cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 48 results. Next

A085724 Numbers k such that 2^k - 1 is a semiprime (A001358).

Original entry on oeis.org

4, 9, 11, 23, 37, 41, 49, 59, 67, 83, 97, 101, 103, 109, 131, 137, 139, 149, 167, 197, 199, 227, 241, 269, 271, 281, 293, 347, 373, 379, 421, 457, 487, 523, 727, 809, 881, 971, 983, 997, 1061, 1063
Offset: 1

Views

Author

Jason Earls, Jul 20 2003

Keywords

Comments

Subsequence of A000430. Apart from 4, 9, and 49 composites in this sequence are greater than 1.9e7. - Charles R Greathouse IV, Jun 05 2013
1427 and 1487 are also terms. 1277 is the only remaining unknown below them. - Charles R Greathouse IV, Jun 05 2013
Among the known terms only 11, 23, 83 and 131 are in A002515, that is, they are the only known values for n such that (2^n - 1)/(2*n + 1) is prime. - Jianing Song, Jan 22 2019
Either a(n) is a prime, or the square of a Mersenne prime exponent. - M. F. Hasler, Jun 23 2025

Examples

			11 is a member because 2^11 - 1 = 23*89.
		

References

  • J. Earls, Mathematical Bliss, Pleroma Publications, 2009, pages 56-60. ASIN: B002ACVZ6O [From Jason Earls, Nov 22 2009]
  • J. Earls, "Cole Semiprimes," Mathematical Bliss, Pleroma Publications, 2009, pages 56-60. ASIN: B002ACVZ6O [From Jason Earls, Nov 25 2009]

Crossrefs

Programs

  • Mathematica
    SemiPrimeQ[n_]:=(n>1) && (2==Plus@@(Transpose[FactorInteger[n]][[2]])); Select[Range[100],SemiPrimeQ[2^#-1]&] (Noe)
    Select[Range[1100],PrimeOmega[2^#-1]==2&] (* Harvey P. Dale, Feb 18 2018 *)
    Select[Range[250], Total[Last /@ FactorInteger[2^# - 1, 3]] == 2 &] (* Eric W. Weisstein, Jul 28 2022 *)
  • PARI
    issemi(n)=bigomega(n)==2
    is(n)=if(isprime(n), issemi(2^n-1), my(q); isprimepower(n,&q)==2 && ispseudoprime(2^q-1) && ispseudoprime((2^n-1)/(2^q-1))) \\ Charles R Greathouse IV, Jun 05 2013

Extensions

More terms from Zak Seidov, Feb 27 2004
More terms from Cunningham project, Mar 23 2004
More terms from the Cunningham project sent by Robert G. Wilson v and T. D. Noe, Feb 22 2006
a(41)-a(42) from Charles R Greathouse IV, Jun 05 2013

A058080 Numbers whose product of divisors exceeds their square.

Original entry on oeis.org

12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 126, 128, 130, 132, 135, 136, 138, 140, 144, 147
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2000

Keywords

Comments

Numbers with five or more divisors. - Lekraj Beedassy, Sep 11 2003
Called multiplicatively abundant numbers by Chau (2004). - Amiram Eldar, Jun 29 2022

Crossrefs

Complement of A007964.

Programs

  • Mathematica
    Select[Range[150], #^(DivisorSigma[0, #]/2) > #^2 &] (* Amiram Eldar, Jun 29 2022 *)
    Select[Range[200],Times@@Divisors[#]>#^2&] (* Harvey P. Dale, Oct 20 2024 *)
  • PARI
    is(n)=numdiv(n)>4 \\ Charles R Greathouse IV, Sep 18 2015
    
  • Python
    from sympy import divisor_count
    def ok(n): return divisor_count(n) > 4
    print([k for k in range(148) if ok(k)]) # Michael S. Branicky, Dec 16 2021

Formula

The number of terms not exceeding x is N(x) ~ x*(1 - log(log(x))/log(x)) (Chau, 2004). - Amiram Eldar, Jun 29 2022

A347705 Number of factorizations of n with reverse-alternating product > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 7, 1, 2, 3, 4, 1, 5, 1, 7, 2, 2, 2, 7, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 1, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 8, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 3, 2, 1, 11, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 12 2021

Keywords

Comments

A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). The reverse-alternating product is the alternating product of the reversed sequence.

Examples

			The a(n) factorizations for n = 2, 6, 8, 12, 24, 30, 48, 60:
  2   6     8       12      24        30      48          60
      2*3   2*4     2*6     3*8       5*6     6*8         2*30
            2*2*2   3*4     4*6       2*15    2*24        3*20
                    2*2*3   2*12      3*10    3*16        4*15
                            2*2*6     2*3*5   4*12        5*12
                            2*3*4             2*3*8       6*10
                            2*2*2*3           2*4*6       2*5*6
                                              3*4*4       3*4*5
                                              2*2*12      2*2*15
                                              2*2*2*6     2*3*10
                                              2*2*3*4     2*2*3*5
                                              2*2*2*2*3
		

Crossrefs

Positions of 1's are A000430.
The weak version (>= instead of >) is A001055, non-reverse A347456.
The non-reverse version is A339890, strict A347447.
The version for reverse-alternating product 1 is A347438.
Allowing any integer reciprocal alternating product gives A347439.
The even-length case is A347440, also the opposite reverse version.
Allowing any integer rev-alt product gives A347442, non-reverse A347437.
The version for partitions is A347449, non-reverse A347448.
A001055 counts factorizations (strict A045778, ordered A074206).
A038548 counts possible rev-alt products of factorizations, integer A046951.
A103919 counts partitions by sum and alternating sum, reverse A344612.
A292886 counts knapsack factorizations, by sum A293627.
A347707 counts possible integer reverse-alternating products of partitions.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    revaltprod[q_]:=Product[q[[-i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[facs[n],revaltprod[#]>1&]],{n,100}]

Formula

a(n) = A001055(n) - A347438(n).

A080256 Sum of numbers of distinct and of all prime factors of n.

Original entry on oeis.org

0, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 5, 2, 4, 4, 5, 2, 5, 2, 5, 4, 4, 2, 6, 3, 4, 4, 5, 2, 6, 2, 6, 4, 4, 4, 6, 2, 4, 4, 6, 2, 6, 2, 5, 5, 4, 2, 7, 3, 5, 4, 5, 2, 6, 4, 6, 4, 4, 2, 7, 2, 4, 5, 7, 4, 6, 2, 5, 4, 6, 2, 7, 2, 4, 5, 5, 4, 6, 2, 7, 5, 4, 2, 7, 4, 4, 4, 6, 2, 7, 4, 5, 4, 4, 4, 8, 2, 5, 5, 6, 2, 6, 2, 6, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 10 2003

Keywords

Comments

a(n) = 2 iff n is prime, A000040; a(n) > 2 iff n is composite, A002808; a(n) <= 3 iff n is prime or square of prime, A000430; a(n) = 3 iff n is square of prime, A001248; a(A080257(n)) > 3;
a(n) <= 4 iff product of proper divisors <= n^2, A007964; a(n) = 4 iff n has four divisors, A030513; a(n) > 4 iff product of proper divisors > n^2, A058080; a(A064598(n)) <= 5; a(A080258(n)) = 5.

Crossrefs

Programs

  • Mathematica
    f[n_] := Plus @@ (Last /@ FactorInteger[n] + 1); Table[ f[n], {n, 105}] (* Robert G. Wilson v, Aug 03 2005 *)
  • PARI
    a(n) = {my(f = factor(n)); omega(f) + bigomega(f);} \\ Amiram Eldar, Sep 28 2023

Formula

a(n) = Omega(n) + omega(n) = A001221(n) + A001222(n).
Additive with a(p^e) = e + 1.
Sum_{k=1..n} a(k) = 2 * n * log(log(n)) + c * n + O(n/log(n)), where c = A077761 + A083342 = 1.29615109474508069537... . - Amiram Eldar, Sep 28 2023

A074583 Numbers k such that sopfr(k) = S(k), where sopfr = A001414 and S = A002034.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Jason Earls, Aug 24 2002

Keywords

Comments

These are the prime powers p^e with e <= p. - Reinhard Zumkeller, Dec 15 2003
Complement to A192135 with respect to A000961;

Crossrefs

Subsequence of A000961; A000040, A000430, and A051674 are subsequences.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a074583 n = a074583_list !! (n-1)
    a074583_list = 1 : f (singleton 2) a000040_list where
      f s ps'@(p:p':ps)
        | m == p      = p : f (insert (p*p) $ insert p' s') (p':ps)
        | m < spf^spf = m : f (insert (m*spf) s') ps'
        | otherwise   = m : f s' ps'
          where spf = a020639 m  -- smallest prime factor of m, cf. A020639
                (m, s') = deleteFindMin s
    -- Simpler version:
    a074583_list = map a000961 a192188_list
    -- Reinhard Zumkeller, Jun 05 2011, Jun 26 2011
    
  • Mathematica
    sopfr[n_] := Total[Times @@@ FactorInteger[n]];
    S[n_] := Module[{m = 1}, While[!IntegerQ[m!/n], m++]; m];
    Select[Range[1000], sopfr[#] == S[#]&] (* Jean-François Alcover, Nov 09 2017 *)
  • PARI
    isok(n) = my(f=factor(n)); n==1 || (#f~==1 && f[1, 1]>=f[1, 2]); \\ Seiichi Manyama, May 07 2021

Formula

a(n) = A000961(A192188(n)); A095874(a(n)) = A192188(n). - Reinhard Zumkeller, Jun 26 2011

A084114 Number of divisions when calculating A084110(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 1, 1, 0, 3, 0, 1, 1, 1, 0, 2, 1, 2, 1, 1, 0, 4, 0, 1, 1, 2, 1, 2, 0, 1, 1, 2, 0, 4, 0, 1, 1, 1, 1, 2, 0, 3, 1, 1, 0, 4, 1, 1, 1, 2, 0, 4, 1, 1, 1, 1, 1, 4, 0, 1, 1, 2, 0, 2, 0, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, May 12 2003

Keywords

Comments

a(n) = A000005(n) - 1 - A084113(n) = A032741(n) - A084113(n) = (A032741(n)-A084115(n))/2;
a(n) = 0 iff n is prime or a square of prime (A000430).

Crossrefs

Programs

  • Haskell
    a084114 = g 0 1 . tail . a027750_row where
       g c _ []     = c
       g c x (d:ds) = if r > 0 then g c (x * d) ds else g (c + 1) x' ds
                      where (x', r) = divMod x d
    -- Reinhard Zumkeller, Jul 31 2014

A088434 Number of ways to write n as n = u*v*w with 1 <= u < v < w.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 4, 0, 1, 1, 2, 0, 4, 0, 2, 1, 1, 1, 4, 0, 1, 1, 4, 0, 4, 0, 2, 2, 1, 0, 6, 0, 2, 1, 2, 0, 4, 1, 4, 1, 1, 0, 8, 0, 1, 2, 3, 1, 4, 0, 2, 1, 4, 0, 8, 0, 1, 2, 2, 1, 4, 0, 6, 1, 1, 0, 8, 1, 1, 1, 4, 0, 8, 1, 2, 1, 1, 1, 9, 0, 2, 2, 4, 0, 4, 0, 4, 4, 1, 0, 8, 0, 4, 1, 6, 0, 4, 1, 2, 2, 1, 1, 14
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 01 2003

Keywords

Comments

a(n)=0 iff n=1 or n prime or n prime^2: a(A000430(n)) = 0.
The integers a(n)+1 equal A045778(n) for n < 120 and differ at all n that admit factorization into 4 or more distinct factors, the smallest ones being n = 120 = 2*3*4*5, n = 144 = 2*3*4*6, n = 168 = 2*3*4*7, n = 180 = 2*3*5*6, ..., later continuing n = 312 = 2*3*4*13, n = 320 = 2*4*5*8, n = 324 = 2*3*6*9, n = 330 = 2*3*5*11, ... Coincidentally, A068350(5) to A068350(19) start this list. - R. J. Mathar, Jul 19 2007

Examples

			n=12: (1,2,6), (1,3,4): therefore a(12)=2;
n=18: (1,2,9), (1,3,6): therefore a(18)=2.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Cases[Subsets[Divisors[n],{3}],{x_,y_,z_}->x*y*z],#==n &]],{n,102}] (* Jayanta Basu, May 23 2013 *)
  • PARI
    A088434(n) = { my(s=0); fordiv(n, u, for(v=u+1, n-1, for(w=v+1, n, if(u*v*w==n, s++)))); (s); }; \\ Antti Karttunen, Aug 24 2017

Extensions

Data section extended to 120 terms by Antti Karttunen, Aug 24 2017

A325251 Numbers whose omega-sequence covers an initial interval of positive integers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 82, 83, 84, 85, 86
Offset: 1

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).
The enumeration of these partitions by sum is given by A325260.

Examples

			The sequence of terms together with their omega sequences begins:
   1:              31: 1             63: 3 2 2 1
   2: 1            33: 2 2 1         65: 2 2 1
   3: 1            34: 2 2 1         67: 1
   4: 2 1          35: 2 2 1         68: 3 2 2 1
   5: 1            37: 1             69: 2 2 1
   6: 2 2 1        38: 2 2 1         71: 1
   7: 1            39: 2 2 1         73: 1
   9: 2 1          41: 1             74: 2 2 1
  10: 2 2 1        43: 1             75: 3 2 2 1
  11: 1            44: 3 2 2 1       76: 3 2 2 1
  12: 3 2 2 1      45: 3 2 2 1       77: 2 2 1
  13: 1            46: 2 2 1         79: 1
  14: 2 2 1        47: 1             82: 2 2 1
  15: 2 2 1        49: 2 1           83: 1
  17: 1            50: 3 2 2 1       84: 4 3 2 2 1
  18: 3 2 2 1      51: 2 2 1         85: 2 2 1
  19: 1            52: 3 2 2 1       86: 2 2 1
  20: 3 2 2 1      53: 1             87: 2 2 1
  21: 2 2 1        55: 2 2 1         89: 1
  22: 2 2 1        57: 2 2 1         90: 4 3 2 2 1
  23: 1            58: 2 2 1         91: 2 2 1
  25: 2 1          59: 1             92: 3 2 2 1
  26: 2 2 1        60: 4 3 2 2 1     93: 2 2 1
  28: 3 2 2 1      61: 1             94: 2 2 1
  29: 1            62: 2 2 1         95: 2 2 1
		

Crossrefs

Positions of normal numbers (A055932) in A325248.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number).

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Select[Range[100],normQ[omseq[#]]&]

A084190 Least common multiple of {d-1: d > 1 and d divides n}.

Original entry on oeis.org

1, 1, 2, 3, 4, 10, 6, 21, 8, 36, 10, 330, 12, 78, 28, 105, 16, 680, 18, 684, 60, 210, 22, 53130, 24, 300, 104, 702, 28, 36540, 30, 3255, 160, 528, 204, 157080, 36, 666, 228, 62244, 40, 31980, 42, 9030, 616, 990, 46, 2497110, 48, 3528, 400, 5100, 52, 468520
Offset: 1

Views

Author

Reinhard Zumkeller, May 18 2003

Keywords

Comments

Considering the set of divisors > 1 of n reduced by 1, a(n) is the smallest number whose divisors contain this set;
a(n) < n iff n=p^k, p prime and 1 <= k <= 2: a(A001248(n)) < A001248(n), a(A000430(n)) < A000430(n), a(A080257(n))> A080257(n);
a(n) is odd iff n=2^k.

Examples

			n=35: divisors > 1 of 35 = {5,7,35}, a(35) = lcm(4,6,34) = 204;
n=37: divisors > 1 of 37 = {37}, a(37) = lcm(36) = 36.
		

Crossrefs

Cf. A084191(n) = a(a(n)), A007955.
Cf. A027750.
Cf. A258409.

Programs

  • Haskell
    a084190 1 = 1
    a084190 n = foldl1 lcm $ map (subtract 1) $ tail $ a027750_row' n
    -- Reinhard Zumkeller, May 08 2012
    
  • Mathematica
    Join[{1}, Table[LCM @@ (Rest[Divisors[n]] - 1), {n, 2, 100}]] (* T. D. Noe, Apr 25 2012 *)
  • PARI
    a(n)=if(n>2,lcm(apply(k->k-1,vecextract(divisors(n),"2.."))),1) \\ Charles R Greathouse IV, Apr 25 2012
    
  • Python
    from math import lcm
    from sympy import divisors
    def A084190(n): return lcm(*(d-1 for d in divisors(n,generator=True) if d > 1)) # Chai Wah Wu, Jun 25 2022

Extensions

a(45) was erroneously split into 61 and 6; repaired by Carl R. White, Apr 25 2012

A088433 Number of ways to write n as n = u*v*w with 1<=u<=v

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 3, 1, 4, 2, 2, 1, 6, 1, 2, 2, 4, 1, 5, 1, 4, 2, 2, 2, 7, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 1, 3, 2, 4, 1, 6, 2, 6, 2, 2, 1, 10, 1, 2, 4, 5, 2, 5, 1, 4, 2, 5, 1, 11, 1, 2, 3, 4, 2, 5, 1, 9, 3, 2, 1, 10, 2, 2, 2, 6, 1, 10, 2, 4, 2, 2, 2, 12, 1, 3, 4, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 01 2003

Keywords

Comments

a(n) = 1 iff n prime or n prime^2: a(A000430(n))=1.

Examples

			n=12: (1,1,12), (1,2,6), (1,3,4), (2,2,3): therefore a(12)=4;
n=18: (1,1,18), (1,2,9), (1,3,6): therefore a(18)=3.
		

Crossrefs

Programs

  • PARI
    A088433(n) = { my(s=0); fordiv(n, u, for(v=u, n-1, for(w=v+1, n, if(u*v*w==n, s++)))); (s); }; \\ Antti Karttunen, Aug 24 2017
Previous Showing 11-20 of 48 results. Next