cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 237 results. Next

A003338 Numbers that are the sum of 4 nonzero 4th powers.

Original entry on oeis.org

4, 19, 34, 49, 64, 84, 99, 114, 129, 164, 179, 194, 244, 259, 274, 289, 304, 324, 339, 354, 369, 419, 434, 499, 514, 529, 544, 594, 609, 628, 643, 658, 673, 674, 708, 723, 738, 769, 784, 788, 803, 849, 868, 883, 898, 913, 963, 978, 1024, 1043, 1138, 1153, 1218
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
53667 is in the sequence as 53667 = 2^4 + 5^4 + 7^4 + 15^4.
81427 is in the sequence as 81427 = 5^4 + 5^4 + 11^4 + 16^4.
106307 is in the sequence as 106307 = 3^4 + 5^4 + 5^4 + 18^4. (End)
		

Crossrefs

Cf. A047715, A309763 (more than 1 way), A344189 (exactly 2 ways), A176197 (distinct nonzero powers).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • Maple
    # returns number of ways of writing n as a^4+b^4+c^4+d^4, 1<=a<=b<=c<=d.
    A003338 := proc(n)
        local a,i,j,k,l,res ;
        a := 0 ;
        for i from 1 do
            if i^4 > n then
                break ;
            end if;
            for j from i do
                if i^4+j^4 > n then
                    break ;
                end if;
                for k from j do
                    if i^4+j^4+k^4> n then
                        break;
                    end if;
                    res := n-i^4-j^4-k^4 ;
                    if issqr(res) then
                        res := sqrt(res) ;
                        if issqr(res) then
                            l := sqrt(res) ;
                            if l >= k then
                                a := a+1 ;
                            end if;
                        end if;
                    end if;
                end do:
            end do:
        end do:
        a ;
    end proc:
    for n from 1 do
        if A003338(n) > 0 then
            print(n) ;
        end if;
    end do: # R. J. Mathar, May 17 2023
  • Mathematica
    f[maxno_]:=Module[{nn=Floor[Power[maxno-3, 1/4]],seq}, seq=Union[Total/@(Tuples[Range[nn],{4}]^4)]; Select[seq,#<=maxno&]]
    f[1000] (* Harvey P. Dale, Feb 27 2011 *)
  • Python
    limit = 1218
    from functools import lru_cache
    qd = [k**4 for k in range(1, int(limit**.25)+2) if k**4 + 3 <= limit]
    qds = set(qd)
    @lru_cache(maxsize=None)
    def findsums(n, m):
      if m == 1: return {(n, )} if n in qds else set()
      return set(tuple(sorted(t+(q,))) for q in qds for t in findsums(n-q, m-1))
    print([n for n in range(4, limit+1) if len(findsums(n, 4)) >= 1]) # Michael S. Branicky, Apr 19 2021

A003330 Numbers that are the sum of 7 positive cubes.

Original entry on oeis.org

7, 14, 21, 28, 33, 35, 40, 42, 47, 49, 54, 56, 59, 61, 66, 68, 70, 73, 75, 77, 80, 84, 85, 87, 91, 92, 94, 96, 98, 99, 103, 105, 106, 110, 111, 112, 113, 117, 118, 122, 124, 125, 129, 131, 132, 133, 136, 137, 138, 140, 143, 144, 145, 147, 148, 150, 151, 152, 154
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in increasing order. - David A. Corneth, Aug 01 2020
2408 is the largest among only 208 positive integers not in this sequence: cf. formula. - M. F. Hasler, Aug 23 2020

Examples

			From _M. F. Hasler_, Aug 23 2020: (Start)
The first few terms are multiples of 7 because of the coincidence that 2^3 - 1^3 = 7, equal to the number of cubes we consider here:
7 = 1^3 * 7 is the smallest sum of seven positive cubes.
14 = 1^3 * 6 + 2^3 = 6 + 8 is the next larger sum of seven positive cubes.
21 = 1^3 * 5 + 2^3 * 2 = 5 + 16 is the next larger sum of seven positive cubes.
28 = 1^3 * 4 + 2^3 * 3 = 4 + 24 is the next larger sum of seven positive cubes.
There are three more terms of this form, but the next larger sum of seven positive cubes is a(5) = 3^3 + 6 * 1^3 = 33. (End)
From _David A. Corneth_, Aug 01 2020: (Start)
2070 is in the sequence as 2070 = 4^3 + 4^3 + 4^3 + 5^3 + 8^3 + 8^3 +  9^3.
2383 is in the sequence as 2383 = 3^3 + 5^3 + 5^3 + 6^3 + 6^3 + 7^3 + 11^3.
3592 is in the sequence as 3592 = 4^3 + 5^3 + 6^3 + 9^3 + 9^3 + 9^3 + 10^3. (End)
		

Crossrefs

Other sequences of numbers that are the sum of x nonzero y-th powers:
A000404 (x=2, y=2), A000408 (3, 2), A000414 (4, 2), A047700 (5, 2),
A003325 (2, 3), A003072 (3, 3), A003327 .. A003335 (4 .. 12, 3),
A003336 .. A003346 (2 .. 12, 4), A003347 .. A003357 (2 .. 12, 5),
A003358 .. A003368 (2 .. 12, 6), A003369 .. A003379 (2 .. 12, 7),
A003380 .. A003390 (2 .. 12, 8), A003391 .. A004801 (2 .. 12, 9),
A004802 .. A004812 (2 .. 12, 10), A004813 .. A004823 (2 .. 12, 11).

Programs

  • PARI
    (A003330_upto(N, k=7, m=3)=[i|i<-[1..#N=sum(n=1, sqrtnint(N, m), 'x^n^m, O('x^N))^k], polcoef(N, i)])(160) \\ M. F. Hasler, Aug 02 2020

Formula

a(n) = n + 208 for all n > 2200. - M. F. Hasler, Aug 23 2020

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com)

A003331 Numbers that are the sum of 8 positive cubes.

Original entry on oeis.org

8, 15, 22, 29, 34, 36, 41, 43, 48, 50, 55, 57, 60, 62, 64, 67, 69, 71, 74, 76, 78, 81, 83, 85, 86, 88, 92, 93, 95, 97, 99, 100, 102, 104, 106, 107, 111, 112, 113, 114, 118, 119, 120, 121, 123, 125, 126, 130, 132, 133, 134, 137, 138, 139, 140, 141, 144, 145, 146, 148, 149
Offset: 1

Views

Author

Keywords

Comments

620 is the largest among only 142 positive integers not in this sequence. This can be proved by induction. - M. F. Hasler, Aug 13 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
1796 is in the sequence as 1796 = 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 7^3 + 7^3 + 9^3.
2246 is in the sequence as 2246 = 2^3 + 4^3 + 5^3 + 5^3 + 5^3 + 5^3 + 7^3 + 11^3.
3164 is in the sequence as 3164 = 5^3 + 5^3 + 6^3 + 6^3 + 8^3 + 8^3 + 9^3 + 9^3.(End)
		

Crossrefs

Other sequences of numbers that are the sum of x nonzero y-th powers:
A000404 (x=2, y=2), A000408 (3, 2), A000414 (4, 2), A047700 (5, 2),
A003325 (2, 3), A003072 (3, 3), A003327 .. A003335 (4 .. 12, 3),
A003336 .. A003346 (2 .. 12, 4), A003347 .. A003357 (2 .. 12, 5),
A003358 .. A003368 (2 .. 12, 6), A003369 .. A003379 (2 .. 12, 7),
A003380 .. A003390 (2 .. 12, 8), A003391 .. A004801 (2 .. 12, 9),
A004802 .. A004812 (2 .. 12, 10), A004813 .. A004823 (2 .. 12, 11).

Programs

  • Mathematica
    Module[{upto=200,c},c=Floor[Surd[upto,3]];Select[Union[Total/@ Tuples[ Range[ c]^3,8]],#<=upto&]] (* Harvey P. Dale, Jan 11 2016 *)
  • PARI
    (A003331_upto(N, k=8, m=3)=[i|i<-[1..#N=sum(n=1, sqrtnint(N, m), 'x^n^m, O('x^N))^k], polcoef(N, i)])(150) \\ M. F. Hasler, Aug 02 2020
    A003331(n)=if(n>478, n+142, n>329, n+141, A003331_upto(470)[n]) \\ M. F. Hasler, Aug 13 2020
    
  • Python
    from itertools import combinations_with_replacement as mc
    def aupto(lim):
        cbs = (i**3 for i in range(1, int((lim-7)**(1/3))+2))
        return sorted(set(k for k in (sum(c) for c in mc(cbs, 8)) if k <= lim))
    print(aupto(150)) # Michael S. Branicky, Aug 15 2021

Formula

a(n) = 142 + n for all n > 478. - M. F. Hasler, Aug 13 2020

A003356 Numbers that are the sum of 11 positive 5th powers.

Original entry on oeis.org

11, 42, 73, 104, 135, 166, 197, 228, 253, 259, 284, 290, 315, 321, 346, 352, 377, 408, 439, 470, 495, 501, 526, 532, 557, 563, 588, 619, 650, 681, 712, 737, 743, 768, 774, 799, 830, 861, 892, 923, 954, 979, 985, 1010, 1034, 1041, 1065, 1072, 1096, 1103, 1127, 1134
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
16989 is in the sequence as 16989 = 1^5 + 2^5 + 2^5 + 2^5 + 3^5 + 4^5 + 5^5 + 5^5 + 5^5 + 5^5 + 5^5.
22564 is in the sequence as 22564 = 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5 + 4^5 + 4^5 + 5^5 + 7^5.
30191 is in the sequence as 30191 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 5^5 + 6^5 + 7^5. (End)
		

Crossrefs

Cf. A000584 (fifth powers).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Extensions

Incorrect program removed by David A. Corneth, Aug 01 2020

A003332 Numbers that are the sum of 9 positive cubes.

Original entry on oeis.org

9, 16, 23, 30, 35, 37, 42, 44, 49, 51, 56, 58, 61, 63, 65, 68, 70, 72, 75, 77, 79, 82, 84, 86, 87, 89, 91, 93, 94, 96, 98, 100, 101, 103, 105, 107, 108, 110, 112, 113, 114, 115, 119, 120, 121, 122, 124, 126, 127, 128, 129, 131, 133, 134, 135, 138, 139, 140, 141, 142, 145, 146, 147
Offset: 1

Views

Author

Keywords

Comments

422 and 471 are the two largest of only 114 positive integers not in this sequence. This can be proved by induction. - M. F. Hasler, Aug 13 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
1352 is in the sequence as 1352 = 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 6^3 + 6^3 + 8^3.
2312 is in the sequence as 2312 = 5^3 + 5^3 + 6^3 + 6^3 + 6^3 + 6^3 + 7^3 + 7^3 + 8^3.
3383 is in the sequence as 3383 = 4^3 + 5^3 + 5^3 + 5^3 + 6^3 + 6^3 + 8^3 + 10^3 + 10^3. (End)
		

Crossrefs

Cf. numbers that are the sum of x nonzero y-th powers:
A000404 (x=2, y=2), A000408 (3, 2), A000414 (4, 2), A047700 (5, 2),
A003325 (2, 3), A003072 (3, 3), A003327 .. A003335 (4 .. 12, 3),
A003336 .. A003346 (2 .. 12, 4), A003347 .. A003357 (2 .. 12, 5),
A003358 .. A003368 (2 .. 12, 6), A003369 .. A003379 (2 .. 12, 7),
A003380 .. A003390 (2 .. 12, 8), A003391 .. A004801 (2 .. 12, 9),
A004802 .. A004812 (2 .. 12, 10), A004813 .. A004823 (2 .. 12, 11).

Programs

  • Mathematica
    With[{upto=150},Select[Union[Total/@Tuples[Range[Floor[Surd[upto-8,3]]]^3, 9]],#<=upto&]](* Harvey P. Dale, Jan 04 2015 *)
  • PARI
    (A003332_upto(N, k=9, m=3)=[i|i<-[1..#N=sum(n=1, sqrtnint(N, m), 'x^n^m, O('x^N))^k], polcoef(N, i)])(160) \\ See also A003333 for alternate code. - M. F. Hasler, Aug 02 2020
    A003332(n)=if(n>357, n+114, A003332_upto(471)[n]) \\ M. F. Hasler, Aug 13 2020

Formula

a(n) = 114 + n for all n > 357. - M. F. Hasler, Aug 13 2020

A002523 a(n) = n^4 + 1.

Original entry on oeis.org

1, 2, 17, 82, 257, 626, 1297, 2402, 4097, 6562, 10001, 14642, 20737, 28562, 38417, 50626, 65537, 83522, 104977, 130322, 160001, 194482, 234257, 279842, 331777, 390626, 456977, 531442, 614657, 707282, 810001, 923522, 1048577, 1185922, 1336337, 1500626, 1679617
Offset: 0

Views

Author

Keywords

Comments

a(n) = Phi_8(n), where Phi_k is the k-th cyclotomic polynomial.
All odd prime factors of a(n) are congruent to 1 modulo 8. - Nick Hobson, Jan 14 2007
Lee and Murty, p. 685: "In spite of these remarkable advances, we are still unable to determine if n^4 + 1 is infinitely often a squarefree number". - Jonathan Vos Post, Sep 18 2007
Since a(n)*a(m) = (n^4+1)*(m^4+1) = ((n*m)^2-1)^2 + (n^2+m^2)^2, a(n)*a(m) is obvious member of A000404 for n*m > 1. Additionally, if m and n are the legs of a Pythagorean triple, then a(m)*a(n) is the member of A111925. - Altug Alkan, Apr 08 2016

References

  • M. Mabkhout, "Minoration de P(x^4+1)", Rend. Sem. Fac. Sci. Univ. Cagliari 63 (2) (1993), 135-148.

Crossrefs

Programs

Formula

From R. J. Mathar, Apr 28 2008: (Start)
O.g.f.: (1 - 3*x + 17*x^2 + 7*x^3 + 2*x^4)/(1-x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). (End)
Sum_{n>=0} 1/a(n) = 1/2 + Pi * (sinh(sqrt(2)*Pi) + sin(sqrt(2)*Pi)) / (2*sqrt(2) * (cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi))) = 1.578477579667136838318... . - Vaclav Kotesovec, Feb 14 2015
Sum_{n>=0} (-1)^n/a(n) = 1/2 - Pi * (cos(Pi/sqrt(2)) * sinh(Pi/sqrt(2)) + cosh(Pi/sqrt(2)) * sin(Pi/sqrt(2))) / (sqrt(2) * (cos(sqrt(2)*Pi) - cosh(sqrt(2)*Pi))) = 0.54942814871987317922929... . - Vaclav Kotesovec, Feb 14 2015
Product_{n>=1} (1 - 1/a(n)) = 2*Pi^2/(cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi)). - Amiram Eldar, Jan 26 2024

A063725 Number of ordered pairs (x,y) of positive integers such that x^2 + y^2 = n.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 2, 0, 0, 0, 2, 1, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Aug 23 2001

Keywords

Comments

a(A018825(n))=0; a(A000404(n))>0; a(A081324(n))=1; a(A004431(n))>1. - Reinhard Zumkeller, Aug 16 2011

Examples

			a(5) = 2 from the solutions (1,2) and (2,1).
		

Crossrefs

Cf. A000404 (the numbers n that can be represented in this form).
Column k=2 of A337165.

Programs

  • Haskell
    a063725 n =
       sum $ map (a010052 . (n -)) $ takeWhile (< n) $ tail a000290_list
    a063725_list = map a063725 [0..]
    -- Reinhard Zumkeller, Aug 16 2011
    
  • Mathematica
    nn = 100; t = Table[0, {nn}]; s = Sqrt[nn]; Do[n = x^2 + y^2; If[n <= nn, t[[n]]++], {x, s}, {y, s}]; Join[{0}, t] (* T. D. Noe, Apr 03 2011 *)
  • PARI
    a(n)=if(n==0, return(0)); my(f=factor(n)); prod(i=1, #f~, if(f[i, 1]%4==1, f[i, 2]+1, f[i, 2]%2==0 || f[i, 1]==2)) - issquare(n) \\ Charles R Greathouse IV, May 18 2016
    
  • Python
    from math import prod
    from sympy import factorint
    def A063725(n):
        f = factorint(n)
        return prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in f.items())-(not any(e&1 for e in f.values())) if n else 0 # Chai Wah Wu, May 17 2023

Formula

G.f.: (Sum_{m=1..inf} x^(m^2))^2.
a(n) = ( A004018(n) - 2*A000122(n) + A000007(n) )/4. - Max Alekseyev, Sep 29 2012
G.f.: (theta_3(q) - 1)^2/4, where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 08 2018

A111925 Numbers of the form a^2 + b^4, with a,b > 0.

Original entry on oeis.org

2, 5, 10, 17, 20, 25, 26, 32, 37, 41, 50, 52, 65, 80, 82, 85, 90, 97, 101, 106, 116, 117, 122, 130, 137, 145, 160, 162, 170, 181, 185, 197, 202, 212, 225, 226, 241, 250, 257, 260, 265, 272, 277, 281, 290, 292, 305, 306, 320, 325, 337, 340, 356, 362, 370, 377
Offset: 1

Views

Author

Stefan Steinerberger, Nov 25 2005

Keywords

Comments

Subsequence of A000404.
Although there are squares, cubes, fifth powers, ... in this sequence, there are no fourth powers. - Altug Alkan, Apr 09 2016
Also, numbers z such that z^5 = x^2 + y^4 for x, y >= 1. - M. F. Hasler, Apr 16 2018
The Friedlander-Iwaniec theorem states that there are infinitely many prime numbers in this sequence. These primes are in A028916. - Bernard Schott, Mar 09 2019

Examples

			25 = 3^2 + 2^4, so 25 is an element of the sequence.
		

Crossrefs

Cf. A055394, A022549; complement of A111909; subsequence of A000404.
Cf. A028916 (subsequence of primes).

Programs

  • Maple
    isA111925 := proc(n)
        local a,b ;
        for a from 1 do
            if a^4 >= n then
                return false;
            end if;
            b := n-a^4 ;
            if issqr(b) then
                return true;
            end if;
        end do:
    end proc:
    A111925 := proc(n)
        option remember;
        if n = 1 then
            2;
        else
            for a from procname(n-1)+1 do
                if isA111925(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Apr 22 2013
  • Mathematica
    With[{nn=60},Take[Union[First[#]^2+Last[#]^4&/@Tuples[Range[nn],2]],nn]] (* Harvey P. Dale, Jul 09 2014 *)
  • PARI
    list(lim)=my(v=List(),t); lim\=1; for(b=1,sqrtnint(lim-1,4), t=b^4; for(a=1,sqrtint(lim-t), listput(v,t+a^2))); Set(v) \\ Charles R Greathouse IV, Jun 07 2016
    
  • PARI
    is(n)=for(b=1,sqrtnint(n-1,4), if(issquare(n-b^4), return(1))); 0 \\ Charles R Greathouse IV, Jun 07 2016

A003334 Numbers that are the sum of 11 positive cubes.

Original entry on oeis.org

11, 18, 25, 32, 37, 39, 44, 46, 51, 53, 58, 60, 63, 65, 67, 70, 72, 74, 77, 79, 81, 84, 86, 88, 89, 91, 93, 95, 96, 98, 100, 102, 103, 105, 107, 109, 110, 112, 114, 115, 116, 117, 119, 121, 122, 123, 124, 126, 128, 129, 130, 131, 133, 135, 136, 137, 138, 140, 141, 142, 143, 144
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020
The sequence contains all integers greater than 321 which is the last of only 92 positive integers not in this sequence. - M. F. Hasler, Aug 25 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
1120 is in the sequence as 1120 = 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 +  8^3.
2339 is in the sequence as 2339 = 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 + 9^3 +  9^3.
3594 is in the sequence as 3594 = 4^3 + 5^3 + 6^3 + 6^3 + 6^3 + 6^3 + 7^3 + 7^3 + 7^3 + 8^3 + 10^3. (End)
		

Crossrefs

Other sequences S(k, m) of numbers that are the sum of k nonzero m-th powers:
A000404 = S(2, 2), A000408 = S(3, 2), A000414 = S(4, 2) complement of A000534,
A047700 = S(5, 2) complement of A047701, A180968 = complement of S(6,2);
A003325 = S(2, 3), A003072 = S(3, 3), A003327 .. A003335 = S(4 .. 12, 3) and A332107 .. A332111 = complement of S(7 .. 11, 3);
A003336 .. A003346 = S(2 .. 12, 4), A003347 .. A003357 = S(2 .. 12, 5),
A003358 .. A003368 = S(2 .. 12, 6), A003369 .. A003379 = S(2 .. 12, 7),
A003380 .. A003390 = S(2 .. 12, 8), A003391 .. A004801 = S(2 .. 12, 9),
A004802 .. A004812 = S(2 .. 12, 10), A004813 .. A004823 = S(2 .. 12, 11).

Programs

  • PARI
    (A003334_upto(N, k=11, m=3)=[i|i<-[1..#N=sum(n=1, sqrtnint(N, m), 'x^n^m, O('x^N))^k], polcoef(N, i)])(150) \\ See also A003333 for alternate code. - M. F. Hasler, Aug 03 2020

Formula

a(n) = n + 92 for all n > 229. - M. F. Hasler, Aug 25 2020

A003359 Numbers that are the sum of 3 nonzero 6th powers.

Original entry on oeis.org

3, 66, 129, 192, 731, 794, 857, 1459, 1522, 2187, 4098, 4161, 4224, 4826, 4889, 5554, 8193, 8256, 8921, 12288, 15627, 15690, 15753, 16355, 16418, 17083, 19722, 19785, 20450, 23817, 31251, 31314, 31979, 35346, 46658, 46721, 46784, 46875, 47386, 47449
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
149781746 is in the sequence as 149781746 = 5^6 + 20^6 + 21^6.
244687691 is in the sequence as 244687691 = 5^6 + 9^6 + 25^6.
617835648 is in the sequence as 617835648 = 4^6 + 26^6 + 26^6. (End)
		

Crossrefs

A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Extensions

Removed incorrect program. - David A. Corneth, Aug 01 2020
Previous Showing 51-60 of 237 results. Next