cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 237 results. Next

A077773 Number of integers between n^2 and (n+1)^2 that are the sum of two squares; multiple representations are counted once.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 6, 9, 8, 8, 10, 10, 11, 11, 12, 11, 14, 12, 13, 15, 16, 15, 15, 17, 16, 17, 19, 18, 19, 20, 19, 20, 21, 20, 22, 22, 24, 22, 25, 23, 26, 26, 24, 29, 26, 27, 28, 27, 29, 26, 31, 32, 30, 29, 33, 33, 31, 31, 35, 34, 35, 35, 35, 36, 37, 37, 33, 42, 37, 38
Offset: 0

Views

Author

T. D. Noe, Nov 20 2002

Keywords

Comments

Related to the circle problem, cf. A077770. See A077774 for a more restrictive case. A077768 counts the representations multiply.
Number of integers k in range [n^2, ((n+1)^2)-1] for which 2 = the least number of squares that add up to k (A002828). Because of this interpretation a(0)=0 was prepended to the beginning. - Antti Karttunen, Oct 04 2016
This sequence is not surjective, since, for instance, there is no n such that a(n) = 46. This follows from a bound observed by Jon E. Schoenfield, that if a(n) = m then n < ((m+1)^2)/2, and the fact that a(n) != 46 for all n < 1105. - Rainer Rosenthal, Jul 25 2023

Examples

			a(8)=6 because 65=64+1=49+16, 68=64+4, 72=36+36, 73=64+9, 74=49+25 and 80=64+16 are between squares 64 and 81. Note that 65 is counted only once.
		

Crossrefs

Cf. A363762 (terms not occurring in this sequence), A363763.

Programs

  • Mathematica
    maxN=100; lst={}; For[n=1, n<=maxN, n++, sqrs={}; i=n; j=0; While[i>=j, j=1; While[i^2+j^2<(n+1)^2, If[i>=j&&i^2+j^2>n^2, AppendTo[sqrs, i^2+j^2]]; j++ ]; i--; j-- ]; AppendTo[lst, Length[Union[sqrs]]]]; lst
  • PARI
    a(N)=s=0;for(n=N^2+1,(N+1)^2-1,f=0;r=sqrtint(n);forstep(i=r,1,-1,if(issquare(n-i*i),f=1;s=s+1;break)));s /* Ralf Stephan, Sep 17 2013 */
    
  • Python
    from sympy import factorint
    def A077773(n): return sum(1 for m in range(n**2+1,(n+1)**2) if all(p==2 or p&3==1 or e&1^1 for p, e in factorint(m).items())) # Chai Wah Wu, Jun 20 2023
  • Scheme
    (define (A077773 n) (add (lambda (i) (* (- 1 (A010052 i)) (A229062 i))) (A000290 n) (+ -1 (A000290 (+ 1 n)))))
    ;; Implements sum_{i=lowlim..uplim} intfun(i)
    (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))
    ;; Antti Karttunen, Oct 04 2016
    

Formula

a(n) = Sum_{i=n^2+1..(n+1)^2-1} A229062(i). - Ralf Stephan, Sep 17 2013
From Antti Karttunen, Oct 04 2016: (Start)
For n >= 0, a(n) + A277193(n) + A277194(n) = 2n.
For n >= 1, A277192(n) = a(n) + A277194(n). (End)

Extensions

Term a(0)=0 prepended by Antti Karttunen, Oct 04 2016

A025284 Numbers that are the sum of 2 nonzero squares in exactly 1 way.

Original entry on oeis.org

2, 5, 8, 10, 13, 17, 18, 20, 25, 26, 29, 32, 34, 37, 40, 41, 45, 52, 53, 58, 61, 68, 72, 73, 74, 80, 82, 89, 90, 97, 98, 100, 101, 104, 106, 109, 113, 116, 117, 122, 128, 136, 137, 146, 148, 149, 153, 157, 160, 162, 164, 169, 173, 178, 180, 181, 193, 194, 197, 202, 208, 212
Offset: 1

Views

Author

Keywords

Comments

A025426(a(n)) = 1. - Reinhard Zumkeller, Aug 16 2011

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a025284 n = a025284_list !! (n-1)
    a025284_list = elemIndices 1 a025426_list
    -- Reinhard Zumkeller, Aug 16 2011
  • Mathematica
    selQ[n_] := Length[ Select[ PowersRepresentations[n, 2, 2], Times @@ # != 0 &]] == 1; Select[Range[300], selQ] (* Jean-François Alcover, Oct 03 2013 *)
    b[n_, i_, k_, t_] := b[n, i, k, t] = If[n == 0, If[t == 0, 1, 0], If[i<1 || t<1, 0, b[n, i - 1, k, t] + If[i^2 > n, 0, b[n - i^2, i, k, t - 1]]]];
    T[n_, k_] := b[n, Sqrt[n] // Floor, k, k];
    Position[Table[T[n, 2], {n, 0, 300}], 1] - 1 // Flatten (* Jean-François Alcover, Nov 06 2020, after Alois P. Heinz in A243148 *)

Formula

A243148(a(n),2) = 1. - Alois P. Heinz, Feb 25 2019

A018825 Numbers that are not the sum of 2 nonzero squares.

Original entry on oeis.org

1, 3, 4, 6, 7, 9, 11, 12, 14, 15, 16, 19, 21, 22, 23, 24, 27, 28, 30, 31, 33, 35, 36, 38, 39, 42, 43, 44, 46, 47, 48, 49, 51, 54, 55, 56, 57, 59, 60, 62, 63, 64, 66, 67, 69, 70, 71, 75, 76, 77, 78, 79, 81, 83, 84, 86, 87, 88, 91, 92, 93, 94, 95, 96, 99, 102, 103, 105, 107, 108, 110
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A022544, A081324, A000404 (complement), A004431.

Programs

  • Haskell
    import Data.List (elemIndices)
    a018825 n = a018825_list !! (n-1)
    a018825_list = tail $ elemIndices 0 a025426_list
    -- Reinhard Zumkeller, Aug 16 2011
    
  • Maple
    isA000404 := proc(n)
        local x,y ;
        for x from 1 do
            if x^2> n then
                return false;
            end if;
            for y from 1 do
                if x^2+y^2 > n then
                    break;
                elif x^2+y^2 = n then
                    return true;
                end if;
            end do:
        end do:
    end proc:
    A018825 := proc(n)
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if not isA000404(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A018825(n),n=1..30) ; # R. J. Mathar, Jul 28 2014
  • Mathematica
    q=13;q2=q^2+1;lst={};Do[Do[z=a^2+b^2;If[z<=q2,AppendTo[lst,z]],{b,a,1,-1}],{a,q}];lst; u=Union@lst;Complement[Range[q^2],u] (* Vladimir Joseph Stephan Orlovsky, May 30 2010 *)
  • PARI
    is(n)=my(f=factor(n), t=prod(i=1,#f~, if(f[i,1]%4==1, f[i,2]+1, if(f[i,2]%2 && f[i,1]>2, 0, 1)))); if(t!=1, return(!t)); for(k=sqrtint((n-1)\2)+1, sqrtint(n-1), if(issquare(n-k^2), return(0))); 1 \\ Charles R Greathouse IV, Sep 02 2015

Formula

A025426(a(n)) = 0; A063725(a(n)) = 0. - Reinhard Zumkeller, Aug 16 2011

A000415 Numbers that are the sum of 2 but no fewer nonzero squares.

Original entry on oeis.org

2, 5, 8, 10, 13, 17, 18, 20, 26, 29, 32, 34, 37, 40, 41, 45, 50, 52, 53, 58, 61, 65, 68, 72, 73, 74, 80, 82, 85, 89, 90, 97, 98, 101, 104, 106, 109, 113, 116, 117, 122, 125, 128, 130, 136, 137, 145, 146, 148, 149, 153, 157, 160, 162, 164, 170, 173, 178, 180, 181
Offset: 1

Views

Author

Keywords

Comments

Only these numbers can occur as discriminants of quintic polynomials with solvable Galois group F20. - Artur Jasinski, Oct 25 2007
Complement of A022544 in the nonsquare positive integers A000037. - Max Alekseyev, Jan 21 2010
Nonsquare positive integers D such that Pell equation y^2 - D*x^2 = -1 has rational solutions. - Max Alekseyev, Mar 09 2010
Nonsquares for which all 4k+3 primes in the integer's canonical form occur with even multiplicity. - Ant King, Nov 02 2010

References

  • E. Grosswald, Representation of Integers as Sums of Squares, Springer-Verlag, New York Inc., (1985), p.15. - Ant King, Nov 02 2010

Crossrefs

Programs

  • Mathematica
    c = {}; Do[Do[k = a^2 + b^2; If[IntegerQ[Sqrt[k]], Null, AppendTo[c,k]], {a, 1, 100}], {b, 1, 100}]; Union[c] (* Artur Jasinski, Oct 25 2007 *)
    Select[Range[181],Length[PowersRepresentations[ #,2,2]]>0 && !IntegerQ[Sqrt[ # ]] &] (* Ant King, Nov 02 2010 *)
  • PARI
    is(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]%2 && f[i, 1]%4==3, return(0))); !issquare(n) \\ Charles R Greathouse IV, Feb 07 2017
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A000415_gen(startvalue=2): # generator of terms >= startvalue
        for n in count(max(startvalue,2)):
            f = factorint(n).items()
            if any(e&1 for p,e in f if p&3<3) and not any(e&1 for p,e in f if p&3==3):
                yield n
    A000415_list = list(islice(A000415_gen(),20)) # Chai Wah Wu, Aug 01 2023

Formula

{ A000404 } minus { A134422 }. - Artur Jasinski, Oct 25 2007

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com)

A050803 Cubes expressible as the sum of two nonzero squares in at least one way.

Original entry on oeis.org

8, 125, 512, 1000, 2197, 4913, 5832, 8000, 15625, 17576, 24389, 32768, 39304, 50653, 64000, 68921, 91125, 125000, 140608, 148877, 195112, 226981, 274625, 314432, 373248, 389017, 405224, 512000, 551368, 614125, 704969, 729000, 912673, 941192
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Comments

Root values equal terms from sequence A000404 'Sum of 2 nonzero squares'.
In other words, a(n)=(A000404(n))^3. - Artur Jasinski, Nov 29 2007
Obviously, if n and m are different members of this sequence, then n*m is also a member of this sequence. Additionally, if k^3 is a member of this sequence and k is not in A050804, then k^6 is also a member of this sequence. - Altug Alkan, May 11 2016

Examples

			551368 or 82^3 = 82^2 + 738^2 = 242^2 + 702^2.
		

References

  • Ian Stewart, "Game, Set and Math", Chapter 8 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.

Crossrefs

Programs

  • Mathematica
    a[n_]:=Module[{c=0},i=1; While[i^2Jayanta Basu, May 30 2013 *)
    Select[Range[100]^3, Length[DeleteCases[PowersRepresentations[#, 2, 2], w_ /; MemberQ[w, 0]]] > 0 &] (* Michael De Vlieger, May 11 2016 *)

Extensions

Edited by N. J. A. Sloane, May 15 2008 at the suggestion of R. J. Mathar

A232499 Number of unit squares, aligned with a Cartesian grid, completely within the first quadrant of a circle centered at the origin ordered by increasing radius.

Original entry on oeis.org

1, 3, 4, 6, 8, 10, 11, 13, 15, 17, 19, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 45, 47, 48, 50, 52, 54, 56, 60, 62, 64, 66, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 89, 90, 94, 96, 98, 102, 104, 106, 108, 110, 112, 114, 115, 117, 119, 123, 125, 127, 129, 131
Offset: 1

Views

Author

Rajan Murthy and Vale Murthy, Nov 24 2013

Keywords

Comments

The interval between terms reflects the number of ways a square integer can be partitioned into the sum of two square integers in an ordered pair. As examples, the increase from a(1) to a(2) from 1 to 3 is due to the inclusion of (1,2) and (2,1); and the increase from a(2) to a(3) is due to the inclusion of (2,2). Larger intervals occur when there are more combinations, such as, between a(17) and a(18) when (1,7), (7,1), and (5,5) are included.

Examples

			When radius of the circle exceeds 2^(1/2), one square is completely within the circle until the radius reaches 5^(1/2) when three squares are completely within the circle.
		

Crossrefs

First differences are in A229904.
The first differences must be odd at positions given in A024517 by proof by symmetry as r^2=2*n^2 is on the x=y line.
The radii corresponding to the terms are given by the square roots of A000404.
Cf. A237707 (3-dimensional analog), A239353 (4-dimensional analog).

Programs

  • Mathematica
    (* An empirical solution *) terms = 100; f[r_] := Sum[Floor[Sqrt[r^2 - n^2]], {n, 1, Floor[r]}]; Clear[g]; g[m_] := g[m] = Union[Table[f[Sqrt[s]], {s, 2, m }]][[1 ;; terms]]; g[m = dm = 4*terms]; g[m = m + dm]; While[g[m] != g[m - dm], Print[m]; m = m + dm]; A232499 = g[m]  (* Jean-François Alcover, Mar 06 2014 *)

A097269 Numbers that are the sum of two nonzero squares but not the difference of two nonzero squares.

Original entry on oeis.org

2, 10, 18, 26, 34, 50, 58, 74, 82, 90, 98, 106, 122, 130, 146, 162, 170, 178, 194, 202, 218, 226, 234, 242, 250, 274, 290, 298, 306, 314, 338, 346, 362, 370, 386, 394, 410, 442, 450, 458, 466, 482, 490, 514, 522, 530, 538, 554, 562, 578, 586, 610, 626, 634
Offset: 1

Views

Author

Ray Chandler, Aug 19 2004

Keywords

Comments

Intersection of A000404 (sum of squares) and complement of A024352 (difference of squares).
Numbers of the form 4k+2 = double of an odd number, with the odd number equal to the sum of 2 squares (sequence A057653). - Jean-Christophe Hervé, Oct 24 2015
Numbers that are the sum of two odd squares. - Jean-Christophe Hervé, Oct 25 2015

Examples

			2 = 1^2 + 1^2, 10 = 1^2 + 3^2, 18 = 3^2 + 3^2.
		

Crossrefs

Programs

  • PARI
    is(n)=if(n%4!=2,return(0)); my(f=factor(n/2)); for(i=1,#f[,1],if(bitand(f[i,2],1)==1&&bitand(f[i,1],3)==3, return(0))); 1 \\ Charles R Greathouse IV, May 31 2013
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A097269_gen(): # generator of terms
        return filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(n//2).items()),count(2,4))
    A097269_list = list(islice(A097269_gen(),30)) # Chai Wah Wu, Jun 28 2022

A001983 Numbers that are the sum of 2 distinct squares: of form x^2 + y^2 with 0 <= x < y.

Original entry on oeis.org

1, 4, 5, 9, 10, 13, 16, 17, 20, 25, 26, 29, 34, 36, 37, 40, 41, 45, 49, 50, 52, 53, 58, 61, 64, 65, 68, 73, 74, 80, 81, 82, 85, 89, 90, 97, 100, 101, 104, 106, 109, 113, 116, 117, 121, 122, 125, 130, 136, 137, 144, 145, 146, 148, 149, 153, 157, 160, 164
Offset: 1

Views

Author

Keywords

Comments

This sequence lists the values of A000404(n)/2 when A000404(n) is an even number. In other words, sequence lists integers n that are the average of two nonzero squares. - Altug Alkan, May 26 2016

Crossrefs

Cf. A000404, subsequence of A001481, A004435 (complement), A025435, A004431.
Union of A000290 and A004431 excluding 0.

Programs

  • Haskell
    a001983 n = a001983_list !! (n-1)
    a001983_list = [x | x <- [0..], a025435 x > 0]
    -- Reinhard Zumkeller, Dec 20 2013
    
  • Mathematica
    upto=200;max=Floor[Sqrt[upto]];s=Total/@((Subsets[Range[0,max], {2}])^2);Union[Select[s,#<=upto&]]  (* Harvey P. Dale, Apr 01 2011 *)
    selQ[n_] := Select[ PowersRepresentations[n, 2, 2], 0 <= #[[1]] < #[[2]] &] != {}; Select[Range[200], selQ] (* Jean-François Alcover, Oct 03 2013 *)
  • PARI
    list(lim)=my(v=List()); for(x=0,sqrtint(lim\4), for(y=x+1, sqrtint(lim\1-x^2), listput(v, x^2+y^2))); Set(v) \\ Charles R Greathouse IV, Feb 07 2017

Formula

A025435(a(n)) > 0. - Reinhard Zumkeller, Dec 20 2013

A057961 Number of points in square lattice covered by a disc centered at (0,0) as its radius increases.

Original entry on oeis.org

1, 5, 9, 13, 21, 25, 29, 37, 45, 49, 57, 61, 69, 81, 89, 97, 101, 109, 113, 121, 129, 137, 145, 149, 161, 169, 177, 185, 193, 197, 213, 221, 225, 233, 241, 249, 253, 261, 277, 285, 293, 301, 305, 317, 325, 333, 341, 349, 357, 365, 373, 377, 385, 401, 405, 421
Offset: 1

Views

Author

Ken Takusagawa, Oct 15 2000

Keywords

Comments

Useful for rasterizing circles.
Conjecture: the number of lattice points in a quadrant of the disk is equal to A000592(n-1). - L. Edson Jeffery, Feb 10 2014

Examples

			a(2)=5 because (0,0); (0,1); (0,-1); (1,0); (-1,0) are covered by any disc of radius between 1 and sqrt(2).
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.

Crossrefs

Cf. A004018, A004020, A005883, A057962. Distinct terms of A057655.

Programs

  • Mathematica
    max = 100; A001481 = Select[Range[0, 4*max], SquaresR[2, #] != 0 &]; Table[SquaresR[2, A001481[[n]]], {n, 1, max}] // Accumulate (* Jean-François Alcover, Oct 04 2013 *)

A100292 Numbers of the form a^5 + b^2 with a, b > 0.

Original entry on oeis.org

2, 5, 10, 17, 26, 33, 36, 37, 41, 48, 50, 57, 65, 68, 81, 82, 96, 101, 113, 122, 132, 145, 153, 170, 176, 197, 201, 226, 228, 244, 247, 252, 257, 259, 268, 279, 288, 290, 292, 307, 321, 324, 325, 343, 356, 362, 364, 387, 393, 401, 412, 432, 439, 442, 468, 473
Offset: 1

Views

Author

T. D. Noe, Nov 18 2004

Keywords

Crossrefs

Cf. A100272 (primes of the form a^5 + b^2).
Cf. A000404 (a^2 + b^2), A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4), A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303374 (a^4 + b^6), A303375 (a^5 + b^6).

Programs

  • Mathematica
    lst={}; Do[p=a^5+b^2; If[p<1000, AppendTo[lst, p]], {a, 16}, {b, 1024}]; Union[lst]
  • PARI
    is(n, m=5)=for(a=1, sqrtnint(n-1, m), issquare(n-a^m) && return(a)) \\ M. F. Hasler, Apr 25 2018
Previous Showing 81-90 of 237 results. Next