cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 45 results. Next

A010052 Characteristic function of squares: a(n) = 1 if n is a square, otherwise 0.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Also parity of the divisor function A000005 if n >= 1. - Omar E. Pol, Jan 14 2012
This sequence can be considered as k=1 analog of A025426 (k=2), A025427 (k=3), A025428 (k=4); see also A000161. - M. F. Hasler, Jan 25 2013
Also, the decimal expansion of Sum_{n >= 0} 1/(10^n)^n. - Eric Desbiaux, Mar 15 2009, rephrased and simplified by M. F. Hasler, Jan 26 2013
Run lengths of zeros gives A005843, the nonnegative even numbers. - Jeremy Gardiner, Jan 14 2018
Inverse Möbius transform of Liouville's lambda function (A008836), n >= 1. - Wesley Ivan Hurt, Jun 22 2024

Examples

			G.f. = 1 + x + x^4 + x^9 + x^16 + x^25 + x^36 + x^49 + x^64 + x^81 + ...
		

References

  • Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, pp. 3-4, also p. 166, Ex. 5.5.1.
  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 48, Problem 20.
  • Richard Bellman, A Brief Introduction to Theta Functions, Dover, 2013 (11.14).
  • Michael D. Hirschhorn, The Power of q, Springer, 2017. See phi(q) page 8.
  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
  • Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002, p. 55.

Crossrefs

Column k=1 of A243148, A337165, A341040 (for n>0).
Cf. A000005, A000122, A005369, A007913, A008836 (Mobius transf.), A037011, A063524, A258998, A271102 (Dirichlet inv), A046951 (inv. Mobius trans.).
First differences of A000196.

Programs

  • Haskell
    a010052 n = fromEnum $ a000196 n ^ 2 == n
    -- Reinhard Zumkeller, Jan 26 2012, Feb 20 2011
    a010052_list = concat (iterate (\xs -> xs ++ [0,0]) [1])
    -- Reinhard Zumkeller, Apr 27 2012
    
  • Maple
    readlib(issqr): f := i->if issqr(i) then 1 else 0; fi; [ seq(f(i),i=0..100) ];
  • Mathematica
    lst = {}; Do[AppendTo[lst, 2*Sum[Floor[n/k] - Floor[(n - 1)/k], {k, Floor[Sqrt[n]]}] - DivisorSigma[0, n]], {n, 93}]; Prepend[lst, 1] (* Eric Desbiaux, Jan 29 2012 *)
    Table[If[IntegerQ[Sqrt[n]],1,0],{n,0,100}] (* Harvey P. Dale, Jul 19 2014 *)
    a[n_] := SeriesCoefficient[1/(1 - q)* QHypergeometricPFQ[{-q, -q}, {-(q^2)}, -q, -q], {q, 0, Abs@n}] (* Mats Granvik, Jan 01 2016 *)
    Range[0, 120] /. {n_ /; IntegerQ@ Sqrt@ n -> 1, n_ /; n != 1 -> 0} (* Michael De Vlieger, Jan 02 2016 *)
    a[n_] := Sum[If[Mod[n, k] == 0, Re[Sqrt[LiouvilleLambda[k]]*Sqrt[LiouvilleLambda[n/k]]], 0], {k, 1, n}] (* Mats Granvik, Aug 10 2018 *)
  • PARI
    {a(n) = issquare(n)};
    
  • PARI
    a(n)=if(n<1,1,sumdiv(n,d,(-1)^bigomega(d))) \\ Benoit Cloitre, Oct 25 2009
    
  • PARI
    a(n) = if (n<1, 1, direuler( p=2, n, 1/ (1 - X^2 ))[n]); \\ Michel Marcus, Mar 08 2015
    
  • Python
    def A010052(n): return int(math.isqrt(n)**2==n) ##  appears to be faster than sympy.ntheory.primetest.is_square, up to 10^8 at least.
    # M. F. Hasler, Mar 21 2022
  • Scheme
    (define (A010052 n) (if (zero? n) 1 (- (A000196 n) (A000196 (- n 1))))) ;; (For the definition of A000196, see under that entry). - Antti Karttunen, Nov 03 2017
    

Formula

a(n) = floor(sqrt(n)) - floor(sqrt(n-1)), for n > 0.
a(n) = A000005(n) mod 2, n > 0. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 19 2001
G.f. A(x) satisfies: 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u-w)^2 - (v-w)*(v+w-1) - Michael Somos, Jul 19 2004
Dirichlet g.f.: zeta(2s). - Franklin T. Adams-Watters, Sep 11 2005
G.f.: (theta_3(0,x) + 1)/2, where theta_3 is a Jacobi theta function. - Franklin T. Adams-Watters, Jun 19 2006 [See A000122 for theta_3.]
a(n) = f(n,0) with f(x,y) = f(x-2*y-1,y+1) if x > 0, otherwise 0^(-x). - Reinhard Zumkeller, Sep 26 2008
a(n) = Sum_{d|n} (-1)^bigomega(d), for n >= 1. - Benoit Cloitre, Oct 25 2009
a(n) <= A093709(n). - Reinhard Zumkeller, Nov 14 2009
a(A000290(n)) = 1; a(A000037(n)) = 0. - Reinhard Zumkeller, Jun 20 2011
a(n) = 0 ^ A053186(n). - Reinhard Zumkeller, Feb 12 2012
a(n) = A063524(A007913(n)), for n > 0. - Reinhard Zumkeller, Jul 09 2014
a(n) = -(-1)^n * A258998(n) unless n = 0. 2 * a(n) = A000122(n) unless n = 0. - Michael Somos, Jun 16 2015
a(n) = A037011(A156552(n)), provided that A037011(n) = A000035(A106737(n)). [See A037011.] - Antti Karttunen, Nov 03 2017
a(n*m) = a(n/gcd(n,m))*a(m/gcd(n,m)) for all n and m > 0 (conjectured). - Velin Yanev, Feb 13 2019 [Proof from Michael B. Porter, Feb 16 2019: If nm is a square, nm = product_i (p_i^2), where p_i are prime, not necessarily distinct. Each p_i either appears twice in n, twice in m, or one time in each and therefore in the gcd. So n/gcd(n,m) and m/gcd(n,m) are both squares. If nm is not a square, there is a q_j that appears in one of n or m but not in the gcd. So either n/gcd(n,m) or m/gcd(n,m) is not a square.]
a(n) = Sum_{d|n} A008836(d), n >= 1, a(0) = 1. - Jinyuan Wang, Apr 20 2019
G.f.: A(q) = Sum_{n >= 0} q^(2*n)*Product_{k >= 2*n+1} 1 - (-q)^k. - Peter Bala, Feb 22 2021
Multiplicative with a(p^e) = 1 if e is even, and 0 otherwise. - Amiram Eldar, Dec 29 2022
a(n) = Sum_{d|n} mobius(core(n)), where core(n) = A007913(n). - Peter Bala, Jan 24 2024

Extensions

More terms from Franklin T. Adams-Watters, Jun 19 2006

A000404 Numbers that are the sum of 2 nonzero squares.

Original entry on oeis.org

2, 5, 8, 10, 13, 17, 18, 20, 25, 26, 29, 32, 34, 37, 40, 41, 45, 50, 52, 53, 58, 61, 65, 68, 72, 73, 74, 80, 82, 85, 89, 90, 97, 98, 100, 101, 104, 106, 109, 113, 116, 117, 122, 125, 128, 130, 136, 137, 145, 146, 148, 149, 153, 157, 160, 162, 164, 169, 170, 173, 178
Offset: 1

Views

Author

Keywords

Comments

From the formula it is easy to see that if k is in this sequence, then so are all odd powers of k. - T. D. Noe, Jan 13 2009
Also numbers whose cubes are the sum of two nonzero squares. - Joe Namnath and Lawrence Sze
A line perpendicular to y=mx has its first integral y-intercept at a^2+b^2. The remaining ones for that slope are multiples of that primitive value. - Larry J Zimmermann, Aug 19 2010
The primes in this sequence are sequence A002313.
Complement of A018825; A025426(a(n)) > 0; A063725(a(n)) > 0. - Reinhard Zumkeller, Aug 16 2011
If the two squares are not equal, then any power is still in the sequence: if k = x^2 + y^2 with x != y, then k^2 = (x^2-y^2)^2 + (2xy)^2 and k^3 = (x(x^2-3y^2))^2 + (y(3x^2-y^2))^2, etc. - Carmine Suriano, Jul 13 2012
There are never more than 3 consecutive terms that differ by 1. Triples of consecutive terms that differ by 1 occur infinitely many times, for example, 2(k^2 + k)^2, (k^2 - 1)^2 + (k^2 + 2 k)^2, and (k^2 + k - 1)^2 + (k^2 + k + 1)^2 for any integer k > 1. - Ivan Neretin, Mar 16 2017 [Corrected by Jerzy R Borysowicz, Apr 14 2017]
Number of terms less than 10^k, k=1,2,3,...: 3, 34, 308, 2690, 23873, 215907, 1984228, ... - Muniru A Asiru, Feb 01 2018
The squares in this sequence are the squares of the so-called hypotenuse numbers A009003. - M. F. Hasler, Jun 20 2025

Examples

			25 = 3^2 + 4^2, therefore 25 is a term. Note that also 25^3 = 15625 = 44^2 + 117^2, therefore 15625 is a term.
		

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
  • GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 103.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 75, Theorem 4, with Theorem 2, p. 15.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, p. 219, th. 251, 252.
  • Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.

Crossrefs

A001481 gives another version (allowing for zero squares).
Cf. A004431 (2 distinct squares), A063725 (number of representations), A024509 (numbers with multiplicity), A025284, A018825. Also A050803, A050801, A001105, A033431, A084888, A000578, A000290, A057961, A232499, A007692.
Cf. A003325 (analog for cubes), A003336 (analog for 4th powers).
Cf. A009003 (square roots of the squares in this sequence).
Column k=2 of A336725.

Programs

  • GAP
    P:=List([1..10^4],i->i^2);;
    A000404 := Set(Flat(List(P, i->List(P, j -> i+j)))); # Muniru A Asiru, Feb 01 2018
    
  • Haskell
    import Data.List (findIndices)
    a000404 n = a000404_list !! (n-1)
    a000404_list = findIndices (> 0) a025426_list
    -- Reinhard Zumkeller, Aug 16 2011
    
  • Magma
    lst:=[]; for n in [1..178] do f:=Factorization(n); if IsSquare(n) then for m in [1..#f] do d:=f[m]; if d[1] mod 4 eq 1 then Append(~lst, n); break; end if; end for; else t:=0; for m in [1..#f] do d:=f[m]; if d[1] mod 4 eq 3 and d[2] mod 2 eq 1 then t:=1; break; end if; end for; if t eq 0 then Append(~lst, n); end if; end if; end for; lst; // Arkadiusz Wesolowski, Feb 16 2017
    
  • Maple
    nMax:=178: A:={}: for i to floor(sqrt(nMax)) do for j to floor(sqrt(nMax)) do if i^2+j^2 <= nMax then A := `union`(A, {i^2+j^2}) else  end if end do end do: A; # Emeric Deutsch, Jan 02 2017
  • Mathematica
    nMax=1000; n2=Floor[Sqrt[nMax-1]]; Union[Flatten[Table[a^2+b^2, {a,n2}, {b,a,Floor[Sqrt[nMax-a^2]]}]]]
    Select[Range@ 200, Length[PowersRepresentations[#, 2, 2] /. {0, } -> Nothing] > 0 &] (* _Michael De Vlieger, Mar 24 2016 *)
    Module[{upto=200},Select[Union[Total/@Tuples[Range[Sqrt[upto]]^2,2]],#<= upto&]] (* Harvey P. Dale, Sep 18 2021 *)
  • PARI
    is_A000404(n)= for( i=1,#n=factor(n)~%4, n[1,i]==3 && n[2,i]%2 && return); n && ( vecmin(n[1,])==1 || (n[1,1]==2 && n[2,1]%2)) \\ M. F. Hasler, Feb 07 2009
    
  • PARI
    list(lim)=my(v=List(),x2); lim\=1; for(x=1,sqrtint(lim-1), x2=x^2; for(y=1,sqrtint(lim-x2), listput(v,x2+y^2))); Set(v) \\ Charles R Greathouse IV, Apr 30 2016
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A000404_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            c = False
            for p in (f:=factorint(n)):
                if (q:= p & 3)==3 and f[p]&1:
                    break
                elif q == 1:
                    c = True
            else:
                if c or f.get(2,0)&1:
                    yield n
    A000404_list = list(islice(A000404_gen(),30)) # Chai Wah Wu, Jul 01 2022

Formula

Let k = 2^t * p_1^a_1 * p_2^a_2 * ... * p_r^a_r * q_1^b_1 * q_2^b_2 * ... * q_s^b_s with t >= 0, a_i >= 0 for i=1..r, where p_i == 1 (mod 4) for i=1..r and q_j == -1 (mod 4) for j=1..s. Then k is a term iff 1) b_j == 0 (mod 2) for j=1..s and 2) r > 0 or t == 1 (mod 2) (or both).
From Charles R Greathouse IV, Nov 18 2022: (Start)
a(n) ~ k*n*sqrt(log n), where k = 1.3085... = 1/A064533.
There are B(x) = (x/sqrt(log x)) * (K + B2/log x + O(1/log^2 x)) terms of this sequence up to x, where K = A064533 and B2 = A227158. (End)

Extensions

Edited by Ralf Stephan, Nov 15 2004
Typo in formula corrected by M. F. Hasler, Feb 07 2009
Erroneous Mathematica program fixed by T. D. Noe, Aug 07 2009
PARI code fixed for versions > 2.5 by M. F. Hasler, Jan 01 2013

A002654 Number of ways of writing n as a sum of at most two nonzero squares, where order matters; also (number of divisors of n of form 4m+1) - (number of divisors of form 4m+3).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 0, 1, 1, 2, 0, 0, 2, 0, 0, 1, 2, 1, 0, 2, 0, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 1, 0, 2, 0, 1, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 1, 3, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 2, 1, 2, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 1, 0, 3, 2, 0, 0, 2, 0
Offset: 1

Views

Author

Keywords

Comments

Glaisher calls this E(n) or E_0(n). - N. J. A. Sloane, Nov 24 2018
Number of sublattices of Z X Z of index n that are similar to Z X Z; number of (principal) ideals of Z[i] of norm n.
a(n) is also one fourth of the number of integer solutions of n = x^2 + y^2 (order and signs matter, and 0 (without signs) is allowed). a(n) = N(n)/4, with N(n) from p. 147 of the Niven-Zuckermann reference. See also Theorem 5.12, p. 150, which defines a (strongly) multiplicative function h(n) which coincides with A056594(n-1), n >= 1, and N(n)/4 = sum(h(d), d divides n). - Wolfdieter Lang, Apr 19 2013
a(2+8*N) = A008441(N) gives the number of ways of writing N as the sum of 2 (nonnegative) triangular numbers for N >= 0. - Wolfdieter Lang, Jan 12 2017
Coefficients of Dedekind zeta function for the quadratic number field of discriminant -4. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Examples

			4 = 2^2, so a(4) = 1; 5 = 1^2 + 2^2 = 2^2 + 1^2, so a(5) = 2.
x + x^2 + x^4 + 2*x^5 + x^8 + x^9 + 2*x^10 + 2*x^13 + x^16 + 2*x^17 + x^18 + ...
2 = (+1)^2 + (+1)^2 = (+1)^2 + (-1)^2  = (-1)^2 + (+1)^2 = (-1)^2 + (-1)^2. Hence there are 4 integer solutions, called N(2) in the Niven-Zuckerman reference, and a(2) = N(2)/4 = 1.  4 = 0^1 + (+2)^2 = (+2)^2 + 0^2 = 0^2 + (-2)^2 = (-2)^2 + 0^2. Hence N(4) = 4 and a(4) = N(4)/4 = 1. N(5) = 8, a(5) = 2. - _Wolfdieter Lang_, Apr 19 2013
		

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 194.
  • George Chrystal, Algebra: An elementary text-book for the higher classes of secondary schools and for colleges, 6th ed., Chelsea Publishing Co., New York, 1959, Part II, p. 346 Exercise XXI(17). MR0121327 (22 #12066)
  • Emil Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 15.
  • Ivan Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers, New York: John Wiley, 1980, pp. 147 and 150.
  • Günter Scheja and Uwe Storch, Lehrbuch der Algebra, Tuebner, 1988, p. 251.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 89.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 340.

Crossrefs

Equals 1/4 of A004018. Partial sums give A014200.
Cf. A002175, A008441, A121444, A122856, A122865, A022544, A143574, A000265, A027748, A124010, A025426 (two squares, order does not matter), A120630 (Dirichlet inverse), A101455 (Mobius transform), A000089, A241011.
If one simply reads the table in Glaisher, PLMS 1884, which omits the zero entries, one gets A213408.
Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Haskell
    a002654 n = product $ zipWith f (a027748_row m) (a124010_row m) where
       f p e | p `mod` 4 == 1 = e + 1
             | otherwise      = (e + 1) `mod` 2
       m = a000265 n
    -- Reinhard Zumkeller, Mar 18 2013
    
  • Maple
    with(numtheory):
    A002654 := proc(n)
        local count1, count3, d;
        count1 := 0:
        count3 := 0:
        for d in numtheory[divisors](n) do
            if d mod 4 = 1 then
                count1 := count1+1
            elif d mod 4 = 3 then
                count3 := count3+1
            fi:
        end do:
        count1-count3;
    end proc:
    # second Maple program:
    a:= n-> add(`if`(d::odd, (-1)^((d-1)/2), 0), d=numtheory[divisors](n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Feb 04 2020
  • Mathematica
    a[n_] := Count[Divisors[n], d_ /; Mod[d, 4] == 1] - Count[Divisors[n], d_ /; Mod[d, 4] == 3]; a/@Range[105] (* Jean-François Alcover, Apr 06 2011, after R. J. Mathar *)
    QP = QPochhammer; CoefficientList[(1/q)*(QP[q^2]^10/(QP[q]*QP[q^4])^4-1)/4 + O[q]^100, q] (* Jean-François Alcover, Nov 24 2015 *)
    f[2, e_] := 1; f[p_, e_] := If[Mod[p, 4] == 1, e + 1, Mod[e + 1, 2]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2020 *)
    Rest[CoefficientList[Series[EllipticTheta[3, 0, q]^2/4, {q, 0, 100}], q]] (* Vaclav Kotesovec, Mar 10 2023 *)
  • PARI
    direuler(p=2,101,1/(1-X)/(1-kronecker(-4,p)*X))
    
  • PARI
    {a(n) = polcoeff( sum(k=1, n, x^k / (1 + x^(2*k)), x * O(x^n)), n)}
    
  • PARI
    {a(n) = sumdiv( n, d, (d%4==1) - (d%4==3))}
    
  • PARI
    {a(n) = local(A); A = x * O(x^n); polcoeff( eta(x^2 + A)^10 / (eta(x + A) * eta(x^4 + A))^4 / 4, n)} \\ Michael Somos, Jun 03 2005
    
  • PARI
    a(n)=my(f=factor(n>>valuation(n,2))); prod(i=1,#f~, if(f[i,1]%4==1, f[i,2]+1, (f[i,2]+1)%2)) \\ Charles R Greathouse IV, Sep 09 2014
    
  • PARI
    my(B=bnfinit(x^2+1)); vector(100,n,#bnfisintnorm(B,n)) \\ Joerg Arndt, Jun 01 2024
    
  • Python
    from math import prod
    from sympy import factorint
    def A002654(n): return prod(1 if p == 2 else (e+1 if p % 4 == 1 else (e+1) % 2) for p, e in factorint(n).items()) # Chai Wah Wu, May 09 2022

Formula

Dirichlet series: (1-2^(-s))^(-1)*Product (1-p^(-s))^(-2) (p=1 mod 4) * Product (1-p^(-2s))^(-1) (p=3 mod 4) = Dedekind zeta-function of Z[ i ].
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m, p)+1)*p^(-s)+Kronecker(m, p)*p^(-2s))^(-1) for m = -16.
If n=2^k*u*v, where u is product of primes 4m+1, v is product of primes 4m+3, then a(n)=0 unless v is a square, in which case a(n) = number of divisors of u (Jacobi).
Multiplicative with a(p^e) = 1 if p = 2; e+1 if p == 1 (mod 4); (e+1) mod 2 if p == 3 (mod 4). - David W. Wilson, Sep 01 2001
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u - v)^2 - (v - w) * (4*w + 1). - Michael Somos, Jul 19 2004
G.f.: Sum_{n>=1} ((-1)^floor(n/2)*x^((n^2+n)/2)/(1+(-x)^n)). - Vladeta Jovovic, Sep 15 2004
Expansion of (eta(q^2)^10 / (eta(q) * eta(q^4))^4 - 1)/4 in powers of q.
G.f.: Sum_{k>0} x^k / (1 + x^(2*k)) = Sum_{k>0} -(-1)^k * x^(2*k - 1) / (1 - x^(2*k - 1)). - Michael Somos, Aug 17 2005
a(4*n + 3) = a(9*n + 3) = a(9*n + 6) = 0. a(9*n) = a(2*n) = a(n). - Michael Somos, Nov 01 2006
a(4*n + 1) = A008441(n). a(3*n + 1) = A122865(n). a(3*n + 2) = A122856(n). a(12*n + 1) = A002175(n). a(12*n + 5) = 2 * A121444(n). 4 * a(n) = A004018(n) unless n=0.
a(n) = Sum_{k=1..n} A010052(k)*A010052(n-k). a(A022544(n)) = 0; a(A001481(n)) > 0.
- Reinhard Zumkeller, Sep 27 2008
a(n) = A001826(n) - A001842(n). - R. J. Mathar, Mar 23 2011
a(n) = Sum_{d|n} A056594(d-1), n >= 1. See the above comment on A056594(d-1) = h(d) of the Niven-Zuckerman reference. - Wolfdieter Lang, Apr 19 2013
Dirichlet g.f.: zeta(s)*beta(s) = zeta(s)*L(chi_2(4),s). - Ralf Stephan, Mar 27 2015
G.f.: (theta_3(x)^2 - 1)/4, where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 17 2018
a(n) = Sum_{ m: m^2|n } A000089(n/m^2). - Andrey Zabolotskiy, May 07 2018
a(n) = A053866(n) + 2 * A025441(n). - Andrey Zabolotskiy, Apr 23 2019
a(n) = Im(Sum_{d|n} i^d). - Ridouane Oudra, Feb 02 2020
a(n) = Sum_{d|n} sin((1/2)*d*Pi). - Ridouane Oudra, Jan 22 2021
Sum_{n>=1} (-1)^n*a(n)/n = Pi*log(2)/4 (Covo, 2010). - Amiram Eldar, Apr 07 2022
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/4 = 0.785398... (A003881). - Amiram Eldar, Oct 11 2022
From Vaclav Kotesovec, Mar 10 2023: (Start)
Sum_{k=1..n} a(k)^2 ~ n * (log(n) + C) / 4, where C = A241011 =
4*gamma - 1 + log(2)/3 - 2*log(Pi) + 8*log(Gamma(3/4)) - 12*Zeta'(2)/Pi^2 = 2.01662154573340811526279685971511542645018417752364748061...
The constant C, published by Ramanujan (1916, formula (22)), 4*gamma - 1 + log(2)/3 - log(Pi) + 4*log(Gamma(3/4)) - 12*Zeta'(2)/Pi^2 = 2.3482276258576... is wrong! (End)

A002828 Least number of squares that add up to n.

Original entry on oeis.org

0, 1, 2, 3, 1, 2, 3, 4, 2, 1, 2, 3, 3, 2, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 3, 1, 2, 3, 4, 2, 3, 4, 2, 3, 2, 3, 1, 2, 3, 4, 2, 2, 3, 3, 3, 2, 3, 4, 3, 1, 2, 3, 2, 2, 3, 4, 3, 3, 2, 3, 4, 2, 3, 4, 1, 2, 3, 3, 2, 3, 3, 4, 2, 2, 2, 3, 3, 3, 3, 4, 2, 1, 2, 3, 3, 2, 3, 4, 3, 2, 2, 3, 4, 3, 3, 4, 3, 2, 2, 3, 1, 2, 3, 4, 2, 3
Offset: 0

Views

Author

Keywords

Comments

Lagrange's "Four Squares theorem" states that a(n) <= 4.
It is easy to show that this is also the least number of squares that add up to n^3.
a(n) is the number of iterations in f(...f(f(n))...) to reach 0, where f(n) = A262678(n) = n - A262689(n)^2. Allows computation of this sequence without Lagrange's theorem. - Antti Karttunen, Sep 09 2016
It is also easy to show that a(k^2*n) = a(n) for k > 0: Clearly a(k^2*n) <= a(n) but for all 4 cases of a(n) there is no k which would result in a(k^2*n) < a(n). - Peter Schorn, Sep 06 2021

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002828 0 = 0  -- confessedly  /= 1, as sum [] == 0
    a002828 n | a010052 n == 1 = 1
              | a025426 n > 0 = 2 | a025427 n > 0 = 3 | otherwise = 4
    -- Reinhard Zumkeller, Feb 26 2015
    
  • Maple
    with(transforms);
    sq:=[seq(n^2, n=1..20)];
    LAGRANGE(sq,4,120);
    # alternative:
    f:= proc(n) local F,x;
       if issqr(n) then return 1 fi;
       if nops(select(t -> t[1] mod 4 = 3 and t[2]::odd, ifactors(n)[2])) = 0 then return 2 fi;
       x:= n/4^floor(padic:-ordp(n,2)/2);
       if x mod 8 = 7 then 4 else 3 fi
    end proc:
    0, seq(f(n),n=1..200); # Robert Israel, Jun 14 2016
    # next Maple program:
    b:= proc(n, i) option remember; convert(series(`if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+(s-> `if`(s>n, 0, x*b(n-s, i)))(i^2))), x, 5), polynom)
        end:
    a:= n-> ldegree(b(n, isqrt(n))):
    seq(a(n), n=0..105);  # Alois P. Heinz, Oct 30 2021
  • Mathematica
    SquareCnt[n_] := If[SquaresR[1, n] > 0, 1, If[SquaresR[2, n] > 0, 2, If[SquaresR[3, n] > 0, 3, 4]]]; Table[SquareCnt[n], {n, 150}] (* T. D. Noe, Apr 01 2011 *)
    sc[n_]:=Module[{s=SquaresR[Range[4],n]},If[First[s]>0,1,Length[ First[ Split[ s]]]+1]]; Join[{0},Array[sc,110]] (* Harvey P. Dale, May 21 2014 *)
  • PARI
    istwo(n:int)=my(f);if(n<3,return(n>=0););f=factor(n>>valuation(n, 2)); for(i=1,#f[,1],if(bitand(f[i,2],1)==1&&bitand(f[i,1],3)==3, return(0)));1
    isthree(n:int)=my(tmp=valuation(n,2));bitand(tmp,1)||bitand(n>>tmp,7)!=7
    a(n)=if(isthree(n), if(issquare(n), !!n, 3-istwo(n)), 4) \\ Charles R Greathouse IV, Jul 19 2011, revised Mar 17 2022
    
  • Python
    from sympy import factorint
    def A002828(n):
        if n == 0: return 0
        f = factorint(n).items()
        if not any(e&1 for p,e in f): return 1
        if all(p&3<3 or e&1^1 for p,e in f): return 2
        return 3+(((m:=(~n&n-1).bit_length())&1^1)&int((n>>m)&7==7)) # Chai Wah Wu, Aug 01 2023
    
  • Python
    from sympy.core.power import isqrt
    def A002828(n):
        dp = [-1] * (n + 1)
        dp[0] = 0
        for i in range(1, n + 1):
            S = []
            r = isqrt(i)
            for j in range(1, r + 1):
                S.append(1 + dp[i - (j**2)])
            dp[i] = min(S)
        return dp[-1] # Darío Clavijo, Apr 21 2025
  • Scheme
    ;; The first one follows Charles R Greathouse IV's PARI-code above:
    (define (A002828 n) (cond ((zero? n) n) ((= 1 (A010052 n)) 1) ((= 1 (A229062 n)) 2) (else (+ 3 (A072401 n)))))
    (define (A229062 n) (- 1 (A000035 (A260728 n))))
    ;; We can also compute this without relying on Lagrange's theorem. The following recursion-formula should be used together with the second Scheme-implementation of A262689 given in the Program section that entry:
    (definec (A002828 n) (if (zero? n) n (+ 1 (A002828 (- n (A000290 (A262689 n)))))))
    ;; Antti Karttunen, Sep 09 2016
    

Formula

From Antti Karttunen, Sep 09 2016: (Start)
a(0) = 0; and for n >= 1, if A010052(n) = 1 [when n is a square], a(n) = 1, otherwise, if A229062(n)=1, then a(n) = 2, otherwise a(n) = 3 + A072401(n). [After Charles R Greathouse IV's PARI program.]
a(0) = 0; for n >= 1, a(n) = 1 + a(n - A262689(n)^2), (see comments).
a(n) = A053610(n) - A062535(n).
(End)

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com)

A000161 Number of partitions of n into 2 squares.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 1, 0, 0, 1, 0, 1, 0
Offset: 0

Views

Author

Keywords

Comments

Number of ways of writing n as a sum of 2 (possibly zero) squares when order does not matter.
Number of similar sublattices of square lattice with index n.
Let Pk = the number of partitions of n into k nonzero squares. Then we have A000161 = P0 + P1 + P2, A002635 = P0 + P1 + P2 + P3 + P4, A010052 = P1, A025426 = P2, A025427 = P3, A025428 = P4. - Charles R Greathouse IV, Mar 08 2010, amended by M. F. Hasler, Jan 25 2013
a(A022544(n))=0; a(A001481(n))>0; a(A125022(n))=1; a(A118882(n))>1. - Reinhard Zumkeller, Aug 16 2011

Examples

			25 = 3^2+4^2 = 5^2, so a(25) = 2.
		

References

  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 339

Crossrefs

Equivalent sequences for other numbers of squares: A010052 (1), A000164 (3), A002635 (4), A000174 (5).

Programs

  • Haskell
    a000161 n =
       sum $ map (a010052 . (n -)) $ takeWhile (<= n `div` 2) a000290_list
    a000161_list = map a000161 [0..]
    -- Reinhard Zumkeller, Aug 16 2011
    
  • Maple
    A000161 := proc(n) local i,j,ans; ans := 0; for i from 0 to n do for j from i to n do if i^2+j^2=n then ans := ans+1 fi od od; RETURN(ans); end; [ seq(A000161(i), i=0..50) ];
    A000161 := n -> nops( numtheory[sum2sqr](n) ); # M. F. Hasler, Nov 23 2007
  • Mathematica
    Length[PowersRepresentations[ #,2,2]] &/@Range[0,150] (* Ant King, Oct 05 2010 *)
  • PARI
    a(n)=sum(i=0,n,sum(j=0,i,if(i^2+j^2-n,0,1))) \\ for illustrative purpose
    
  • PARI
    A000161(n)=sum(k=sqrtint((n-1)\2)+1,sqrtint(n),issquare(n-k^2)) \\ Charles R Greathouse IV, Mar 21 2014, improves earlier code by M. F. Hasler, Nov 23 2007
    
  • PARI
    A000161(n)=#sum2sqr(n) \\ See A133388 for sum2sqr(). - M. F. Hasler, May 13 2018
    
  • Python
    from math import prod
    from sympy import factorint
    def A000161(n):
        f = factorint(n)
        return int(not any(e&1 for e in f.values())) + (((m:=prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in f.items()))+((((~n & n-1).bit_length()&1)<<1)-1 if m&1 else 0))>>1) if n else 1 # Chai Wah Wu, Sep 08 2022

Formula

a(n) = card { { a,b } c N | a^2+b^2 = n }. - M. F. Hasler, Nov 23 2007
Let f(n)= the number of divisors of n that are congruent to 1 modulo 4 minus the number of its divisors that are congruent to 3 modulo 4, and define delta(n) to be 1 if n is a perfect square and 0 otherwise. Then a(n)=1/2 (f(n)+delta(n)+delta(1/2 n)). - Ant King, Oct 05 2010

A025427 Number of partitions of n into 3 nonzero squares.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 2, 0, 1, 1, 0, 0, 2, 1, 1, 1, 0, 2, 0, 0, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 0, 1, 3, 0, 1, 2, 0, 2, 0, 1, 2, 0, 0, 1, 3, 1, 1, 2, 1, 0, 1, 1, 2, 2, 1, 2, 1, 0, 0, 3, 1, 2, 1, 0, 3, 0, 1, 3, 2, 1, 0, 1, 2, 0, 1, 1, 2, 3, 0, 3, 2, 0, 1, 2, 1, 2
Offset: 0

Views

Author

Keywords

Comments

The non-vanishing values a(n) give the multiplicities for the numbers n appearing in A000408. See also A024795 where these numbers n are listed a(n) times. For the primitive case see A223730 and A223731. - Wolfdieter Lang, Apr 03 2013

Examples

			a(27) = 2 because  1^2 + 1^2 + 5^2 = 27  = 3^2 + 3^2 + 3^2. The second representation is not primitive (gcd(3,3,3) = 3 not 1).
		

Crossrefs

Cf. A000408, A024795, A223730 (multiplicities for the primitive case). - Wolfdieter Lang, Apr 03 2013
Column k=3 of A243148.

Programs

  • Haskell
    a025427 n = sum $ map f zs where
       f x = sum $ map (a010052 . (n - x -)) $
                       takeWhile (<= div (n - x) 2) $ dropWhile (< x) zs
       zs = takeWhile (< n) $ tail a000290_list
    -- Reinhard Zumkeller, Feb 26 2015
    
  • Maple
    A025427 := proc(n)
        local a,x,y,zsq ;
        a := 0 ;
        for x from 1 do
            if 3*x^2 > n then
                return a;
            end if;
            for y from x do
                if x^2+2*y^2 > n then
                    break;
                end if;
                zsq := n-x^2-y^2 ;
                if issqr(zsq) then
                    a := a+1 ;
                end if;
            end do:
        end do:
    end proc: # R. J. Mathar, Sep 15 2015
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
          `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(i^2>n, 0, b(n-i^2, i, t-1))))
        end:
    a:= n-> b(n, isqrt(n), 3):
    seq(a(n), n=0..107);  # Alois P. Heinz, Jun 14 2025
  • Mathematica
    Count[PowersRepresentations[#, 3, 2], pr_ /; (Times @@ pr) > 0]& /@ Range[0, 120] (* Jean-François Alcover, Jan 30 2018 *)
  • PARI
    a(n)=if(n<3, return(0)); sum(i=sqrtint((n-1)\3)+1,sqrtint(n-2), my(t=n-i^2); sum(j=sqrtint((t-1)\2)+1,min(sqrtint(t-1),i), issquare(t-j^2))) \\ Charles R Greathouse IV, Aug 05 2024

Formula

a(A004214(n)) = 0; a(A000408(n)) > 0; a(A025414(n)) = n and a(m) != n for m < A025414(n). - Reinhard Zumkeller, Feb 26 2015
a(4n) = a(n). This is because if a number divisible by 4 is the sum of three squares, each of those squares must be even. - Robert Israel, Mar 09 2016
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} A010052(i) * A010052(k) * A010052(n-i-k). - Wesley Ivan Hurt, Apr 19 2019
a(n) = [x^n y^3] Product_{k>=1} 1/(1 - y*x^(k^2)). - Ilya Gutkovskiy, Apr 19 2019

A063725 Number of ordered pairs (x,y) of positive integers such that x^2 + y^2 = n.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 2, 0, 0, 0, 2, 1, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 1, 0, 2, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Aug 23 2001

Keywords

Comments

a(A018825(n))=0; a(A000404(n))>0; a(A081324(n))=1; a(A004431(n))>1. - Reinhard Zumkeller, Aug 16 2011

Examples

			a(5) = 2 from the solutions (1,2) and (2,1).
		

Crossrefs

Cf. A000404 (the numbers n that can be represented in this form).
Column k=2 of A337165.

Programs

  • Haskell
    a063725 n =
       sum $ map (a010052 . (n -)) $ takeWhile (< n) $ tail a000290_list
    a063725_list = map a063725 [0..]
    -- Reinhard Zumkeller, Aug 16 2011
    
  • Mathematica
    nn = 100; t = Table[0, {nn}]; s = Sqrt[nn]; Do[n = x^2 + y^2; If[n <= nn, t[[n]]++], {x, s}, {y, s}]; Join[{0}, t] (* T. D. Noe, Apr 03 2011 *)
  • PARI
    a(n)=if(n==0, return(0)); my(f=factor(n)); prod(i=1, #f~, if(f[i, 1]%4==1, f[i, 2]+1, f[i, 2]%2==0 || f[i, 1]==2)) - issquare(n) \\ Charles R Greathouse IV, May 18 2016
    
  • Python
    from math import prod
    from sympy import factorint
    def A063725(n):
        f = factorint(n)
        return prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in f.items())-(not any(e&1 for e in f.values())) if n else 0 # Chai Wah Wu, May 17 2023

Formula

G.f.: (Sum_{m=1..inf} x^(m^2))^2.
a(n) = ( A004018(n) - 2*A000122(n) + A000007(n) )/4. - Max Alekseyev, Sep 29 2012
G.f.: (theta_3(q) - 1)^2/4, where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 08 2018

A243148 Triangle read by rows: T(n,k) = number of partitions of n into k nonzero squares; n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, May 30 2014

Keywords

Examples

			T(20,5) = 2 = #{ (16,1,1,1,1), (4,4,4,4,4) } since 20 = 4^2 + 4 * 1^2 = 5 * 2^2.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 0, 1;
  0, 0, 0, 1;
  0, 1, 0, 0, 1;
  0, 0, 1, 0, 0, 1;
  0, 0, 0, 1, 0, 0, 1;
  0, 0, 0, 0, 1, 0, 0, 1;
  0, 0, 1, 0, 0, 1, 0, 0, 1;
  0, 1, 0, 1, 0, 0, 1, 0, 0, 1;
  0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1;
  0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1;
  0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1;
  (...)
		

Crossrefs

Columns k = 0..10 give: A000007, A010052 (for n>0), A025426, A025427, A025428, A025429, A025430, A025431, A025432, A025433, A025434.
Row sums give A001156.
T(2n,n) gives A111178.
T(n^2,n) gives A319435.
T(n,k) = 1 for n in A025284, A025321, A025357, A294675, A295670, A295797 (for k = 2..7, respectively).

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
          `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(i^2>n, 0, b(n-i^2, i, t-1))))
        end:
    T:= (n, k)-> b(n, isqrt(n), k):
    seq(seq(T(n, k), k=0..n), n=0..14);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+(s-> `if`(s>n, 0, expand(x*b(n-s, i))))(i^2)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, isqrt(n))):
    seq(T(n), n=0..14);  # Alois P. Heinz, Oct 30 2021
  • Mathematica
    b[n_, i_, k_, t_] := b[n, i, k, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i-1, k, t] + If[i^2 > n, 0, b[n-i^2, i, k, t-1]]]]; T[n_, k_] := b[n, Sqrt[n] // Floor, k, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jun 06 2014, after Alois P. Heinz *)
    T[n_, k_] := Count[PowersRepresentations[n, k, 2], r_ /; FreeQ[r, 0]]; T[0, 0] = 1; Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 19 2016 *)
  • PARI
    T(n,k,L=n)=if(n>k*L^2, 0, k>n-3, k==n, k<2, issquare(n,&n) && n<=L*k, k>n-6, n-k==3, L=min(L,sqrtint(n-k+1)); sum(r=0,min(n\L^2,k-1),T(n-r*L^2,k-r,L-1), n==k*L^2)) \\ M. F. Hasler, Aug 03 2020

Formula

T(n,k) = [x^n y^k] 1/Product_{j>=1} (1-y*x^A000290(j)).
Sum_{k=1..n} k * T(n,k) = A281541(n).
Sum_{k=1..n} n * T(n,k) = A276559(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A292520(n).

A052343 Number of ways to write n as the unordered sum of two triangular numbers (zero allowed).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 1, 1, 0, 1, 2, 0, 1, 0, 1, 2, 1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 0, 0, 1, 0, 2, 1, 1, 1, 0, 0, 2, 1, 0, 1, 2, 0, 1, 1, 0, 2, 0, 0, 0, 2, 2, 1, 1, 0, 1, 1, 0, 0, 1, 1, 2, 1, 0, 1, 1, 0, 2, 1, 0, 0, 2, 0, 1, 1, 0, 3, 0, 1, 1, 0, 0, 1, 1, 0, 1, 2, 1, 1, 2, 0, 0, 1, 0, 1, 1, 1
Offset: 0

Views

Author

Christian G. Bower, Jan 23 2000

Keywords

Comments

Number of ways of writing n as a sum of a square and twice a triangular number (zeros allowed). - Michael Somos, Aug 18 2003
a(A020757(n))=0; a(A020756(n))>0; a(A119345(n))=1; a(A118139(n))>1. - Reinhard Zumkeller, May 15 2006
Also, number of ways to write 4n+1 as the unordered sum of two squares of nonnegative integers. - Vladimir Shevelev, Jan 21 2009
The average value of a(n) for n <= x is Pi/4 + O(1/sqrt(x)). - Vladimir Shevelev, Feb 06 2009

Examples

			G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^6 + x^7 + x^9 + x^10 + x^11 + ...
		

Crossrefs

Programs

  • Haskell
    a052343 = (flip div 2) . (+ 1) . a008441
    -- Reinhard Zumkeller, Jul 25 2014
  • Maple
    A052343 := proc(n)
        local a,t1idx,t2idx,t1,t2;
        a := 0 ;
        for t1idx from 0 do
            t1 := A000217(t1idx) ;
            if t1 > n then
                break;
            end if;
            for t2idx from t1idx do
                t2 := A000217(t2idx) ;
                if t1+t2 > n then
                    break;
                elif t1+t2 = n then
                    a := a+1 ;
                end if;
            end do:
        end do:
        a ;
    end proc: # R. J. Mathar, Apr 28 2020
  • Mathematica
    Length[PowersRepresentations[4 # + 1, 2, 2]] & /@ Range[0, 101] (* Ant King, Dec 01 2010 *)
    d1[k_]:=Length[Select[Divisors[k],Mod[#,4]==1&]];d3[k_]:=Length[Select[Divisors[k],Mod[#,4]==3&]];f[k_]:=d1[k]-d3[k];g[k_]:=If[IntegerQ[Sqrt[4k+1]],1/2 (f[4k+1]+1),1/2 f[4k+1]];g[#]&/@Range[0,101] (* Ant King, Dec 01 2010 *)
    a[ n_] := Length @ Select[ Table[ Sqrt[n - i - i^2], {i, 0, Quotient[ Sqrt[4 n + 1] - 1, 2]}], IntegerQ]; (* Michael Somos, Jul 28 2015 *)
    a[ n_] := Length @ FindInstance[ {j >= 0, k >= 0, j^2 + k^2 + k == n}, {k, j}, Integers, 10^9]; (* Michael Somos, Jul 28 2015 *)
  • PARI
    {a(n) = if( n<0, 0, sum(i=0, (sqrtint(4*n + 1) - 1)\2, issquare(n - i - i^2)))}; /* Michael Somos, Aug 18 2003 */
    

Formula

a(n) = ceiling(A008441(n)/2). - Reinhard Zumkeller, Nov 03 2009
G.f.: (Sum_{k>=0} x^(k^2 + k)) * (Sum_{k>=0} x^(k^2)). - Michael Somos, Aug 18 2003
Recurrence: a(n) = Sum_{k=1..r(n)} r(2n-k^2+k) - C(r(n),2) - a(n-1) - a(n-2) - ... - a(0), n>=1,a (0)=1, where r(n)=A000194(n+1) is the nearest integer to square root of n+1. For example, since r(6)=3, a(6) = r(12) + r(10) + r(6) - C(3,2) - a(5) - ... - a(0) = 4 + 3 + 3 - 3 - 0 - 1 - 1 - 1 - 1 - 1 = 2. - Vladimir Shevelev, Feb 06 2009
a(n) = A025426(8n+2). - Max Alekseyev, Mar 09 2009
a(n) = (A002654(4n+1) + A010052(4n+1)) / 2. - Ant King, Dec 01 2010
a(2*n + 1) = A053692(n). a(4*n + 1) = A259287(n). a(4*n + 3) = A259285(n). a(6*n + 1) = A260415(n). a(6*n + 4) = A260516(n). - Michael Somos, Jul 28 2015
a(3*n) = A093518(n). a(3*n + 1) = A121444(n). a(9*n + 2) = a(n). a(9*n + 5) = a(9*n + 8) = 0. - Michael Somos, Jul 28 2015
Convolution of A005369 and A010052. - Michael Somos, Jul 28 2015

A097101 Numbers n that are the hypotenuse of exactly 7 distinct integer-sided right triangles, i.e., n^2 can be written as a sum of two squares in 7 ways.

Original entry on oeis.org

325, 425, 650, 725, 845, 850, 925, 975, 1025, 1275, 1300, 1325, 1445, 1450, 1525, 1690, 1700, 1825, 1850, 1950, 2050, 2175, 2225, 2275, 2425, 2525, 2535, 2550, 2600, 2650, 2725, 2775, 2825, 2873, 2890, 2900, 2925, 2975
Offset: 1

Views

Author

James R. Buddenhagen, Sep 15 2004

Keywords

Comments

Comment from R. J. Mathar, Feb 26 2008, edited by Zak Seidov May 12 2008: (Start)
There are nonsquares x which can be written as a sum of 2 nonzero squares in exactly 7 different ways and which are by definition not in this sequence.
203125 = (125*sqrt(13))^2 is the first example: 203125 = 625 + 202500 = 10404 + 192721 = 18225 + 184900= 22500 + 180625= 62500 + 140625= 69169 + 133956= 84100 + 119025.
The second and third examples are 265625 = (125*sqrt(17))^2 and 406250=(125*sqrt(26))^2. (End)
If m is a term, then 2*m and p*m are terms where p is any prime of the form 4k+3. - Ray Chandler, Dec 30 2019

Examples

			Example supplied by _R. J. Mathar_, Feb 26 2008:
The smallest number that can be written as a sum of two nonzero squares in 7 different ways is 105625 = 325^2:
1296 + 104329 = 105625 = 325^2
6400 + 99225 = 105625 = 325^2
8281 + 97344 = 105625 = 325^2
15625 + 90000 = 105625 = 325^2
27225 + 78400 = 105625 = 325^2
38025 + 67600 = 105625 = 325^2
41616 + 64009 = 105625 = 325^2.
		

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[a_]:={b,c}/.{ToRules[Reduce[0Vincenzo Librandi, Mar 01 2016 *)

Formula

Equals {n: A025426(n^2)=7}.

Extensions

Definition and comments corrected by Zak Seidov, Feb 26 2008, May 12 2008
Showing 1-10 of 45 results. Next