cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A305862 a(n) = 384*4^n - 576*3^n + 220*2^n - 14.

Original entry on oeis.org

14, 234, 1826, 10770, 55154, 260274, 1167026, 5059890, 21442994, 89438514, 368866226, 1509026610, 6137242034, 24853275954, 100327829426, 404059098930, 1624486948274, 6522713868594, 26165182536626, 104883769004850, 420204307937714, 1682825158192434, 6737324873467826
Offset: 0

Views

Author

Vincenzo Librandi, Jun 15 2018

Keywords

Comments

From Bruno Berselli, Jun 15 2018: (Start)
a(0) = 2*7 and a(40) = 2*232110255958477539427146457 are semiprimes. For which values of n > 40 is a(n) semiprime?
For odd n, a(n) is divisible by 2*3.
For n == 3 (mod 4), a(n) is divisible by 2*3*5.
For n == 0 or 5 (mod 6), a(n) is divisible by 2*7.
For n == 2 or 4 (mod 5), a(n) is divisible by 2*11.
For n == 1 or 11 (mod 12), a(n) is divisible by 2*3*13.
For n == 15 (mod 16), a(n) is divisible by 2*3*5*17^2, etc.
If a(n) is divisible by 37 then it is also divisible by 3*5*7*13*19*73. (End)

Crossrefs

Programs

  • Magma
    [384*4^n-576*3^n+220*2^n-14: n in [0..30]];
    
  • Mathematica
    Table[384 4^n - 576 3^n + 220 2^n - 14, {n, 0, 30}]
  • PARI
    a(n) = 384*4^n - 576*3^n + 220*2^n - 14; \\ Michel Marcus, Jul 03 2018

Formula

G.f.: 2*(7 + 47*x - 12*x^2)/((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)).
a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4).
a(n) = 14*A000453(n+4) + 94*A000453(n+3) - 24*A000453(n+2) for n>1. - Bruno Berselli, Jun 15 2018

A327611 Number of length n reversible string structures that are not palindromic using exactly four different colors.

Original entry on oeis.org

0, 0, 0, 1, 6, 37, 182, 876, 3920, 17175, 73030, 306296, 1266916, 5198207, 21180642, 85909216, 347179440, 1399443775, 5629876910, 22616222616, 90754709276, 363889980927, 1458171985402, 5840531023856, 23385647663560, 93613189390175, 374664530448390
Offset: 1

Views

Author

Andrew Howroyd, Sep 18 2019

Keywords

Crossrefs

Column k=4 of A309748.

Programs

  • PARI
    concat([0,0,0], Vec((1 - 2*x - x^2 + 6*x^3 + 5*x^4 - 18*x^5)/((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 2*x^2)*(1 - 3*x^2)) + O(x^30))) \\ Andrew Howroyd, Sep 18 2019

Formula

a(n) = A056328(n) - A000453(ceiling(n/2), 4).
a(n) = 8*a(n-1) - 10*a(n-2) - 60*a(n-3) + 145*a(n-4) + 100*a(n-5) - 470*a(n-6) + 120*a(n-7) + 456*a(n-8) - 288*a(n-9) for n > 9.
G.f.: x^4*(1 - 2*x - x^2 + 6*x^3 + 5*x^4 - 18*x^5)/((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 2*x^2)*(1 - 3*x^2)).

A346954 Expansion of e.g.f. -log( 1 - (exp(x) - 1)^4 / 4! ).

Original entry on oeis.org

1, 10, 65, 350, 1736, 9030, 60355, 561550, 6188996, 69919850, 781211795, 8854058850, 106994019406, 1433756147470, 21287253921635, 339206526695750, 5630710652048216, 96341917117951890, 1708973354556320875, 31787279786739738250, 623964823224788294426
Offset: 4

Views

Author

Ilya Gutkovskiy, Aug 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[-Log[1 - (Exp[x] - 1)^4/4!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 4] &
    a[n_] := a[n] = StirlingS2[n, 4] + (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 4] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 4, 24}]

Formula

a(n) = Stirling2(n,4) + (1/n) * Sum_{k=1..n-1} binomial(n,k) * Stirling2(n-k,4) * k * a(k).
a(n) ~ (n-1)! / (log(2^(3/4)*3^(1/4) + 1))^n. - Vaclav Kotesovec, Aug 09 2021
a(n) = Sum_{k=1..floor(n/4)} (4*k)! * Stirling2(n,4*k)/(k * 24^k). - Seiichi Manyama, Jan 23 2025

A346843 E.g.f.: exp(exp(x) - 1) * (exp(x) - 1)^4 / 4!.

Original entry on oeis.org

1, 15, 155, 1400, 11991, 101031, 853315, 7300260, 63641006, 567304452, 5181338526, 48538121450, 466611951261, 4603782469653, 46613101232933, 484188586821376, 5157850655391981, 56321812548867229, 630125374420189131, 7219368394888423554, 84658119388335562972
Offset: 4

Views

Author

Ilya Gutkovskiy, Aug 05 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember;
         `if`(n=0, binomial(m, 4), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=4..24);  # Alois P. Heinz, Aug 05 2021
  • Mathematica
    nmax = 24; CoefficientList[Series[Exp[Exp[x] - 1] (Exp[x] - 1)^4/4!, {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 4] &
    Table[Sum[StirlingS2[n, k] Binomial[k, 4], {k, 0, n}], {n, 4, 24}]
    Table[Sum[Binomial[n, k] StirlingS2[k, 4] BellB[n - k], {k, 0, n}], {n, 4, 24}]
    Table[(BellB[n] - 24*BellB[n+1] + 29*BellB[n+2] - 10*BellB[n+3] + BellB[n+4])/24, {n, 4, 24}] (* Vaclav Kotesovec, Aug 06 2021 *)
    With[{nn=30},Drop[CoefficientList[Series[(Exp[Exp[x]-1](Exp[x]-1)^4)/4!,{x,0,nn}],x] Range[0,nn]!,4]] (* Harvey P. Dale, Oct 03 2024 *)
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(exp(exp(x)-1)*(exp(x)-1)^4/4!)) \\ Michel Marcus, Aug 06 2021

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k) * binomial(k,4).
a(n) = Sum_{k=0..n} binomial(n,k) * Stirling2(k,4) * Bell(n-k).
a(n) = (Bell(n) - 24*Bell(n+1) + 29*Bell(n+2) - 10*Bell(n+3) + Bell(n+4))/24. - Vaclav Kotesovec, Aug 06 2021

A383842 Expansion of 1/((1-x) * (1-2*x) * (1-3*x) * (1-4*x))^2.

Original entry on oeis.org

1, 20, 230, 2000, 14627, 95060, 567240, 3174400, 16904053, 86549620, 429352330, 2075659600, 9822847079, 45665147700, 209129160300, 945597624000, 4229196800505, 18738054705300, 82347219011950, 359322115058000, 1558151553849131, 6719660438870420, 28838298857544080
Offset: 0

Views

Author

Seiichi Manyama, May 12 2025

Keywords

Crossrefs

Column k=4 of A383843.
Cf. A000453.

Programs

  • PARI
    a(n) = sum(k=0, n, stirling(k+4, 4, 2)*stirling(n-k+4, 4, 2));

Formula

a(n) = 20*a(n-1) - 170*a(n-2) + 800*a(n-3) - 2273*a(n-4) + 3980*a(n-5) - 4180*a(n-6) + 2400*a(n-7) - 576*a(n-8).
a(n) = Sum_{k=0..n} Stirling2(k+4,4) * Stirling2(n-k+4,4).

A384988 a(n) = Stirling2(n,2)^2 + Stirling2(n,3).

Original entry on oeis.org

0, 1, 10, 55, 250, 1051, 4270, 17095, 68050, 270451, 1075030, 4276735, 17030650, 67881451, 270777790, 1080817975, 4316294050, 17244046051, 68912400550, 275457464815, 1101251874250, 4403270396251, 17607863991310, 70415790601255, 281616141147250, 1126323450484051
Offset: 1

Views

Author

Julian Allagan, Jun 14 2025

Keywords

Comments

Also, one third of the number of proper vertex colorings of the n-complete tripartite graph using exactly 5 interchangeable colors.
The complete 3-partite graph K(n,n,n) has 3n vertices partitioned into three sets of size n each, with edges between every pair of vertices from different sets. 3*a(n) = 0 for n < 2 because we need at least 2 vertices per partition to create 5 nonempty independent sets.

Examples

			3*a(2) = 3 because K(2,2,2) can be partitioned into 5 nonempty independent sets in exactly 3 ways.
		

Crossrefs

Programs

  • Magma
    [(6 - 3*2^(n+1) + 2*3^(n-1) + 4^n)/4: n in [1..30]]; // Vincenzo Librandi, Jul 24 2025
  • Mathematica
    Table[(StirlingS2[n, 3] + StirlingS2[n, 2]^2), {n, 1, 20}]

Formula

3*a(n) = 2^(2*n - 2) + (1/2)*3^(n - 1) - 3*2^(n - 1) + 3/2 for n >= 1.
G.f.: 1/(4*(1 - 4*x)) + 1/(6*(1 - 3*x)) - 3/(2*(1 - 2*x)) + 3/(2*(1 - x)).
a(n) = A385432(n, 5) / 3 = A060867(n-1) + A000392(n).
From Stefano Spezia, Jun 14 2025: (Start)
a(n) = (6 - 3*2^(n+1) + 2*3^(n-1) + 4^n)/4.
E.g.f.: (exp(x) - 1)^2*(3*exp(2*x) + 8*exp(x) - 5)/12. (End)
a(n) = A000453(n+2) -10*A000453(n). - R. J. Mathar, Jul 20 2025

A385312 a(n) is the number of ternary strings of length n with at least one 0, at least two 1's and at least three 2's.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 60, 455, 2268, 9366, 34800, 121077, 403392, 1304732, 4133220, 12900771, 39837684, 122064930, 371891592, 1128317489, 3412864056, 10299925992, 31033986588, 93394501983, 280818931020, 843832511150, 2534467085280, 7609793357805, 22843103816688, 68558705110836
Offset: 0

Views

Author

Enrique Navarrete, Jun 25 2025

Keywords

Examples

			a(6) = 60 since the strings are the 60 permutations of 011222.
a(7) = 455 since the strings are the 210 permutations of 0011222, the 140 permutations of 0111222 and the 105 permutations of 0112222.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{13, -72, 222, -417, 489, -350, 140, -24}, {0, 0, 0, 0, 0, 0, 60, 455, 2268, 9366, 34800, 121077}, 30] (* Amiram Eldar, Jun 28 2025 *)

Formula

a(n) = 3^n - 2^(n-2)*(binomial(n,2) + 4*n + 12) + 3*binomial(n,3) + 4*binomial(n,2) + 4*n + 3 for n>=4.
E.g.f.: (exp(x) - x^2/2 - x - 1)*(exp(x) - x - 1)*(exp(x) - 1).
G.f.: x^6*(60 - 325*x +673*x^2 - 678*x^3 + 348*x^4 - 72*x^5)/((1 - x)^4*(1 - 2*x)^3*(1 - 3*x)). - Stefano Spezia, Jun 25 2025

A056473 Number of palindromic structures using exactly four different symbols.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 10, 10, 65, 65, 350, 350, 1701, 1701, 7770, 7770, 34105, 34105, 145750, 145750, 611501, 611501, 2532530, 2532530, 10391745, 10391745, 42355950, 42355950, 171798901
Offset: 1

Views

Author

Keywords

Comments

Permuting the symbols will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Programs

  • Mathematica
    StirlingS2[Floor[(Range[40]+1)/2],4] (* or *) LinearRecurrence[ {1,9,-9,-26,26,24,-24},{0,0,0,0,0,0,1},40] (* Harvey P. Dale, Mar 08 2013 *)

Formula

stirling2( [(n+1)/2], 4).
G.f.: x^7/((x-1)*(2*x-1)*(2*x+1)*(2*x^2-1)*(3*x^2-1)). [Colin Barker, Jul 24 2012]
a(1)=a(2)=a(3)=a(4)=a(5)=a(6)=0, a(7)=1, a(n)=a(n-1)+9*a(n-2)-9*a(n-3)- 26*a(n-4)+ 26*a(n-5)+24*a(n-6)-24*a (n-7). - Harvey P. Dale, Mar 08 2013

A126680 Product_{i=4..n} Stirling_2(i,4).

Original entry on oeis.org

1, 10, 650, 227500, 386977500, 3006815175000, 102547431543375000, 14946288147446906250000, 9139670148451930618781250000, 23146488841058967849982079062500000, 240532409681630323860212020187339062500000, 10187978717854649915906947316453923964296875000000, 1750283547138817933292555967231683354203766362734375000000
Offset: 4

Views

Author

N. J. A. Sloane, Feb 13 2007

Keywords

Crossrefs

Partial products of A000453.

A337314 a(n) is the number of n-digit positive integers with exactly four distinct base 10 digits.

Original entry on oeis.org

0, 0, 0, 4536, 45360, 294840, 1587600, 7715736, 35244720, 154700280, 661122000, 2773768536, 11487556080, 47136955320, 192126589200, 779279814936, 3149513947440, 12695388483960, 51073849285200, 205172877726936, 823325141746800, 3301203837670200, 13228529919066000
Offset: 1

Views

Author

Stefano Spezia, Sep 26 2020

Keywords

Comments

a(n) is the number of n-digit numbers in A031969.

Examples

			a(1) = a(2) = a(3) = 0 since the positive integers must have at least four digits;
a(4) = #{wxyz in N | w,x,y,z are four different digits with w != 0} = A073531(4) = 4536;
a(5) = 45360 since #[99999] - #[9999] - #(11111*[9]) - A335843(5) - A337313(5) - #{vwxyz in N | v,w,x,y,z are five different digits with v != 0} = 99999 - 9999 - 9 - 1215 - 16200 - 9*9*8*7*6 = 45360;
...
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10,-35,50,-24},{0,0,0,4536},23]
  • PARI
    concat([0,0,0],Vec(4536*x^4/(1-10*x+35*x^2-50*x^3+24*x^4)+O(x^24)))

Formula

O.g.f.: 4536*x^4/(1 - 10*x + 35*x^2 - 50*x^3 + 24*x^4).
E.g.f.: 189*(exp(x) - 1)^4.
a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4) for n > 4.
a(n) = 4536*S2(n, 4) where S2(n, 4) = A000453(n).
a(n) = 189*(4^n - 4*3^n + 3*2^(n+1) - 4).
a(n) ~ 189 * 4^n.
a(n) = 189*(A000302(n) - 4*A000244(n) + 3*A000079(n+1) - 4).
a(n) = A337127(n, 4).
Previous Showing 21-30 of 31 results. Next