cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A000404 Numbers that are the sum of 2 nonzero squares.

Original entry on oeis.org

2, 5, 8, 10, 13, 17, 18, 20, 25, 26, 29, 32, 34, 37, 40, 41, 45, 50, 52, 53, 58, 61, 65, 68, 72, 73, 74, 80, 82, 85, 89, 90, 97, 98, 100, 101, 104, 106, 109, 113, 116, 117, 122, 125, 128, 130, 136, 137, 145, 146, 148, 149, 153, 157, 160, 162, 164, 169, 170, 173, 178
Offset: 1

Views

Author

Keywords

Comments

From the formula it is easy to see that if k is in this sequence, then so are all odd powers of k. - T. D. Noe, Jan 13 2009
Also numbers whose cubes are the sum of two nonzero squares. - Joe Namnath and Lawrence Sze
A line perpendicular to y=mx has its first integral y-intercept at a^2+b^2. The remaining ones for that slope are multiples of that primitive value. - Larry J Zimmermann, Aug 19 2010
The primes in this sequence are sequence A002313.
Complement of A018825; A025426(a(n)) > 0; A063725(a(n)) > 0. - Reinhard Zumkeller, Aug 16 2011
If the two squares are not equal, then any power is still in the sequence: if k = x^2 + y^2 with x != y, then k^2 = (x^2-y^2)^2 + (2xy)^2 and k^3 = (x(x^2-3y^2))^2 + (y(3x^2-y^2))^2, etc. - Carmine Suriano, Jul 13 2012
There are never more than 3 consecutive terms that differ by 1. Triples of consecutive terms that differ by 1 occur infinitely many times, for example, 2(k^2 + k)^2, (k^2 - 1)^2 + (k^2 + 2 k)^2, and (k^2 + k - 1)^2 + (k^2 + k + 1)^2 for any integer k > 1. - Ivan Neretin, Mar 16 2017 [Corrected by Jerzy R Borysowicz, Apr 14 2017]
Number of terms less than 10^k, k=1,2,3,...: 3, 34, 308, 2690, 23873, 215907, 1984228, ... - Muniru A Asiru, Feb 01 2018
The squares in this sequence are the squares of the so-called hypotenuse numbers A009003. - M. F. Hasler, Jun 20 2025

Examples

			25 = 3^2 + 4^2, therefore 25 is a term. Note that also 25^3 = 15625 = 44^2 + 117^2, therefore 15625 is a term.
		

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
  • GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 103.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 75, Theorem 4, with Theorem 2, p. 15.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, p. 219, th. 251, 252.
  • Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.

Crossrefs

A001481 gives another version (allowing for zero squares).
Cf. A004431 (2 distinct squares), A063725 (number of representations), A024509 (numbers with multiplicity), A025284, A018825. Also A050803, A050801, A001105, A033431, A084888, A000578, A000290, A057961, A232499, A007692.
Cf. A003325 (analog for cubes), A003336 (analog for 4th powers).
Cf. A009003 (square roots of the squares in this sequence).
Column k=2 of A336725.

Programs

  • GAP
    P:=List([1..10^4],i->i^2);;
    A000404 := Set(Flat(List(P, i->List(P, j -> i+j)))); # Muniru A Asiru, Feb 01 2018
    
  • Haskell
    import Data.List (findIndices)
    a000404 n = a000404_list !! (n-1)
    a000404_list = findIndices (> 0) a025426_list
    -- Reinhard Zumkeller, Aug 16 2011
    
  • Magma
    lst:=[]; for n in [1..178] do f:=Factorization(n); if IsSquare(n) then for m in [1..#f] do d:=f[m]; if d[1] mod 4 eq 1 then Append(~lst, n); break; end if; end for; else t:=0; for m in [1..#f] do d:=f[m]; if d[1] mod 4 eq 3 and d[2] mod 2 eq 1 then t:=1; break; end if; end for; if t eq 0 then Append(~lst, n); end if; end if; end for; lst; // Arkadiusz Wesolowski, Feb 16 2017
    
  • Maple
    nMax:=178: A:={}: for i to floor(sqrt(nMax)) do for j to floor(sqrt(nMax)) do if i^2+j^2 <= nMax then A := `union`(A, {i^2+j^2}) else  end if end do end do: A; # Emeric Deutsch, Jan 02 2017
  • Mathematica
    nMax=1000; n2=Floor[Sqrt[nMax-1]]; Union[Flatten[Table[a^2+b^2, {a,n2}, {b,a,Floor[Sqrt[nMax-a^2]]}]]]
    Select[Range@ 200, Length[PowersRepresentations[#, 2, 2] /. {0, } -> Nothing] > 0 &] (* _Michael De Vlieger, Mar 24 2016 *)
    Module[{upto=200},Select[Union[Total/@Tuples[Range[Sqrt[upto]]^2,2]],#<= upto&]] (* Harvey P. Dale, Sep 18 2021 *)
  • PARI
    is_A000404(n)= for( i=1,#n=factor(n)~%4, n[1,i]==3 && n[2,i]%2 && return); n && ( vecmin(n[1,])==1 || (n[1,1]==2 && n[2,1]%2)) \\ M. F. Hasler, Feb 07 2009
    
  • PARI
    list(lim)=my(v=List(),x2); lim\=1; for(x=1,sqrtint(lim-1), x2=x^2; for(y=1,sqrtint(lim-x2), listput(v,x2+y^2))); Set(v) \\ Charles R Greathouse IV, Apr 30 2016
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A000404_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            c = False
            for p in (f:=factorint(n)):
                if (q:= p & 3)==3 and f[p]&1:
                    break
                elif q == 1:
                    c = True
            else:
                if c or f.get(2,0)&1:
                    yield n
    A000404_list = list(islice(A000404_gen(),30)) # Chai Wah Wu, Jul 01 2022

Formula

Let k = 2^t * p_1^a_1 * p_2^a_2 * ... * p_r^a_r * q_1^b_1 * q_2^b_2 * ... * q_s^b_s with t >= 0, a_i >= 0 for i=1..r, where p_i == 1 (mod 4) for i=1..r and q_j == -1 (mod 4) for j=1..s. Then k is a term iff 1) b_j == 0 (mod 2) for j=1..s and 2) r > 0 or t == 1 (mod 2) (or both).
From Charles R Greathouse IV, Nov 18 2022: (Start)
a(n) ~ k*n*sqrt(log n), where k = 1.3085... = 1/A064533.
There are B(x) = (x/sqrt(log x)) * (K + B2/log x + O(1/log^2 x)) terms of this sequence up to x, where K = A064533 and B2 = A227158. (End)

Extensions

Edited by Ralf Stephan, Nov 15 2004
Typo in formula corrected by M. F. Hasler, Feb 07 2009
Erroneous Mathematica program fixed by T. D. Noe, Aug 07 2009
PARI code fixed for versions > 2.5 by M. F. Hasler, Jan 01 2013

A004431 Numbers that are the sum of 2 distinct nonzero squares.

Original entry on oeis.org

5, 10, 13, 17, 20, 25, 26, 29, 34, 37, 40, 41, 45, 50, 52, 53, 58, 61, 65, 68, 73, 74, 80, 82, 85, 89, 90, 97, 100, 101, 104, 106, 109, 113, 116, 117, 122, 125, 130, 136, 137, 145, 146, 148, 149, 153, 157, 160, 164, 169, 170, 173, 178, 180, 181, 185, 193, 194, 197
Offset: 1

Views

Author

Keywords

Comments

Numbers whose prime factorization includes at least one prime congruent to 1 mod 4 and any prime factor congruent to 3 mod 4 has even multiplicity. - Franklin T. Adams-Watters, May 03 2006
Reordering of A055096 by increasing values and without repetition. - Paul Curtz, Sep 08 2008
A063725(a(n)) > 1. - Reinhard Zumkeller, Aug 16 2011
The square of these numbers is also the sum of two nonzero squares, so this sequence is a subsequence of A009003. - Jean-Christophe Hervé, Nov 10 2013
Closed under multiplication. Primitive elements are those with exactly one prime factor congruent to 1 mod 4 with multiplicity one (A230779). - Jean-Christophe Hervé, Nov 10 2013
From Bob Selcoe, Mar 23 2016: (Start)
Numbers c such that there is d < c, d >= 1 where c + d and c - d are square. For example, 53 + 28 = 81, 53 - 28 = 25.
Given a prime p == 1 mod 4, a term appears if and only if it is of the form p^i, p*2^j or p*k^2 {i,j,k >= 1}, or a product of any combination of these forms. Therefore, the products of any terms to any powers also are terms. For example, p(1) = 5 and p(2) = 13 so term 45 appears because 5*3^2 = 45 and term 416 appears because 13*2^5 = 416; therefore 45 * 416 = 18720 appears, as does 45^3 * 416^11 = 18720^3 * 416^8.
Numbers of the form j^2 + 2*j*k + 2*k^2 {j,k >= 1}. (End)
Suppose we have a term t = x^2 + y^2. Then s^2*t = (s*x)^2 + (s*y)^2 is a term for any s > 0. Also 2*t = (y+x)^2 + (x-y)^2 is a term. It follows that q*s^2*t is a term for any s > 0 and q=1 or 2. Examples: 2*7^2*26 = 28^2 + 42^2; 6^2*17 = 6^2 + 24^2. - Jerzy R Borysowicz, Aug 11 2017
To find terms up to some upper bound u, we can search for x^2 + y^2 = t where x is odd and y is even. Then we add all numbers of the form 2^m * t <= u and then remove duplicates. - David A. Corneth, Oct 04 2017
From Bernard Schott, Apr 13 2022: (Start)
The 5th comment "Closed under multiplication" can be proved with Brahmagupta's identity: (a^2+b^2) * (c^2+d^2) = (ac + bd)^2 + (ad - bc)^2.
The subsequence of primes is A002144. (End)

Examples

			53 = 7^2 + 2^2, so 53 is in the sequence.
		

Crossrefs

Programs

  • Haskell
    import Data.List (findIndices)
    a004431 n = a004431_list !! (n-1)
    a004431_list = findIndices (> 1) a063725_list
    -- Reinhard Zumkeller, Aug 16 2011
    
  • Maple
    isA004431 := proc(n)
        local a,b ;
        for a from 2 do
            if a^2>= n then
                return false;
            end if;
            b := n -a^2 ;
            if b < 1 then
                return false ;
            end if;
            if issqr(b) then
                if ( sqrt(b) <> a ) then
                    return true;
                end if;
            end if;
        end do:
        return false;
    end proc:
    A004431 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            5;
        else
            for a from procname(n-1)+1 do
                if isA004431(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Jan 29 2013
  • Mathematica
    A004431 = {}; Do[a = 2 m * n; b = m^2 - n^2; c = m^2 + n^2; AppendTo[A004431, c], {m, 100}, {n, m - 1}]; Take[Union@A004431, 63] (* Robert G. Wilson v, May 02 2009 *)
    Select[Range@ 200, Length[PowersRepresentations[#, 2, 2] /. {{0, } -> Nothing, {a, b_} /; a == b -> Nothing}] > 0 &] (* Michael De Vlieger, Mar 24 2016 *)
  • PARI
    select( isA004431(n)={n>1 && vecmin((n=factor(n)%4)[,1])==1 && ![f[1]>2 && f[2]%2 | f<-n~]}, [1..199]) \\ M. F. Hasler, Feb 06 2009, updated Nov 24 2019
    
  • PARI
    is(n)=if(n<5, return(0)); my(f=factor(n)%4); if(vecmin(f[, 1])>1, return(0)); for(i=1, #f[, 1], if(f[i, 1]==3 && f[i, 2]%2, return(0))); 1
    for(n=1, 1e3, if(is(n), print1(n, ", "))) \\ Altug Alkan, Dec 06 2015
    
  • PARI
    upto(n) = {my(res = List(), s); forstep(i=1, sqrtint(n), 2, forstep(j = 2, sqrtint(n - i^2), 2, listput(res, i^2 + j^2))); s = #res; for(i = 1, s, t = res[i]; for(e = 1, logint(n \ res[i], 2), listput(res, t<<=1))); listsort(res, 1); res} \\ David A. Corneth, Oct 04 2017
    
  • Python
    def aupto(limit):
      s = [i*i for i in range(1, int(limit**.5)+2) if i*i < limit]
      s2 = set(a+b for i, a in enumerate(s) for b in s[i+1:] if a+b <= limit)
      return sorted(s2)
    print(aupto(197)) # Michael S. Branicky, May 10 2021

A000161 Number of partitions of n into 2 squares.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 1, 0, 0, 1, 0, 1, 0
Offset: 0

Views

Author

Keywords

Comments

Number of ways of writing n as a sum of 2 (possibly zero) squares when order does not matter.
Number of similar sublattices of square lattice with index n.
Let Pk = the number of partitions of n into k nonzero squares. Then we have A000161 = P0 + P1 + P2, A002635 = P0 + P1 + P2 + P3 + P4, A010052 = P1, A025426 = P2, A025427 = P3, A025428 = P4. - Charles R Greathouse IV, Mar 08 2010, amended by M. F. Hasler, Jan 25 2013
a(A022544(n))=0; a(A001481(n))>0; a(A125022(n))=1; a(A118882(n))>1. - Reinhard Zumkeller, Aug 16 2011

Examples

			25 = 3^2+4^2 = 5^2, so a(25) = 2.
		

References

  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 339

Crossrefs

Equivalent sequences for other numbers of squares: A010052 (1), A000164 (3), A002635 (4), A000174 (5).

Programs

  • Haskell
    a000161 n =
       sum $ map (a010052 . (n -)) $ takeWhile (<= n `div` 2) a000290_list
    a000161_list = map a000161 [0..]
    -- Reinhard Zumkeller, Aug 16 2011
    
  • Maple
    A000161 := proc(n) local i,j,ans; ans := 0; for i from 0 to n do for j from i to n do if i^2+j^2=n then ans := ans+1 fi od od; RETURN(ans); end; [ seq(A000161(i), i=0..50) ];
    A000161 := n -> nops( numtheory[sum2sqr](n) ); # M. F. Hasler, Nov 23 2007
  • Mathematica
    Length[PowersRepresentations[ #,2,2]] &/@Range[0,150] (* Ant King, Oct 05 2010 *)
  • PARI
    a(n)=sum(i=0,n,sum(j=0,i,if(i^2+j^2-n,0,1))) \\ for illustrative purpose
    
  • PARI
    A000161(n)=sum(k=sqrtint((n-1)\2)+1,sqrtint(n),issquare(n-k^2)) \\ Charles R Greathouse IV, Mar 21 2014, improves earlier code by M. F. Hasler, Nov 23 2007
    
  • PARI
    A000161(n)=#sum2sqr(n) \\ See A133388 for sum2sqr(). - M. F. Hasler, May 13 2018
    
  • Python
    from math import prod
    from sympy import factorint
    def A000161(n):
        f = factorint(n)
        return int(not any(e&1 for e in f.values())) + (((m:=prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in f.items()))+((((~n & n-1).bit_length()&1)<<1)-1 if m&1 else 0))>>1) if n else 1 # Chai Wah Wu, Sep 08 2022

Formula

a(n) = card { { a,b } c N | a^2+b^2 = n }. - M. F. Hasler, Nov 23 2007
Let f(n)= the number of divisors of n that are congruent to 1 modulo 4 minus the number of its divisors that are congruent to 3 modulo 4, and define delta(n) to be 1 if n is a perfect square and 0 otherwise. Then a(n)=1/2 (f(n)+delta(n)+delta(1/2 n)). - Ant King, Oct 05 2010

A046080 a(n) is the number of integer-sided right triangles with hypotenuse n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 4, 0, 0, 1, 0, 1, 0, 0, 1, 1, 2, 0, 0, 1, 0, 1, 0, 1, 0, 0, 4, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Or number of ways n^2 can be written as the sum of two positive squares: a(5) = 1: 3^2 + 4^2 = 5^2; a(25) = 2: 7^2 + 24^2 = 15^2 + 20^2 = 25^2. - Alois P. Heinz, Aug 01 2019

References

  • A. H. Beiler, Recreations in the Theory of Numbers, New York: Dover, pp. 116-117, 1966.

Crossrefs

First differs from A083025 at n=65.
A088111 gives records; A088959 gives where records occur.
Partial sums: A224921.

Programs

  • Maple
    f:= proc(n) local F,t;
      F:= select(t -> t[1] mod 4 = 1, ifactors(n)[2]);
      1/2*(mul(2*t[2]+1, t=F)-1)
    end proc:
    map(f, [$1..100]); # Robert Israel, Jul 18 2016
  • Mathematica
    a[1] = 0; a[n_] := With[{fi = Select[ FactorInteger[n], Mod[#[[1]], 4] == 1 & ][[All, 2]]}, (Times @@ (2*fi+1)-1)/2]; Table[a[n], {n, 1, 99}] (* Jean-François Alcover, Feb 06 2012, after first formula *)
  • PARI
    a(n)={my(m=0,k=n,n2=n*n,k2,l2);
    while(1,k=k-1;k2=k*k;l2=n2-k2;if(l2>k2,break);if(issquare(l2),m++));return(m)} \\ brute force, Stanislav Sykora, Mar 18 2015
    
  • PARI
    {a(n) = if( n<1, 0, sum(k=1, sqrtint(n^2 \ 2), issquare(n^2 - k^2)))}; /* Michael Somos, Mar 29 2015 */
    
  • PARI
    a(n) = {my(f = factor(n/(2^valuation(n, 2)))); (prod(k=1, #f~, if ((f[k,1] % 4) == 1, 2*f[k,2] + 1, 1)) - 1)/2;} \\ Michel Marcus, Mar 08 2016
    
  • Python
    from math import prod
    from sympy import factorint
    def A046080(n): return prod((e<<1)+1 for p,e in factorint(n).items() if p&3==1)>>1 # Chai Wah Wu, Sep 06 2022

Formula

Let n = 2^e_2 * product_i p_i^f_i * product_j q_j^g_j where p_i == 1 mod 4, q_j == 3 mod 4; then a(n) = (1/2)*(product_i (2*f_i + 1) - 1). - Beiler, corrected
8*a(n) + 4 = A046109(n) for n > 0. - Ralf Stephan, Mar 14 2004
a(n) = 0 for n in A004144. - Lekraj Beedassy, May 14 2004
a(A084645(k)) = 1. - Ruediger Jehn, Jan 14 2022
a(A084646(k)) = 2. - Ruediger Jehn, Jan 14 2022
a(A084647(k)) = 3. - Jean-Christophe Hervé, Dec 01 2013
a(A084648(k)) = 4. - Jean-Christophe Hervé, Dec 01 2013
a(A084649(k)) = 5. - Jean-Christophe Hervé, Dec 01 2013
a(n) = A063725(n^2) / 2. - Michael Somos, Mar 29 2015
a(n) = Sum_{k=1..n} Sum_{i=1..k} [i^2 + k^2 = n^2], where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Dec 10 2021
a(A002144(k)^n) = n. - Ruediger Jehn, Jan 14 2022

A025426 Number of partitions of n into 2 nonzero squares.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0
Offset: 0

Views

Author

Keywords

Comments

For records see A007511, A048610, A016032. - R. J. Mathar, Feb 26 2008

Crossrefs

Cf. A000161 (2 nonnegative squares), A063725 (order matters), A025427 (3 nonzero squares).
Cf. A172151, A004526. - Reinhard Zumkeller, Jan 26 2010
Column k=2 of A243148.

Programs

  • Haskell
    a025426 n = sum $ map (a010052 . (n -)) $
                          takeWhile (<= n `div` 2) $ tail a000290_list
    a025426_list = map a025426 [0..]
    -- Reinhard Zumkeller, Aug 16 2011
    
  • Maple
    A025426 := proc(n)
        local a,x;
        a := 0 ;
        for x from 1 do
            if 2*x^2 > n then
                return a;
            end if;
            if issqr(n-x^2) then
                a := a+1 ;
            end if;
        end do:
    end proc: # R. J. Mathar, Sep 15 2015
  • Mathematica
    m[n_] := m[n] = SquaresR[2, n]/4; a[0] = 0; a[n_] := If[ EvenQ[ m[n] ], m[n]/2, (m[n] - (-1)^IntegerExponent[n, 2])/2]; Table[ a[n], {n, 0, 107}] (* Jean-François Alcover, Jan 31 2012, after Max Alekseyev *)
    nmax = 107; sq = Range[Sqrt[nmax]]^2;
    Table[Length[Select[IntegerPartitions[n, All, sq], Length[#] == 2 &]], {n, 0, nmax}] (* Robert Price, Aug 17 2020 *)
  • PARI
    a(n)={my(v=valuation(n,2),f=factor(n>>v),t=1);for(i=1,#f[,1],if(f[i,1]%4==1,t*=f[i,2]+1,if(f[i,2]%2,return(0))));if(t%2,t-(-1)^v,t)/2;} \\ Charles R Greathouse IV, Jan 31 2012
    
  • Python
    from math import prod
    from sympy import factorint
    def A025426(n): return ((m:=prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in factorint(n).items()))+((((~n & n-1).bit_length()&1)<<1)-1 if m&1 else 0))>>1 # Chai Wah Wu, Jul 07 2022

Formula

Let m = A004018(n)/4. If m is even then a(n) = m/2, otherwise a(n) = (m - (-1)^A007814(n))/2. - Max Alekseyev, Mar 09 2009, Mar 14 2009
a(A018825(n)) = 0; a(A000404(n)) > 0; a(A025284(n)) = 1; a(A007692(n)) > 1. - Reinhard Zumkeller, Aug 16 2011
a(A000578(n)) = A084888(n). - Reinhard Zumkeller, Jul 18 2012
a(n) = Sum_{i=1..floor(n/2)} A010052(i) * A010052(n-i). - Wesley Ivan Hurt, Apr 19 2019
a(n) = [x^n y^2] Product_{k>=1} 1/(1 - y*x^(k^2)). - Ilya Gutkovskiy, Apr 19 2019
Conjecture: Sum_{k=1..n} a(k) ~ n*Pi/8. - Vaclav Kotesovec, Dec 28 2023

A025428 Number of partitions of n into 4 nonzero squares.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 3, 0, 1, 2, 0, 1, 2, 1, 2, 2, 1, 2, 1, 0, 3, 2, 1, 2, 1, 2, 1, 2, 2, 1, 4, 1, 2, 3, 0, 2, 4, 1, 3, 2, 1, 4, 1, 1, 3, 3, 2, 2, 4, 2, 1, 3, 2, 3, 4, 2, 3, 3, 1, 2, 5, 2, 4, 3, 2, 4, 1, 1, 6, 4, 3, 4, 2, 3, 0, 4, 4, 3, 5, 1, 5, 5, 1, 4, 5, 2
Offset: 0

Views

Author

Keywords

Comments

Records occur at n= 4, 28, 52, 82, 90, 130, 162, 198, 202, 210,.... - R. J. Mathar, Sep 15 2015

Crossrefs

Cf. A000414, A000534, A025357-A025375, A216374, A025416 (greedy inverse).
Column k=4 of A243148.

Programs

  • Maple
    A025428 := proc(n)
        local a,i,j,k,lsq ;
        a := 0 ;
        for i from 1 do
            if 4*i^2 > n then
                return a;
            end if;
            for j from i do
                if i^2+3*j^2 > n then
                    break;
                end if;
                for k from j do
                    if i^2+j^2+2*k^2 > n then
                        break;
                    end if;
                    lsq := n-i^2-j^2-k^2 ;
                    if lsq >= k^2 and issqr(lsq) then
                        a := a+1 ;
                    end if;
                end do:
            end do:
        end do:
    end proc:
    seq(A025428(n),n=1..40) ; # R. J. Mathar, Jun 15 2018
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
         `if`(i<1 or t<1, 0, b(n, i-1, t)+`if`(i^2>n, 0, b(n-i^2, i, t-1))))
        end:
    a:= n-> b(n, isqrt(n), 4):
    seq(a(n), n=0..100);  # Alois P. Heinz, Apr 14 2019
  • Mathematica
    nn = 100; lim = Sqrt[nn]; t = Table[0, {nn}]; Do[n = a^2 + b^2 + c^2 + d^2; If[n <= nn, t[[n]]++], {a, lim}, {b, a, lim}, {c, b, lim}, {d, c, lim}]; t (* T. D. Noe, Sep 28 2012 *)
    f[n_] := Length@ IntegerPartitions[n, {4}, Range[ Floor[ Sqrt[n - 1]]]^2]; Array[f, 105] (* Robert G. Wilson v, Sep 28 2012 *)
  • PARI
    A025428(n)=sum(a=1,n,sum(b=1,a,sum(c=1,b,sum(d=1,c,a^2+b^2+c^2+d^2==n))))
    
  • PARI
    A025428(n)=sum(a=1,sqrtint(max(n-3,0)), sum(b=1,min(sqrtint(n-a^2-2),a), sum(c=1,min(sqrtint(n-a^2-b^2-1),b),issquare(n-a^2-b^2-c^2,&d) & d <= c )))
    
  • PARI
    A025428(n)=sum(a=sqrtint(max(n,4)\4),sqrtint(max(n-3,0)), sum(b=sqrtint((n-a^2)\3-1)+1,min(sqrtint(n-a^2-2),a), sum(c=sqrtint((t=n-a^2-b^2)\2-1)+1, min(sqrtint(t-1),b), issquare(t-c^2) ))) \\ - M. F. Hasler, Sep 17 2012
    for(n=1,100,print1(A025428(n),","))
    
  • PARI
    T(n)={a=matrix(n,4,i,j,0);for(d=1,sqrtint(n),forstep(i=n,d*d+1,-1,for(j=2,4,a[i,j]+=sum(k=1,j,if(k0,a[i-k*d*d,j-k],if(k==j&&i-k*d*d==0,1)))));a[d*d,1]=1);for(i=1,n,print(i" "a[i,4]))} /* Robert Gerbicz, Sep 28 2012 */

Formula

For n>0, a(n) = ( A063730(n) + 6*A213024(n) + 3*A063725(n/2) + 8*A092573(n) + 6*A010052(n/4) ) / 24. - Max Alekseyev, Sep 30 2012
a(n) = ( A000118(n) - 4*A005875(n) - 6*A004018(n) - 12*A000122(n) - 15*A000007(n) + 12*A014455(n) - 24*A033715(n) - 12*A000122(n/2) + 12*A004018(n/2) + 32*A033716(n) - 32*A000122(n/3) + 48*A000122(n/4) ) / 384. - Max Alekseyev, Sep 30 2012
a(n) = [x^n y^4] Product_{k>=1} 1/(1 - y*x^(k^2)). - Ilya Gutkovskiy, Apr 19 2019
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} A010052(i) * A010052(j) * A010052(k) * A010052(n-i-j-k). - Wesley Ivan Hurt, Apr 19 2019

Extensions

Values of a(0..10^4) double-checked by M. F. Hasler, Sep 17 2012

A337165 Number T(n,k) of compositions of n into k nonzero squares; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 0, 0, 0, 0, 4, 0, 0, 1, 0, 0, 1, 0, 0, 5, 0, 0, 1, 0, 1, 0, 3, 0, 0, 6, 0, 0, 1, 0, 0, 2, 0, 6, 0, 0, 7, 0, 0, 1, 0, 0, 0, 3, 0, 10, 0, 0, 8, 0, 0, 1, 0, 0, 0, 1, 4, 0, 15, 0, 0, 9, 0, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 03 2021

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  0, 1;
  0, 0, 1;
  0, 0, 0, 1;
  0, 1, 0, 0, 1;
  0, 0, 2, 0, 0,  1;
  0, 0, 0, 3, 0,  0,  1;
  0, 0, 0, 0, 4,  0,  0, 1;
  0, 0, 1, 0, 0,  5,  0, 0, 1;
  0, 1, 0, 3, 0,  0,  6, 0, 0, 1;
  0, 0, 2, 0, 6,  0,  0, 7, 0, 0, 1;
  0, 0, 0, 3, 0, 10,  0, 0, 8, 0, 0, 1;
  0, 0, 0, 1, 4,  0, 15, 0, 0, 9, 0, 0, 1;
  ...
		

Crossrefs

Row sums give A006456.
T(2n,n) gives A338464.
Main diagonal gives A000012.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add((s->
         `if`(s>n, 0, expand(x*b(n-s))))(j^2), j=1..isqrt(n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
    seq(T(n), n=0..14);
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Sum[With[{s = j^2},
         If[s>n, 0, Expand[x*b[n - s]]]], {j, 1, Sqrt[n]}]];
    T[n_] := CoefficientList[b[n], x];
    T /@ Range[0, 14] // Flatten (* Jean-François Alcover, Feb 07 2021, after Alois P. Heinz *)

Formula

G.f. of column k: (Sum_{j>=1} x^(j^2))^k.
Sum_{k=0..n} k * T(n,k) = A281704(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A317665(n).

A063691 Number of solutions to x^2 + y^2 + z^2 = n in positive integers.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 3, 0, 0, 3, 0, 3, 1, 0, 6, 0, 0, 3, 3, 3, 0, 6, 3, 0, 3, 0, 6, 4, 0, 6, 6, 0, 0, 6, 3, 6, 3, 0, 9, 0, 0, 9, 6, 3, 3, 6, 6, 0, 1, 6, 6, 6, 0, 6, 12, 0, 6, 6, 0, 9, 0, 6, 12, 0, 0, 6, 12, 3, 3, 12, 6, 0, 3, 3, 12, 7, 3, 12, 6, 0, 0, 12, 3, 9, 6, 0, 15, 0, 3, 15
Offset: 0

Views

Author

Andrew A. Doroshev (andy(AT)ip.rsu.ru), Aug 23 2001

Keywords

Examples

			a(5)=0;
a(6)=3 because 1^2+1^2+2^2 = 1^2+2^2+1^2 = 2^2+1^2+1^2 = 6;
a(27)=4 because 1^2+1^2+5^2 = 1^2+5^2+1^2 = 3^2+3^2+3^2 = 5^2+1^2+1^2 = 27.
		

Crossrefs

Sequence without zeros: A014465.
Cf. A063725, A063730, A211639 (partial sums).
Column k=3 of A337165.

Programs

  • Mathematica
    r[n_] := Reduce[ x>0 && y>0 && z>0 && x^2 + y^2 + z^2 == n, {x, y, z}, Integers]; a[n_] := Which[rn = r[n]; rn === False, 0, Head[rn] === Or, Length[rn], True, 1]; Table[a[n], {n, 0, 89}](* Jean-François Alcover, May 10 2012 *)
    (EllipticTheta[3, 0, x] - 1)^3/8 + O[x]^100 // CoefficientList[#, x]& (* Jean-François Alcover, Jul 30 2017 *)

Formula

G.f.: (Sum_{m>=1} x^(m^2))^3.

A018825 Numbers that are not the sum of 2 nonzero squares.

Original entry on oeis.org

1, 3, 4, 6, 7, 9, 11, 12, 14, 15, 16, 19, 21, 22, 23, 24, 27, 28, 30, 31, 33, 35, 36, 38, 39, 42, 43, 44, 46, 47, 48, 49, 51, 54, 55, 56, 57, 59, 60, 62, 63, 64, 66, 67, 69, 70, 71, 75, 76, 77, 78, 79, 81, 83, 84, 86, 87, 88, 91, 92, 93, 94, 95, 96, 99, 102, 103, 105, 107, 108, 110
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A022544, A081324, A000404 (complement), A004431.

Programs

  • Haskell
    import Data.List (elemIndices)
    a018825 n = a018825_list !! (n-1)
    a018825_list = tail $ elemIndices 0 a025426_list
    -- Reinhard Zumkeller, Aug 16 2011
    
  • Maple
    isA000404 := proc(n)
        local x,y ;
        for x from 1 do
            if x^2> n then
                return false;
            end if;
            for y from 1 do
                if x^2+y^2 > n then
                    break;
                elif x^2+y^2 = n then
                    return true;
                end if;
            end do:
        end do:
    end proc:
    A018825 := proc(n)
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if not isA000404(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A018825(n),n=1..30) ; # R. J. Mathar, Jul 28 2014
  • Mathematica
    q=13;q2=q^2+1;lst={};Do[Do[z=a^2+b^2;If[z<=q2,AppendTo[lst,z]],{b,a,1,-1}],{a,q}];lst; u=Union@lst;Complement[Range[q^2],u] (* Vladimir Joseph Stephan Orlovsky, May 30 2010 *)
  • PARI
    is(n)=my(f=factor(n), t=prod(i=1,#f~, if(f[i,1]%4==1, f[i,2]+1, if(f[i,2]%2 && f[i,1]>2, 0, 1)))); if(t!=1, return(!t)); for(k=sqrtint((n-1)\2)+1, sqrtint(n-1), if(issquare(n-k^2), return(0))); 1 \\ Charles R Greathouse IV, Sep 02 2015

Formula

A025426(a(n)) = 0; A063725(a(n)) = 0. - Reinhard Zumkeller, Aug 16 2011

A063730 Number of solutions to w^2 + x^2 + y^2 + z^2 = n in positive integers.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 4, 0, 0, 6, 0, 4, 4, 0, 12, 1, 0, 12, 4, 6, 4, 12, 12, 0, 12, 6, 12, 12, 0, 24, 16, 0, 12, 18, 12, 13, 16, 12, 28, 6, 0, 36, 16, 12, 24, 24, 24, 4, 16, 30, 24, 18, 12, 36, 36, 0, 28, 42, 12, 36, 16, 24, 52, 1, 24, 48, 28, 18, 24, 60, 36, 12
Offset: 0

Views

Author

N. J. A. Sloane, Aug 23 2001

Keywords

Crossrefs

Column k=4 of A337165.

Programs

  • Mathematica
    r[n_] := Reduce[ w > 0 && x > 0 && y > 0 && z > 0 && w^2 + x^2 + y^2 + z^2 == n, {w, x, y, z}, Integers]; a[n_] := Which[rn = r[n]; rn === False, 0, Head[rn] === Or, Length[rn], True, 1]; Table[a[n], {n, 0, 72}] (* Jean-François Alcover, Jul 22 2013 *)
    a[n_ ] := Length[FindInstance[{n == w^2 + x^2 + y^2 + z^2, w > 0, x > 0, y > 0, z > 0}, {w, x, y, z}, Integers, 10^18]]; (* Michael Somos, Jun 23 2023 *)
  • PARI
    seq(n)=Vec((sum(k=1, sqrtint(n), x^(k^2)) + O(x*x^n))^4 + O(x*x^n), -(n+1)) \\ Andrew Howroyd, Aug 08 2018

Formula

G.f.: (Sum_{m>=1} x^(m^2))^4.
a(n) = ( A000118(n) - 4*A005875(n) + 6*A004018(n) - 4*A000122(n) + A000007(n) )/16. - Max Alekseyev, Sep 29 2012
G.f.: ((theta_3(q) - 1)/2)^4, where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 08 2018
Showing 1-10 of 33 results. Next