A305862
a(n) = 384*4^n - 576*3^n + 220*2^n - 14.
Original entry on oeis.org
14, 234, 1826, 10770, 55154, 260274, 1167026, 5059890, 21442994, 89438514, 368866226, 1509026610, 6137242034, 24853275954, 100327829426, 404059098930, 1624486948274, 6522713868594, 26165182536626, 104883769004850, 420204307937714, 1682825158192434, 6737324873467826
Offset: 0
-
[384*4^n-576*3^n+220*2^n-14: n in [0..30]];
-
Table[384 4^n - 576 3^n + 220 2^n - 14, {n, 0, 30}]
-
a(n) = 384*4^n - 576*3^n + 220*2^n - 14; \\ Michel Marcus, Jul 03 2018
A327611
Number of length n reversible string structures that are not palindromic using exactly four different colors.
Original entry on oeis.org
0, 0, 0, 1, 6, 37, 182, 876, 3920, 17175, 73030, 306296, 1266916, 5198207, 21180642, 85909216, 347179440, 1399443775, 5629876910, 22616222616, 90754709276, 363889980927, 1458171985402, 5840531023856, 23385647663560, 93613189390175, 374664530448390
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (8,-10,-60,145,100,-470,120,456,-288).
-
concat([0,0,0], Vec((1 - 2*x - x^2 + 6*x^3 + 5*x^4 - 18*x^5)/((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 2*x^2)*(1 - 3*x^2)) + O(x^30))) \\ Andrew Howroyd, Sep 18 2019
A346954
Expansion of e.g.f. -log( 1 - (exp(x) - 1)^4 / 4! ).
Original entry on oeis.org
1, 10, 65, 350, 1736, 9030, 60355, 561550, 6188996, 69919850, 781211795, 8854058850, 106994019406, 1433756147470, 21287253921635, 339206526695750, 5630710652048216, 96341917117951890, 1708973354556320875, 31787279786739738250, 623964823224788294426
Offset: 4
-
nmax = 24; CoefficientList[Series[-Log[1 - (Exp[x] - 1)^4/4!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 4] &
a[n_] := a[n] = StirlingS2[n, 4] + (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 4] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 4, 24}]
A346843
E.g.f.: exp(exp(x) - 1) * (exp(x) - 1)^4 / 4!.
Original entry on oeis.org
1, 15, 155, 1400, 11991, 101031, 853315, 7300260, 63641006, 567304452, 5181338526, 48538121450, 466611951261, 4603782469653, 46613101232933, 484188586821376, 5157850655391981, 56321812548867229, 630125374420189131, 7219368394888423554, 84658119388335562972
Offset: 4
-
b:= proc(n, m) option remember;
`if`(n=0, binomial(m, 4), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=4..24); # Alois P. Heinz, Aug 05 2021
-
nmax = 24; CoefficientList[Series[Exp[Exp[x] - 1] (Exp[x] - 1)^4/4!, {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 4] &
Table[Sum[StirlingS2[n, k] Binomial[k, 4], {k, 0, n}], {n, 4, 24}]
Table[Sum[Binomial[n, k] StirlingS2[k, 4] BellB[n - k], {k, 0, n}], {n, 4, 24}]
Table[(BellB[n] - 24*BellB[n+1] + 29*BellB[n+2] - 10*BellB[n+3] + BellB[n+4])/24, {n, 4, 24}] (* Vaclav Kotesovec, Aug 06 2021 *)
With[{nn=30},Drop[CoefficientList[Series[(Exp[Exp[x]-1](Exp[x]-1)^4)/4!,{x,0,nn}],x] Range[0,nn]!,4]] (* Harvey P. Dale, Oct 03 2024 *)
-
my(x='x+O('x^25)); Vec(serlaplace(exp(exp(x)-1)*(exp(x)-1)^4/4!)) \\ Michel Marcus, Aug 06 2021
A383842
Expansion of 1/((1-x) * (1-2*x) * (1-3*x) * (1-4*x))^2.
Original entry on oeis.org
1, 20, 230, 2000, 14627, 95060, 567240, 3174400, 16904053, 86549620, 429352330, 2075659600, 9822847079, 45665147700, 209129160300, 945597624000, 4229196800505, 18738054705300, 82347219011950, 359322115058000, 1558151553849131, 6719660438870420, 28838298857544080
Offset: 0
-
a(n) = sum(k=0, n, stirling(k+4, 4, 2)*stirling(n-k+4, 4, 2));
A384988
a(n) = Stirling2(n,2)^2 + Stirling2(n,3).
Original entry on oeis.org
0, 1, 10, 55, 250, 1051, 4270, 17095, 68050, 270451, 1075030, 4276735, 17030650, 67881451, 270777790, 1080817975, 4316294050, 17244046051, 68912400550, 275457464815, 1101251874250, 4403270396251, 17607863991310, 70415790601255, 281616141147250, 1126323450484051
Offset: 1
3*a(2) = 3 because K(2,2,2) can be partitioned into 5 nonempty independent sets in exactly 3 ways.
- Vincenzo Librandi, Table of n, a(n) for n = 1..500
- Richard P. Stanley, Enumerative Combinatorics, Cambridge University Press.
- Eric Weisstein's World of Mathematics, Complete Multipartite Graph.
- Eric Weisstein's World of Mathematics, Stirling Number of the Second Kind.
- Index entries for linear recurrences with constant coefficients, signature (10,-35,50,-24).
-
[(6 - 3*2^(n+1) + 2*3^(n-1) + 4^n)/4: n in [1..30]]; // Vincenzo Librandi, Jul 24 2025
-
Table[(StirlingS2[n, 3] + StirlingS2[n, 2]^2), {n, 1, 20}]
A385312
a(n) is the number of ternary strings of length n with at least one 0, at least two 1's and at least three 2's.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 60, 455, 2268, 9366, 34800, 121077, 403392, 1304732, 4133220, 12900771, 39837684, 122064930, 371891592, 1128317489, 3412864056, 10299925992, 31033986588, 93394501983, 280818931020, 843832511150, 2534467085280, 7609793357805, 22843103816688, 68558705110836
Offset: 0
a(6) = 60 since the strings are the 60 permutations of 011222.
a(7) = 455 since the strings are the 210 permutations of 0011222, the 140 permutations of 0111222 and the 105 permutations of 0112222.
-
LinearRecurrence[{13, -72, 222, -417, 489, -350, 140, -24}, {0, 0, 0, 0, 0, 0, 60, 455, 2268, 9366, 34800, 121077}, 30] (* Amiram Eldar, Jun 28 2025 *)
A056473
Number of palindromic structures using exactly four different symbols.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 1, 10, 10, 65, 65, 350, 350, 1701, 1701, 7770, 7770, 34105, 34105, 145750, 145750, 611501, 611501, 2532530, 2532530, 10391745, 10391745, 42355950, 42355950, 171798901
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
StirlingS2[Floor[(Range[40]+1)/2],4] (* or *) LinearRecurrence[ {1,9,-9,-26,26,24,-24},{0,0,0,0,0,0,1},40] (* Harvey P. Dale, Mar 08 2013 *)
A126680
Product_{i=4..n} Stirling_2(i,4).
Original entry on oeis.org
1, 10, 650, 227500, 386977500, 3006815175000, 102547431543375000, 14946288147446906250000, 9139670148451930618781250000, 23146488841058967849982079062500000, 240532409681630323860212020187339062500000, 10187978717854649915906947316453923964296875000000, 1750283547138817933292555967231683354203766362734375000000
Offset: 4
A337314
a(n) is the number of n-digit positive integers with exactly four distinct base 10 digits.
Original entry on oeis.org
0, 0, 0, 4536, 45360, 294840, 1587600, 7715736, 35244720, 154700280, 661122000, 2773768536, 11487556080, 47136955320, 192126589200, 779279814936, 3149513947440, 12695388483960, 51073849285200, 205172877726936, 823325141746800, 3301203837670200, 13228529919066000
Offset: 1
a(1) = a(2) = a(3) = 0 since the positive integers must have at least four digits;
a(4) = #{wxyz in N | w,x,y,z are four different digits with w != 0} = A073531(4) = 4536;
a(5) = 45360 since #[99999] - #[9999] - #(11111*[9]) - A335843(5) - A337313(5) - #{vwxyz in N | v,w,x,y,z are five different digits with v != 0} = 99999 - 9999 - 9 - 1215 - 16200 - 9*9*8*7*6 = 45360;
...
-
LinearRecurrence[{10,-35,50,-24},{0,0,0,4536},23]
-
concat([0,0,0],Vec(4536*x^4/(1-10*x+35*x^2-50*x^3+24*x^4)+O(x^24)))
Comments