cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 104 results. Next

A003336 Numbers that are the sum of 2 positive 4th powers.

Original entry on oeis.org

2, 17, 32, 82, 97, 162, 257, 272, 337, 512, 626, 641, 706, 881, 1250, 1297, 1312, 1377, 1552, 1921, 2402, 2417, 2482, 2592, 2657, 3026, 3697, 4097, 4112, 4177, 4352, 4721, 4802, 5392, 6497, 6562, 6577, 6642, 6817, 7186, 7857, 8192, 8962, 10001, 10016, 10081, 10256, 10625
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that k = x^4 + y^4 has a solution in positive integers x, y.
There are no squares in this sequence. - Altug Alkan, Apr 08 2016
As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
16378801 is in the sequence as 16378801 = 43^4 + 60^4.
39126977 is in the sequence as 39126977 = 49^4 + 76^4.
71769617 is in the sequence as 71769617 = 19^4 + 92^4. (End)
		

Crossrefs

5906 is the first term in A060387 but not in this sequence. Cf. A020897.
Cf. A088687 (2 distinct 4th powers).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).
Cf. A000583 (4th powers).

Programs

  • Mathematica
    nn=12; Select[Union[Plus@@@(Tuples[Range[nn],{2}]^4)], # <= nn^4&] (* Harvey P. Dale, Dec 29 2010 *)
    Select[Range@ 11000, Length[PowersRepresentations[#, 2, 4] /. {0, } -> Nothing] > 0 &] (* _Michael De Vlieger, Apr 08 2016 *)
  • PARI
    list(lim)=my(v=List()); for(x=1, sqrtnint(lim\=1,4), for(y=1, min(sqrtnint(lim-x^4,4), x), listput(v, x^4+y^4))); Set(v) \\ Charles R Greathouse IV, Apr 24 2012; updated July 13 2024
    
  • PARI
    T=thueinit('x^4+1,1);
    is(n)=#thue(T,n)>0 && !issquare(n) \\ Charles R Greathouse IV, Feb 26 2017
    
  • Python
    def aupto(lim):
      p1 = set(i**4 for i in range(1, int(lim**.25)+2) if i**4 <= lim)
      p2 = set(a+b for a in p1 for b in p1 if a+b <= lim)
      return sorted(p2)
    print(aupto(10625)) # Michael S. Branicky, Mar 18 2021

Formula

{i: A216284(i) > 0}. - R. J. Mathar, Jun 04 2021

A003327 Numbers that are the sum of 4 positive cubes in 1 or more way.

Original entry on oeis.org

4, 11, 18, 25, 30, 32, 37, 44, 51, 56, 63, 67, 70, 74, 81, 82, 88, 89, 93, 100, 107, 108, 119, 126, 128, 130, 135, 137, 142, 144, 145, 149, 154, 156, 161, 163, 168, 180, 182, 187, 191, 193, 198, 200, 205, 206, 217, 219, 224, 226, 233, 240, 243, 245, 252, 254
Offset: 1

Views

Author

Keywords

Comments

It is conjectured that every number greater than 7373170279850 is in this sequence. [See the paper of the same name. - T. D. Noe, May 25 2017] - Charles R Greathouse IV, Jan 14 2017
As the order of addition doesn't matter we can assume terms are in increasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
3888 is in the sequence as 3888 = 6^3 + 6^3 + 12^3 + 12^3.
7729 is in the sequence as 7729 = 2^3 + 4^3 + 14^3 + 17^3.
7875 is in the sequence as 7875 = 5^3 + 10^3 + 15^3 + 15^3. (End)
		

Crossrefs

Cf. A025403, A057905 (complement), A025411 (distinct).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • PARI
    list(lim)=my(v=List(),e=1+lim\1,x='x,t); t=sum(i=1,sqrtnint(e-4,3), x^i^3, O(x^e))^4; for(n=4,lim, if(polcoeff(t,n)>0, listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Jan 14 2017

Extensions

More terms from Eric W. Weisstein

A000378 Sums of three squares: numbers of the form x^2 + y^2 + z^2.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83
Offset: 1

Views

Author

Keywords

Comments

An equivalent definition: numbers of the form x^2 + y^2 + z^2 with x,y,z >= 0.
Bourgain studies "the spatial distribution of the representation of a large integer as a sum of three squares, on the small and critical scale as well as their electrostatic energy. The main results announced give strong evidence to the thesis that the solutions behave randomly. This is in sharp contrast to what happens with sums of two or four or more square." Sums of two nonzero squares are A000404. - Jonathan Vos Post, Apr 03 2012
The multiplicities for a(n) (if 0 <= x <= y <= z) are given as A000164(a(n)), n >= 1. Compare with A005875(a(n)) for integer x, y and z, and order taken into account. - Wolfdieter Lang, Apr 08 2013
a(n)^k is a member of this sequence for any k > 1. - Boris Putievskiy, May 05 2013
The selection rule for the planes with Miller indices (hkl) to undergo X-ray diffraction in a simple cubic lattice is h^2+k^2+l^2 = N where N is a term of this sequence. See A004014 for f.c.c. lattice. - Mohammed Yaseen, Nov 06 2022

Examples

			a(1) = 0 = 0^2 + 0^2 + 0^2. A005875(0) = 1 = A000164(0).
a(9) = 9 = 0^2 + 0^2 + 3^2 =  1^2 +  2^2 + 2^2. A000164(9) = 2. A000164(9) = 30 = 2*3 + 8*3 (counting signs and order). - _Wolfdieter Lang_, Apr 08 2013
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 107.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 37.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section C20.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 311.

Crossrefs

Union of A000290, A000404 and A000408 (common elements).
Union of A000290, A000415 and A000419 (disjunct sets).
Complement of A004215.
Cf. A005875 (number of representations if x, y and z are integers).

Programs

  • Maple
    isA000378 := proc(n) # return true or false depending on n being in the list
        local x,y ;
        for x from 0 do
            if 3*x^2 > n then
                return false;
            end if;
            for y from x do
                if x^2+2*y^2 > n then
                    break;
                else
                    if issqr(n-x^2-y^2) then
                        return true;
                    end if;
                end if;
            end do:
        end do:
    end proc:
    A000378 := proc(n) # generate A000378(n)
        option remember;
        local a;
        if n = 1 then
            0;
        else
            for a from procname(n-1)+1 do
                if isA000378(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A000378(n),n=1..100) ; # R. J. Mathar, Sep 09 2015
  • Mathematica
    okQ[n_] := If[EvenQ[k = IntegerExponent[n, 2]], m = n/2^k; Mod[m, 8] != 7, True]; Select[Range[0, 100], okQ] (* Jean-François Alcover, Feb 08 2016, adapted from PARI *)
  • PARI
    isA000378(n)=my(k=valuation(n, 2)); if(k%2==0, n>>=k; n%8!=7, 1)
    
  • PARI
    list(lim)=my(v=List(),k,t); for(x=0,sqrtint(lim\=1), for(y=0, min(sqrtint(lim-x^2),x), k=x^2+y^2; for(z=0,min(sqrtint(lim-k), y), listput(v,k+z^2)))); Set(v) \\ Charles R Greathouse IV, Sep 14 2015
    
  • Python
    def valuation(n, b):
        v = 0
        while n > 1 and n%b == 0: n //= b; v += 1
        return v
    def ok(n): return n//4**valuation(n, 4)%8 != 7
    print(list(filter(ok, range(84)))) # Michael S. Branicky, Jul 15 2021
    
  • Python
    from itertools import count, islice
    def A000378_gen(): # generator of terms
        return filter(lambda n:n>>2*(bin(n)[:1:-1].index('1')//2) & 7 < 7, count(1))
    A000378_list = list(islice(A000378_gen(),30)) # Chai Wah Wu, Jun 27 2022
    
  • Python
    def A000378(n):
        def f(x): return n-1+sum(((x>>(i<<1))-7>>3)+1 for i in range(x.bit_length()>>1))
        m, k = n-1, f(n-1)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Feb 14 2025

Formula

Legendre: a nonnegative integer is a sum of three squares iff it is not of the form 4^k m with m == 7 (mod 8).
n^(2k+1) is in the sequence iff n is in the sequence. - Ray Chandler, Feb 03 2009
Complement of A004215; complement of A000302(i)*A004771(j), i,j>=0. - Boris Putievskiy, May 05 2013
a(n) = 6n/5 + O(log n). - Charles R Greathouse IV, Mar 14 2014

Extensions

More terms from Ray Chandler, Sep 05 2004

A000414 Numbers that are the sum of 4 nonzero squares.

Original entry on oeis.org

4, 7, 10, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in increasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
1608 is in the sequence as 1608 = 18^2 + 20^2 + 20^2 + 22^2.
2140 is in the sequence as 2140 = 21^2 + 21^2 + 23^2 + 27^2.
3298 is in the sequence as 3298 = 25^2 + 26^2 + 29^2 + 34^2. (End)
		

Crossrefs

Cf. A000534 (complement).
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • Mathematica
    q=16;lst={};Do[Do[Do[Do[z=a^2+b^2+c^2+d^2;If[z<=(q^2)+3,AppendTo[lst,z]],{d,q}],{c,q}],{b,q}],{a,q}];Union@lst (*Vladimir Joseph Stephan Orlovsky, Feb 07 2010 *)
    Total/@Tuples[Range[10]^2,4]//Union (* Harvey P. Dale, Mar 18 2025 *)
  • PARI
    is(n)=my(k=if(n,n/4^valuation(n,4),2)); k!=2 && k!=6 && k!=14 && !setsearch([0, 1, 3, 5, 9, 11, 17, 29, 41], n) \\ Charles R Greathouse IV, Sep 03 2014
    
  • Python
    limit = 10026 # 10000th term in b-file
    from functools import lru_cache
    nzs = [k*k for k in range(1, int(limit**.5)+2) if k*k + 3 <= limit]
    nzss = set(nzs)
    @lru_cache(maxsize=None)
    def ok(n, m): return n in nzss if m == 1 else any(ok(n-s, m-1) for s in nzs)
    print([n for n in range(4, limit+1) if ok(n, 4)]) # Michael S. Branicky, Apr 07 2021
    
  • Python
    from itertools import count, islice
    def A000414_gen(startvalue=0): # generator of terms >= startvalue
        return filter(lambda n:not(n in {0, 1, 3, 5, 9, 11, 17, 29, 41} or n>>((~n&n-1).bit_length()&-2) in {2,6,14}),count(max(startvalue,0)))
    A000414_list = list(islice(A000414_gen(),30)) # Chai Wah Wu, Jul 09 2022

Formula

a(n) = n + O(log n). - Charles R Greathouse IV, Sep 03 2014

Extensions

corrected 6/95

A003328 Numbers that are the sum of 5 positive cubes.

Original entry on oeis.org

5, 12, 19, 26, 31, 33, 38, 40, 45, 52, 57, 59, 64, 68, 71, 75, 78, 82, 83, 89, 90, 94, 96, 97, 101, 108, 109, 115, 116, 120, 127, 129, 131, 134, 135, 136, 138, 143, 145, 146, 150, 152, 153, 155, 157, 162, 164, 169, 171, 172, 176, 181, 183, 188, 190, 192, 194, 195, 199
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in increasing order. - David A. Corneth, Aug 01 2020
It seems only a finite number N of positive integers are not in this sequence, and thus a(n) = n - N for all sufficiently large n. Is it true that 2243453, last term of A048927, is sufficiently large in that sense? - M. F. Hasler, Jan 04 2023

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
3084 is in the sequence as 3084 = 5^3 + 5^3 + 5^3 +  8^3 + 13^3.
4385 is in the sequence as 4385 = 4^3 + 4^3 + 9^3 + 11^3 + 13^3.
5426 is in the sequence as 5426 = 8^3 + 9^3 + 9^3 + 12^3 + 12^3. (End)
		

Crossrefs

Cf. A057906 (Complement)
Cf. A###### (x, y) = Numbers that are the sum of x nonzero y-th powers:
A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • PARI
    select( {is_A003328(n,k=5,m=3,L=sqrtnint(abs(n-k+1),m))=if( n>k*L^m || nM. F. Hasler, Aug 02 2020
    A003328_upto(N,k=5,m=3)=[i|i<-[1..#N=sum(n=1,sqrtnint(N,m),'x^n^m,O('x^N))^k], polcoef(N,i)] \\ M. F. Hasler, Aug 02 2020
    
  • Python
    from collections import Counter
    from itertools import combinations_with_replacement as combs_w_rep
    def aupto(lim):
      s = filter(lambda x: x<=lim, (i**3 for i in range(1, int(lim**(1/3))+2)))
      s2 = filter(lambda x: x<=lim, (sum(c) for c in combs_w_rep(s, 5)))
      s2counts = Counter(s2)
      return sorted(k for k in s2counts)
    print(aupto(200)) # Michael S. Branicky, May 12 2021

A002479 Numbers of the form x^2 + 2*y^2.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 8, 9, 11, 12, 16, 17, 18, 19, 22, 24, 25, 27, 32, 33, 34, 36, 38, 41, 43, 44, 48, 49, 50, 51, 54, 57, 59, 64, 66, 67, 68, 72, 73, 75, 76, 81, 82, 83, 86, 88, 89, 96, 97, 98, 99, 100, 102, 107, 108, 113, 114, 118, 121, 123, 128, 129, 131
Offset: 1

Views

Author

Keywords

Comments

A positive number k belongs to this sequence if and only if every prime p == 5, 7 (mod 8) dividing k occurs to an even power. - Sharon Sela (sharonsela(AT)hotmail.com), Mar 23 2002
Norms of numbers in Z[sqrt(-2)]. - Alonso del Arte, Sep 23 2014
Euler (E256) shows that these numbers are closed under multiplication, according to the Euler Archive. - Charles R Greathouse IV, Jun 16 2016
In addition to the previous comment: The proof was already given 1100 years before Euler by Brahmagupta's identity (a^2 + m*b^2)*(c^2 + m*d^2) = (a*c - m*b*d)^2 + m*(a*d + b*c)^2. - Klaus Purath, Oct 07 2023

References

  • L. Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 421.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 59.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A097700. Subsequence of A000408. For primes see A033203.

Programs

  • Haskell
    a002479 n = a002479_list !! (n-1)
    a002479_list = 0 : filter f [1..] where
       f x = all (even . snd) $ filter ((`elem` [5,7]) . (`mod` 8) . fst) $
                                zip (a027748_row x) (a124010_row x)
    -- Reinhard Zumkeller, Feb 20 2014
    
  • Magma
    [n: n in [0..131] | NormEquation(2, n) eq true]; // Arkadiusz Wesolowski, May 11 2016
    
  • Maple
    lis:={}; M:=50; M2:=M^2;
    for x from 0 to M do for y from 0 to M do
    if x^2+2*y^2 <= M2 then lis:={op(lis),x^2+2*y^2}; fi; od: od:
    sort(convert(lis,list)); # N. J. A. Sloane, Apr 30 2015
  • Mathematica
    q = 16; imax = q^2; Select[Union[Flatten[Table[x^2 + 2y^2, {y, 0, q/Sqrt[2]}, {x, 0, q}]]], # <= imax &] (* Vladimir Joseph Stephan Orlovsky, Apr 20 2011 *)
    Union[#[[1]]+2#[[2]]&/@Tuples[Range[0,10]^2,2]] (* Harvey P. Dale, Nov 24 2014 *)
  • PARI
    is(n)=my(f=factor(n));for(i=1,#f[,1],if(f[i,1]%8>4 && f[i,2]%2, return(0)));1 \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    list(lim)=my(v=List()); for(a=0,sqrtint(lim\=1), for(b=0,sqrtint((lim-a^2)\2), listput(v,a^2+2*b^2))); Set(v) \\ Charles R Greathouse IV, Jun 16 2016
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A002479_gen(): # generator of terms
        return filter(lambda n:all(p & 7 < 5 or e & 1 == 0 for p, e in factorint(n).items()),count(0))
    A002479_list = list(islice(A002479_gen(),30)) # Chai Wah Wu, Jun 27 2022

A003337 Numbers n which are the sum of 3 nonzero 4th powers.

Original entry on oeis.org

3, 18, 33, 48, 83, 98, 113, 163, 178, 243, 258, 273, 288, 338, 353, 418, 513, 528, 593, 627, 642, 657, 707, 722, 768, 787, 882, 897, 962, 1137, 1251, 1266, 1298, 1313, 1328, 1331, 1378, 1393, 1458, 1506, 1553, 1568, 1633, 1808, 1875, 1922, 1937, 2002, 2177
Offset: 1

Views

Author

Keywords

Comments

Numbers which are in this sequence but not in A047714 must also be the sum of 2 biquadrates, or equal to a fourth power. Among the first 1000 terms of this sequence, this is the case for 4802 = 2*7^4, 57122 = 2*13^4 and 76832 = 2*14^4. - M. F. Hasler, Dec 31 2012
The union of A047714, A336536, and fourth powers of A003294. - Robert Israel, Jul 24 2020
As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
194818 is in the sequence as 194818 = 3^4 + 4^4 + 21^4.
480113 is in the sequence as 480113 = 7^4 + 12^4 + 26^4.
693842 is in the sequence as 693842 = 13^4 + 15^4 + 28^4. (End)
		

Crossrefs

A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

  • Python
    def aupto(lim):
      p1 = set(i**4 for i in range(1, int(lim**.25)+2) if i**4 <= lim)
      p2 = set(a+b for a in p1 for b in p1 if a+b <= lim)
      p3 = set(apb+c for apb in p2 for c in p1 if apb+c <= lim)
      return sorted(p3)
    print(aupto(2400)) # Michael S. Branicky, Mar 18 2021

A003329 Numbers that are the sum of 6 positive cubes.

Original entry on oeis.org

6, 13, 20, 27, 32, 34, 39, 41, 46, 48, 53, 58, 60, 65, 67, 69, 72, 76, 79, 83, 84, 86, 90, 91, 95, 97, 98, 102, 104, 105, 109, 110, 116, 117, 121, 123, 124, 128, 130, 132, 135, 136, 137, 139, 142, 143, 144, 146, 147, 151, 153, 154, 156, 158, 160, 161, 162, 163, 165, 170
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in increasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
1647 is in the sequence as 1647 = 3^3 + 3^3 + 5^3 + 5^3 +  7^3 + 10^3.
3319 is in the sequence as 3319 = 5^3 + 5^3 + 5^3 + 6^3 + 10^3 + 12^3.
4038 is in the sequence as 4038 = 3^3 + 3^3 + 6^3 + 8^3 +  8^3 + 14^3. (End)
		

Crossrefs

Cf. A057907 (Complement)
Cf. A###### (x, y) = Numbers that are the sum of x nonzero y-th powers:
A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A047700 (5, 2),
A003325 (2, 3), A003072 (3, 3), A003327 .. A003335 (4 .. 12, 3),
A003336 .. A003346 (2 .. 12, 4), A003347 .. A003357 (2 .. 12, 5),
A003358 .. A003368 (2 .. 12, 6), A003369 .. A003379 (2 .. 12, 7),
A003380 .. A003390 (2 .. 12, 8), A003391 .. A004801 (2 .. 12, 9),
A004802 .. A004812 (2 .. 12, 10), A004813 .. A004823 (2 .. 12, 11).

Programs

  • Mathematica
    max = 200; cmax = Ceiling[(max - 5)^(1/3)]; cc = Array[c, 6]; iter = Sequence @@ Transpose[ {cc, Join[{1}, Most[cc]], Table[cmax, {6}]}]; Union[ Reap[ Do[ a = Total[cc^3]; If[a <= max, Sow[a]], Evaluate[iter]]][[2, 1]]] (* Jean-François Alcover, Oct 23 2012 *)
  • PARI
    (A003329_upto(N,k=6,m=3)=[i|i<-[1..#N=sum(n=1,sqrtnint(N,m), 'x^n^m, O('x^N))^k], polcoef(N,i)])(200) \\ M. F. Hasler, Aug 02 2020
    
  • Python
    from collections import Counter
    from itertools import combinations_with_replacement as multi_combs
    def aupto(lim):
      c = filter(lambda x: x<=lim, (i**3 for i in range(1, int(lim**(1/3))+2)))
      s = filter(lambda x: x<=lim, (sum(mc) for mc in multi_combs(c, 6)))
      counts = Counter(s)
      return sorted(k for k in counts)
    print(aupto(170)) # Michael S. Branicky, Jun 13 2021

Extensions

More terms from Eric W. Weisstein

A003346 Numbers that are the sum of 12 positive 4th powers.

Original entry on oeis.org

12, 27, 42, 57, 72, 87, 92, 102, 107, 117, 122, 132, 137, 147, 152, 162, 167, 172, 177, 182, 187, 192, 197, 202, 212, 217, 227, 232, 242, 247, 252, 257, 262, 267, 277, 282, 292, 297, 307, 312, 322, 327, 332, 342, 347, 357, 362, 372, 377, 387, 392, 402, 407, 412, 417
Offset: 1

Views

Author

Keywords

Comments

a(88) = 636 = 5^4 + 11 and a(91) = 651 = 5^4 + 2^4 + 10 are the first two terms not congruent to 2 or 7 (mod 10). - M. F. Hasler, Aug 03 2020

Examples

			From _David A. Corneth_, Aug 03 2020: (Start)
3740 is in the sequence as 3740 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 3^4 + 5^4 + 5^4 + 7^4.
4690 is in the sequence as 4690 = 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 4^4 + 4^4 + 5^4 + 5^4 + 6^4 + 6^4.
7193 is in the sequence as 7193 = 2^4 + 4^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 6^4. (End)
		

Crossrefs

Cf. A000583 (4th powers).
Other numbers that are the sum of k positive m-th powers:
A000404 (k=2, m=2), A000408 (3, 2), A000414 (4, 2), A047700 (k=5, m=2),
A003325 (k=2, m=3), A003072 (k=3, m=3), A003327 .. A003335 (k=4..12, m=3),
A003336 .. A003346 (k=2..12, m=4), A003347 .. A003357 (k=2..12, m=5),
A003358 .. A003368 (k=2..12, m=6), A003369 .. A003379 (k=2..12, m=7),
A003380 .. A003390 (k=2..12, m=8), A003391 .. A004801 (k=2..12, m=9),
A004802 .. A004812 (k=2..12, m=10), A004813 .. A004823 (k=2..12, m=11).

Programs

  • PARI
    (A003346_upto(N, k=12, m=4)=[i|i<-[1..#N=sum(n=1, sqrtnint(N, m), 'x^n^m, O('x^N))^k], polcoef(N, i)])(500) \\ 2nd & 3rd optional arg allow to get other sequences of this group. See A003333 for alternate code. - M. F. Hasler, Aug 03 2020
    
  • Python
    from itertools import count, takewhile, combinations_with_replacement as mc
    def aupto(limit):
        qd = takewhile(lambda x: x <= limit, (k**4 for k in count(1)))
        ss = set(sum(c) for c in mc(qd, 12))
        return sorted(s for s in ss if s <= limit)
    print(aupto(417)) # Michael S. Branicky, Dec 27 2021

A003358 Numbers that are the sum of 2 nonzero 6th powers.

Original entry on oeis.org

2, 65, 128, 730, 793, 1458, 4097, 4160, 4825, 8192, 15626, 15689, 16354, 19721, 31250, 46657, 46720, 47385, 50752, 62281, 93312, 117650, 117713, 118378, 121745, 133274, 164305, 235298, 262145, 262208, 262873, 266240, 277769, 308800, 379793, 524288
Offset: 1

Views

Author

Keywords

Comments

As the order of addition doesn't matter we can assume terms are in nondecreasing order. - David A. Corneth, Aug 01 2020

Examples

			From _David A. Corneth_, Aug 01 2020: (Start)
10069120217 is in the sequence as 10069120217 = 29^6 + 46^6.
139314070233 is in the sequence as 139314070233 = 3^6 + 72^6.
404680615040 is in the sequence as 404680615040 = 22^6 + 86^6. (End)
		

Crossrefs

Cf. A088677 (2 distinct 6th). Supersequence of A106318.
A###### (x, y): Numbers that are the form of x nonzero y-th powers.
Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

Programs

Extensions

Removed incorrect program. David A. Corneth, Aug 01 2020
Previous Showing 11-20 of 104 results. Next