112, 210, 372, 627, 1012, 1573, 2366, 3458, 4928, 6868, 9384, 12597, 16644, 21679, 27874, 35420, 44528, 55430, 68380, 83655, 101556, 122409, 146566, 174406, 206336, 242792
Offset: 0

Views

Author

Keywords

Comments

Also, number of 135246-avoiding permutations of n+2 with exactly 1 descent. E.g., there are 57 permutations of 6 with exactly 1 descent. Of these, only the permutation 135246 contains the pattern 135246 so a(4)=56. - Mike Zabrocki, Nov 29 2004
If Y is a 2-subset of an n-set X then, for n>=5, a(n-5) is the number of 5-subsets of X which do not have exactly one element in common with Y. - Milan Janjic, Dec 28 2007

Crossrefs

Programs

  • Magma
    [(n^2-n+20)*Binomial(n+3,3)/20: n in [0..60]]; // G. C. Greubel, Aug 01 2022
  • Maple
    a:= n-> (n+3)*(n+2)*(n+1)*(n^2-n+20)/120;
    seq(a(n), n = 0..60);
  • Mathematica
    Sum[Binomial[3+Range[0,60], 2*j+1], {j,2}] (* G. C. Greubel, Aug 01 2022 *)
  • Sage
    [binomial(n+3,5) +binomial(n+3,3) for n in range(0, 60)] # Zerinvary Lajos, May 17 2009
    

Formula

a(n) = (n+3)*(n+2)*(n+1)*(n^2 - n + 20)/120.
G.f.: (1 - 2*x + 2*x^2)/(1-x)^6. - Mike Zabrocki, Nov 29 2004
a(n) = binomial(n+3,5) + binomial(n+3,3). - Zerinvary Lajos, Jul 24 2006, corrected Oct 01 2021
a(n) = A000389(n+5) - 2*A000332(n+3). - R. J. Mathar, Oct 01 2021
From G. C. Greubel, Aug 01 2022: (Start)
a(n) = Sum_{j=0..3} binomial(n+2, j+2).
E.g.f.: (1/120)*(120 +360*x +240*x^2 +80*x^3 +15*x^4 +x^5)*exp(x). (End)

A062136 Twelfth column of Losanitsch's triangle A034851 (formatted as lower triangular matrix).

Original entry on oeis.org

1, 6, 42, 182, 693, 2184, 6216, 15912, 37854, 83980, 176484, 352716, 676270, 1248072, 2229096, 3863080, 6519591, 10737090, 17299646, 27313650, 42337659, 64512240, 96770544, 143048880, 208616044, 300402648, 427500360, 601661144, 838033836, 1155900720, 1579738736
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Comments

Also seventh column (m=6) of triangle A062135.
Number of homeomorphically irreducible (or series-reduced) trees (no vertices of degree 2) with n+9 leaves which become tree P(7) (path on 7 nodes (vertices) or 6 edges (links) when all leaves are omitted. A leave is an edge together with a node of degree 1 at one end). Proof by Polya enumeration. See illustration for A034851.

Crossrefs

Cf. A018213.

Programs

  • Magma
    [(1/(2*Factorial(11)))*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(n + 5)*(n + 6)*(n + 7)*(n + 8)*(n + 9)*(n + 10)*(n + 11) + (1/15)*(1/2^9)*(n + 2)*(n + 4)*(n + 6)*(n + 8)*(n + 10)*(1/2)*(1 + (-1)^n): n in [0..30]]; // G. C. Greubel, Nov 24 2017
  • Mathematica
    Table[(1/(2*11!))*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(n + 5)*(n + 6)*(n + 7)*(n + 8)*(n + 9)*(n + 10)*(n + 11) + (1/15)*(1/2^9)*(n + 2)*(n + 4)*(n + 6)*(n + 8)*(n + 10)*(1/2)*(1 + (-1)^n), {n, 0, 50}] (* G. C. Greubel, Nov 24 2017 *)
  • PARI
    for(n=0,50, print1((1/(2*11!))*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(n + 5)*(n + 6)*(n + 7)*(n + 8)*(n + 9)*(n + 10)*(n + 11) + (1/15)*(1/2^9)*(n + 2)*(n + 4)*(n + 6)*(n + 8)*(n + 10)*(1/2)*(1 + (-1)^n), ", ")) \\ G. C. Greubel, Nov 24 2017
    

Formula

G.f.: Pe(6, x^2)/((1-x)^(2*6)*(1+x)^6), with Pe(6, x^2) := Sum_{m=0..3} A034839(6, m)*x^(2*m) = 1+15*x^2+15*x^4+x^6.
a(n) = A034851(n+11,11).
a(2n+1) = A001288(2n+12)/2; a(2n) = (A001288(2n+11)+A000389(n+5))/2. - Gary W. Adamson, Dec 15 2010
a(n) = (1/(2*11!))*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7)*(n+8)*(n+9)*(n+10)*(n+11) + (1/15)*(1/2^9)*(n+2)*(n+4)*(n+6)*(n+8)*(n+10)*(1/2)*(1+(-1)^n). - Yosu Yurramendi, Jun 24 2013

A185508 Third accumulation array, T, of the natural number array A000027, by antidiagonals.

Original entry on oeis.org

1, 5, 6, 16, 29, 21, 41, 89, 99, 56, 91, 219, 295, 259, 126, 182, 469, 705, 755, 574, 252, 336, 910, 1470, 1765, 1645, 1134, 462, 582, 1638, 2786, 3605, 3780, 3206, 2058, 792, 957, 2778, 4914, 6706, 7595, 7266, 5754, 3498, 1287, 1507, 4488, 8190, 11634, 13916, 14406, 12894, 9690, 5643, 2002, 2288, 6963, 13035, 19110, 23814, 26068, 25284, 21510, 15510, 8723, 3003, 3367, 10439, 19965, 30030, 38640, 44100
Offset: 1

Views

Author

Clark Kimberling, Jan 29 2011

Keywords

Comments

See A144112 (and A185506) for the definition of accumulation array (aa).
Sequence is aa(aa(aa(A000027))).

Examples

			Northwest corner:
   1    5   16   41   91  182
   6   29   89  219  469  910
  21   99  295  705 1470 2786
  56  259  755 1765 3605 6706
		

Crossrefs

Cf. A000389 (column 1), A257199 (row 1).

Programs

  • Mathematica
    h[n_,k_]:=k(k+1)(k+2)n(n+1)(n+2)*(4n^2+(5k+23)n+4k^2+3k+41)/2880;
    TableForm[Table[h[n,k],{n,1,10},{k,1,15}]]
    Table[h[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
  • PARI
    {h(n,k) = k*(k+1)*(k+2)*n*(n+1)*(n+2)*(4*n^2+(5*k+23)*n +4*k^2 +3*k + 41)/2880}; for(n=1,10, for(k=1,n, print1(h(k, n-k+1), ", "))) \\ G. C. Greubel, Nov 23 2017

Formula

T(n,k) = F*(4n^2 + (5k+23)n + 4k^2 + 3k+41), where F = k(k+1)(k+2)n(n+1)(n+2)/2880.

A210569 a(n) = (n-3)*(n-2)*(n-1)*n*(n+1)/30.

Original entry on oeis.org

0, 0, 0, 0, 4, 24, 84, 224, 504, 1008, 1848, 3168, 5148, 8008, 12012, 17472, 24752, 34272, 46512, 62016, 81396, 105336, 134596, 170016, 212520, 263120, 322920, 393120, 475020, 570024, 679644, 805504, 949344, 1113024, 1298528, 1507968, 1743588, 2007768, 2303028
Offset: 0

Views

Author

Bruno Berselli, Mar 23 2012

Keywords

Comments

The following sequences are provided by the formula n*binomial(n,k) - binomial(n,k+1) = k*binomial(n+1,k+1):
. A000217(n) for k=1,
. A007290(n+1) for k=2,
. A050534(n) for k=3,
. a(n) for k=4,
. A000910(n+1) for k=5.
Sum of reciprocals of a(n), for n>3: 5/16.
From a(2), convolution of oblong numbers (A002378) with themselves. - Bruno Berselli, Oct 24 2016

Crossrefs

First differences are in A033488.

Programs

  • Magma
    [4*Binomial(n+1,5): n in [0..38]];
    
  • Maple
    f:=n->(n^5-5*n^3+4*n)/30;
    [seq(f(n),n=0..50)]; # N. J. A. Sloane, Mar 23 2014
  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1}, {0,0,0,0,4,24}, 39]
    CoefficientList[Series[4x^4/(1-x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2014 *)
    Times@@@Partition[Range[-3,40],5,1]/30 (* Harvey P. Dale, Sep 19 2020 *)
  • Maxima
    makelist(coeff(taylor(4*x^4/(1-x)^6, x, 0, n), x, n), n, 0, 38);
    
  • PARI
    a(n)=(n-3)*(n-2)*(n-1)*n*(n+1)/30 \\ Charles R Greathouse IV, Oct 07 2015
    
  • SageMath
    [4*binomial(n+1,5) for n in (0..40)] # G. C. Greubel, May 23 2022

Formula

G.f.: 4*x^4/(1-x)^6.
a(n) = n*binomial(n,4)-binomial(n,5) = 4*binomial(n+1,5) = 4*A000389(n+1).
a(n) = 2*A177747(2*n-7), with A177747(-7) = A177747(-5) = A177747(-3) = A177747(-1) = 0.
(n-4)*a(n) = (n+1)*a(n-1).
E.g.f.: (1/30)*x^4*(5+x)*exp(x). - G. C. Greubel, May 23 2022
Sum_{n>=4} (-1)^n/a(n) = 20*log(2) - 655/48. - Amiram Eldar, Jun 02 2022

A256859 a(n) = n*(n + 1)*(n + 2)*(n^2 - n + 4)/24.

Original entry on oeis.org

1, 6, 25, 80, 210, 476, 966, 1800, 3135, 5170, 8151, 12376, 18200, 26040, 36380, 49776, 66861, 88350, 115045, 147840, 187726, 235796, 293250, 361400, 441675, 535626, 644931, 771400, 916980, 1083760, 1273976, 1490016, 1734425, 2009910, 2319345, 2665776, 3052426
Offset: 1

Views

Author

Luciano Ancora, Apr 14 2015

Keywords

Comments

This is the case k = n of b(n,k) = n*(n+1)*(n+2)*(k*(n-1)+4)/24, where b(n,k) is the n-th hypersolid number in 4 dimensions generated from an arithmetical progression with the first term 1 and common difference k. Therefore, the sequence is the main diagonal of the Table 3 in Sardelis et al. paper (see Links field).

Crossrefs

Cf. similar sequences of the form binomial(n+k-2,k-1)+n*binomial(n+k-2,k): A006000 (k=2); A257055 (k=3); this sequence (k=4); A256860 (k=5); A256861 (k=6).

Programs

  • Magma
    [n*(n + 1)*(n + 2)*(n^2 - n + 4)/24: n in [1..30]]; // G. C. Greubel, Nov 23 2017
  • Mathematica
    Table[n (n + 1) (n + 2) (n^2 - n + 4)/24, {n, 40}]
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,6,25,80,210,476},40] (* Harvey P. Dale, Mar 19 2022 *)
  • PARI
    vector(40, n, n*(n+1)*(n+2)*(n^2-n+4)/24) \\ Bruno Berselli, Apr 15 2015
    

Formula

G.f.: x*(1 + 4*x^2)/(1 - x)^6.
a(n) = 4*A000389(n+2) + A000389(n+4). - Bruno Berselli, Apr 15 2015
E.g.f.: (24*x + 48*x^2 + 40*x^3 + 12*x^4 + x^5)*exp(x)/24. - G. C. Greubel, Nov 23 2017
a(n) = A261721(n,n-1). - Alois P. Heinz, Apr 15 2020
Previous Showing 81-90 of 161 results. Next