cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 68 results. Next

A101104 a(1)=1, a(2)=12, a(3)=23, and a(n)=24 for n>=4.

Original entry on oeis.org

1, 12, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24
Offset: 1

Views

Author

Cecilia Rossiter, Dec 15 2004

Keywords

Comments

Original name: The first summation of row 4 of Euler's triangle - a row that will recursively accumulate to the power of 4.

Crossrefs

For other sequences based upon MagicNKZ(n,k,z):
..... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7
---------------------------------------------------------------------------
z = 0 | A000007 | A019590 | .......MagicNKZ(n,k,0) = A008292(n,k+1) .......
z = 1 | A000012 | A040000 | A101101 | thisSeq | A101100 | ....... | .......
z = 2 | A000027 | A005408 | A008458 | A101103 | A101095 | ....... | .......
z = 3 | A000217 | A000290 | A003215 | A005914 | A101096 | ....... | .......
z = 4 | A000292 | A000330 | A000578 | A005917 | A101098 | ....... | .......
z = 5 | A000332 | A002415 | A000537 | A000583 | A022521 | ....... | A255181
Cf. A101095 for an expanded table and more about MagicNKZ.

Programs

  • Mathematica
    MagicNKZ = Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 4, 4}, {z, 1, 1}, {k, 0, 34}]
    Join[{1, 12, 23},LinearRecurrence[{1},{24},56]] (* Ray Chandler, Sep 23 2015 *)

Formula

a(k) = MagicNKZ(4,k,1) where MagicNKZ(n,k,z) = Sum_{j=0..k+1} (-1)^j*binomial(n+1-z,j)*(k-j+1)^n (cf. A101095). That is, a(k) = Sum_{j=0..k+1} (-1)^j*binomial(4, j)*(k-j+1)^4.
a(1)=1, a(2)=12, a(3)=23, and a(n)=24 for n>=4. - Joerg Arndt, Nov 30 2014
G.f.: x*(1+11*x+11*x^2+x^3)/(1-x). - Colin Barker, Apr 16 2012

Extensions

New name from Joerg Arndt, Nov 30 2014
Original Formula edited and Crossrefs table added by Danny Rorabaugh, Apr 22 2015

A023002 Sum of 10th powers.

Original entry on oeis.org

0, 1, 1025, 60074, 1108650, 10874275, 71340451, 353815700, 1427557524, 4914341925, 14914341925, 40851766526, 102769130750, 240627622599, 529882277575, 1106532668200, 2206044295976, 4222038196425, 7792505423049, 13923571680850
Offset: 0

Views

Author

Keywords

Crossrefs

Sequences of the form Sum_{j=0..n} j^m : A000217 (m=1), A000330 (m=2), A000537 (m=3), A000538 (m=4), A000539 (m=5), A000540 (m=6), A000541 (m=7), A000542 (m=8), A007487 (m=9), this sequence (m=10), A123095 (m=11), A123094 (m=12), A181134 (m=13).
Row 10 of array A103438.

Programs

Formula

a(n) = n*(n+1)*(2*n+1)*(n^2+n-1)(3*n^6 +9*n^5 +2*n^4 -11*n^3 +3*n^2 +10*n -5)/66 (see MathWorld, Power Sum, formula 40). - Bruno Berselli, Apr 26 2010
a(n) = n*A007487(n) - Sum_{i=0..n-1} A007487(i). - Bruno Berselli, Apr 27 2010
From Bruno Berselli, Aug 23 2011: (Start)
a(n) = -a(-n-1).
G.f.: x*(1+x)*(1 +1012*x +46828*x^2 +408364*x^3 +901990*x^4 +408364*x^5 +46828*x^6 +1012*x^7 +x^8)/(1-x)^12. (End)
a(n) = (-1)*Sum_{j=1..10} j*Stirling1(n+1,n+1-j)*Stirling2(n+10-j,n). - Mircea Merca, Jan 25 2014
a(n) = Sum_{i=1..n} J_10(i)*floor(n/i), where J_10 is A069095. - Ridouane Oudra, Jul 17 2025

A059977 a(n) = binomial(n+2, 2)^4.

Original entry on oeis.org

1, 81, 1296, 10000, 50625, 194481, 614656, 1679616, 4100625, 9150625, 18974736, 37015056, 68574961, 121550625, 207360000, 342102016, 547981281, 855036081, 1303210000, 1944810000, 2847396321, 4097152081, 5802782976, 8100000000, 11156640625, 15178486401
Offset: 0

Views

Author

Robert G. Wilson v, Mar 06 2001

Keywords

Comments

Number of 4-dimensional cage assemblies.
See Chap. 61, "Hyperspace Prisons", of C. Pickover's book "Wonders of Numbers" for full explanation of "cage numbers."

Examples

			1 = (1 + 1)/2, 81 = (33 + 129)/2, 1296 = (276 + 2316)/2, 10000 = (1300 + 18700)/2, ... - _Philippe Deléham_, May 25 2015
		

References

  • Clifford A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Oxford University Press, 2001, p. 325.

Crossrefs

Cf. A168364 (first differences).

Programs

  • Maple
    with (combinat):seq(mul(stirling2(n+1,n),k=1..4),n=1..24); # Zerinvary Lajos, Dec 16 2007
  • Mathematica
    m = 4; Table[ ( (n^m)(n + 1)^m )/(2^m), {n, 1, 30} ]
  • PARI
    a(n) = { ((n + 1)*(n + 2)/2)^4 } \\ Harry J. Smith, Jun 30 2009
  • Sage
    [stirling_number2(n+1,n)^4for n in range(1,25)] # Zerinvary Lajos, Mar 14 2009
    

Formula

L(n) = ((n^m)(n + 1)^m)/(2^m) where m is the dimension, which in this case is 4.
O.g.f.: -(1+72*x+603*x^2+1168*x^3+603*x^4+72*x^5+x^6)/(-1+x)^9. - R. J. Mathar, Mar 31 2008
a(n) = A000217(n+1)^4. - R. J. Mathar, Dec 13 2011
a(n) = (A000539(n+1) + A000541(n+1))/2. - Philippe Deléham, May 25 2015
From Amiram Eldar, May 15 2022: (Start)
Sum_{n>=0} 1/a(n) = 160*Pi^2/3 + 16*Pi^4/45 - 560.
Sum_{n>=0} (-1)^n/a(n) = 560 - 640*log(2) - 96*zeta(3). (End)

Extensions

Better definition from Zerinvary Lajos, May 23 2006

A254644 Fourth partial sums of fifth powers (A000584).

Original entry on oeis.org

1, 36, 381, 2336, 10326, 36552, 110022, 292512, 704847, 1567852, 3263403, 6422208, 12046268, 21675408, 37608828, 63194304, 103199469, 164281524, 255573769, 389409504, 582206130, 855534680, 1237402530, 1763779680, 2480401755, 3444885756, 4729197591, 6422513536, 8634521016, 11499207456
Offset: 1

Views

Author

Luciano Ancora, Feb 05 2015

Keywords

Examples

			Fifth differences:   1, 27,  93,  119,   120, (repeat 120) (A101100)
Fourth differences:  1, 28, 121,  240,   360,   480, ...   (A101095)
Third differences:   1, 29, 150,  390,   750,  1230, ...   (A101096)
Second differences:  1, 30, 180,  570,  1320,  2550, ...   (A101098)
First differences:   1, 31, 211,  781,  2101,  4651, ...   (A022521)
-------------------------------------------------------------------------
The fifth powers:    1, 32, 243, 1024,  3125,  7776, ...   (A000584)
-------------------------------------------------------------------------
First partial sums:  1, 33, 276, 1300,  4425, 12201, ...   (A000539)
Second partial sums: 1, 34, 310, 1610,  6035, 18236, ...   (A101092)
Third partial sums:  1, 35, 345, 1955,  7990, 26226, ...   (A101099)
Fourth partial sums: 1, 36, 381, 2336, 10326, 36552, ...   (this sequence)
		

Crossrefs

Cf. A101091 (fourth partial sums of fourth powers).

Programs

  • GAP
    List([1..30], n-> Binomial(n+4,5)*(5*(n+2)^4 -35*(n+2)^2 +36)/126); # G. C. Greubel, Aug 28 2019
  • Magma
    [Binomial(n+4,5)*(5*(n+2)^4 -35*(n+2)^2 +36)/126: n in [1..30]]; // G. C. Greubel, Aug 28 2019
    
  • Maple
    seq(binomial(n+4,5)*(5*(n+2)^4 -35*(n+2)^2 +36)/126, n=1..30); # G. C. Greubel, Aug 28 2019
  • Mathematica
    Table[n(1+n)(2+n)(3+n)(4+n)(-24 +20n +85n^2 +40n^3 +5n^4)/15120, {n, 30}] (* or *) Accumulate[Accumulate[Accumulate[Accumulate[Range[24]^5]]]] (* or *) CoefficientList[Series[(1 +26x +66x^2 +26x^3 +x^4)/(1-x)^10, {x, 0, 30}], x]
    Nest[Accumulate,Range[30]^5,4] (* or *) LinearRecurrence[{10,-45,120, -210,252,-210,120,-45,10,-1}, {1,36,381,2336,10326,36552,110022,292512, 704847,1567852},30] (* Harvey P. Dale, May 08 2016 *)
  • PARI
    vector(30, n, m=n+2; binomial(m+2,5)*(5*m^4 -35*m^2 +36)/126) \\ G. C. Greubel, Aug 28 2019
    
  • Sage
    [binomial(n+4,5)*(5*(n+2)^4 -35*(n+2)^2 +36)/126 for n in (1..30)] # G. C. Greubel, Aug 28 2019
    

Formula

G.f.: x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4)/(1 - x)^10.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(-24 + 20*n + 85*n^2 + 40*n^3 + 5*n^4)/15120.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + n^5.

Extensions

Edited by Bruno Berselli, Feb 10 2015

A254682 Fifth partial sums of fifth powers (A000584).

Original entry on oeis.org

1, 37, 418, 2754, 13080, 49632, 159654, 452166, 1157013, 2724865, 5988268, 12410476, 24456744, 46132152, 83740980, 146935284, 250134753, 414416277, 669990046, 1059399550, 1641605680, 2497140360, 3734542890, 5498322570
Offset: 1

Views

Author

Luciano Ancora, Feb 12 2015

Keywords

Examples

			Fifth differences:   1, 27,  93,  119,   120, (repeat 120) (A101100)
Fourth differences:  1, 28, 121,  240,   360,   480, ...   (A101095)
Third differences:   1, 29, 150,  390,   750,  1230, ...   (A101096)
Second differences:  1, 30, 180,  570,  1320,  2550, ...   (A101098)
First differences:   1, 31, 211,  781,  2101,  4651, ...   (A022521)
-------------------------------------------------------------------------
The fifth powers:    1, 32, 243, 1024,  3125,  7776, ...   (A000584)
-------------------------------------------------------------------------
First partial sums:  1, 33, 276, 1300,  4425, 12201, ...   (A000539)
Second partial sums: 1, 34, 310, 1610,  6035, 18236, ...   (A101092)
Third partial sums:  1, 35, 345, 1955,  7990, 26226, ...   (A101099)
Fourth partial sums: 1, 36, 381, 2336, 10326, 36552, ...   (A254644)
Fifth partial sums:  1, 37, 418, 2754, 13080, 49632, ...   (this sequence)
		

Crossrefs

Programs

  • Mathematica
    Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (- 2 + 5 n + n^2) (9 + 10 n + 2 n^2)/60480, {n,24}] (* or *)
    CoefficientList[Series[(- 1 - 26 x - 66 x^2 - 26 x^3 - x^4)/(- 1 + x)^11, {x,0,23}], x]
    Nest[Accumulate,Range[30]^5,5] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,37,418,2754,13080,49632,159654,452166,1157013,2724865,5988268},30] (* Harvey P. Dale, Jan 30 2019 *)
  • PARI
    a(n)=n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(-2+5*n+n^2)*(9+10*n+2*n^2)/60480 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (- x - 26*x^2 - 66*x^3 - 26*x^4 - x^5)/(- 1 + x)^11.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(- 2 + 5*n + n^2)*(9 + 10*n + 2*n^2)/60480.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + n^5.
Sum_{n>=1} 1/a(n) = 475867/180 - (2560/13)*sqrt(7)*Pi*tan(sqrt(7)*Pi/2) + (210/13)*sqrt(3/11)*Pi*tan(sqrt(33)*Pi/2). - Amiram Eldar, Jan 27 2022

A101095 Fourth difference of fifth powers (A000584).

Original entry on oeis.org

1, 28, 121, 240, 360, 480, 600, 720, 840, 960, 1080, 1200, 1320, 1440, 1560, 1680, 1800, 1920, 2040, 2160, 2280, 2400, 2520, 2640, 2760, 2880, 3000, 3120, 3240, 3360, 3480, 3600, 3720, 3840, 3960, 4080, 4200, 4320, 4440, 4560, 4680, 4800, 4920, 5040, 5160, 5280
Offset: 1

Views

Author

Cecilia Rossiter, Dec 15 2004

Keywords

Comments

Original Name: Shells (nexus numbers) of shells of shells of shells of the power of 5.
The (Worpitzky/Euler/Pascal Cube) "MagicNKZ" algorithm is: MagicNKZ(n,k,z) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n, with k>=0, n>=1, z>=0. MagicNKZ is used to generate the n-th accumulation sequence of the z-th row of the Euler Triangle (A008292). For example, MagicNKZ(3,k,0) is the 3rd row of the Euler Triangle (followed by zeros) and MagicNKZ(10,k,1) is the partial sums of the 10th row of the Euler Triangle. This sequence is MagicNKZ(5,k-1,2).

Crossrefs

Fourth differences of A000584, third differences of A022521, second differences of A101098, and first differences of A101096.
For other sequences based upon MagicNKZ(n,k,z):
...... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7 | n = 8
--------------------------------------------------------------------------------------
z = 0 | A000007 | A019590 | ....... MagicNKZ(n,k,0) = T(n,k+1) from A008292 .......
z = 1 | A000012 | A040000 | A101101 | A101104 | A101100 | ....... | ....... | .......
z = 2 | A000027 | A005408 | A008458 | A101103 | thisSeq | ....... | ....... | .......
z = 3 | A000217 | A000290 | A003215 | A005914 | A101096 | ....... | ....... | .......
z = 4 | A000292 | A000330 | A000578 | A005917 | A101098 | ....... | ....... | .......
z = 5 | A000332 | A002415 | A000537 | A000583 | A022521 | ....... | A255181 | .......
z = 12 | A001288 | A057788 | ....... | A254870 | A254471 | A254683 | A254646 | A254642
z = 13 | A010965 | ....... | ....... | ....... | A254871 | A254472 | A254684 | A254647
z = 14 | A010966 | ....... | ....... | ....... | ....... | A254872 | ....... | .......
--------------------------------------------------------------------------------------
Cf. A047969.

Programs

  • Magma
    I:=[1,28,121,240,360]; [n le 5 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, May 07 2015
    
  • Mathematica
    MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 5, 5}, {z, 2, 2}, {k, 0, 34}]
    CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/(1 - x)^2, {x, 0, 50}], x] (* Vincenzo Librandi, May 07 2015 *)
    Join[{1,28,121,240},Differences[Range[50]^5,4]] (* or *) LinearRecurrence[{2,-1},{1,28,121,240,360},50] (* Harvey P. Dale, Jun 11 2016 *)
  • PARI
    a(n)=if(n>3, 120*n-240, 33*n^2-72*n+40) \\ Charles R Greathouse IV, Oct 11 2015
  • Sage
    [1,28,121]+[120*(k-2) for k in range(4,36)] # Danny Rorabaugh, Apr 23 2015
    

Formula

a(k+1) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n; n = 5, z = 2.
For k>3, a(k) = Sum_{j=0..4} (-1)^j*binomial(4, j)*(k - j)^5 = 120*(k - 2).
a(n) = 2*a(n-1) - a(n-2), n>5. G.f.: x*(1+26*x+66*x^2+26*x^3+x^4) / (1-x)^2. - Colin Barker, Mar 01 2012

Extensions

MagicNKZ material edited, Crossrefs table added, SeriesAtLevelR material removed by Danny Rorabaugh, Apr 23 2015
Name changed and keyword 'uned' removed by Danny Rorabaugh, May 06 2015

A101100 The first summation of row 5 of Euler's triangle - a row that will recursively accumulate to the power of 5.

Original entry on oeis.org

1, 27, 93, 119, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120
Offset: 1

Views

Author

Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 533.

Crossrefs

Within the "cube" of related sequences with construction based upon MaginNKZ formula, with n downward, k rightward and z backward: Before: this sequence, A101095, A101096, A101098, A022521, A000584, A000539, A101092, A101099. Above: A101104, this sequence.
Within the "cube" of related sequences with construction based upon SeriesAtLevelR formula, with n downward, x rightward and r backward: Before: this sequence, A101095, A101096, A101098, A022521, A000584, A000539, A101092, A101099.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x*(1+26*x+66*x^2+26*x^3+x^4)/(1-x) )); // G. C. Greubel, May 07 2019
    
  • Mathematica
    MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}]; Table[MagicNKZ, {n, 5, 5}, {z, 1, 1}, {k, 0, 34}]
    (* or *)
    SeriesAtLevelR = Sum[Eulerian[n, i-1]*Binomial[n+x-i+r, n+r], {i,1,n}]; Table[SeriesAtLevelR, {n, 5, 5}, {r, -5, -5}, {x, 5, 35}]
  • PARI
    {a(n) = if(n==1, 1, if(n==2, 27, if(n==3, 93, if(n==4, 119, 120))) )}; \\ G. C. Greubel, May 07 2019
    
  • Sage
    a=(x*(1+26*x+66*x^2+26*x^3+x^4)/(1-x)).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, May 07 2019

Formula

a(n) = 120, n>4.
a(n) = Sum_{j=1..m} Eulerian(m, j-1)*binomial(m+n-j+r, m+r), with m = 5, r = -5.
a(n) = Sum_{j=0..n+1} (-1)^j*binomial(m+1-z, j)*(n-j+1)^n, with m = 5, z = 1.
G.f.: x*(1+26*x+66*x^2+26*x^3+x^4)/(1-x). - Colin Barker, Mar 01 2012

A154231 Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + ((n+1)^2*(n+2)^2*(2*n^2 +6*n +3)/12)*T(n-2, k-1), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 278, 1, 1, 1579, 1579, 1, 1, 6005, 1233308, 6005, 1, 1, 18207, 20504692, 20504692, 18207, 1, 1, 47216, 194715939, 35816807848, 194715939, 47216, 1, 1, 108993, 1319518787, 1302709376779, 1302709376779, 1319518787, 108993, 1, 1, 229819, 7024500980, 24830582225241, 4330171226988158, 24830582225241, 7024500980, 229819, 1
Offset: 0

Views

Author

Roger L. Bagula, Jan 05 2009

Keywords

Comments

Row sums are: {1, 2, 280, 3160, 1245320, 41045800, 36206334160, ...}.
The row sums of this class of sequences (see cross-references) is given by the following. Let S(n) be the row sum then S(n) = 2*S(n-1) + f(n)*S(n-2) for a given f(n). For this sequence f(n) = (n+1)^2*(n+2)^2*(2*n^2 +6*n +3)/12 = A000539(n+1). - G. C. Greubel, Mar 02 2021

Examples

			Triangle begins as:
  1;
  1,      1;
  1,    278,          1;
  1,   1579,       1579,             1;
  1,   6005,    1233308,          6005,             1;
  1,  18207,   20504692,      20504692,         18207,          1;
  1,  47216,  194715939,   35816807848,     194715939,      47216,      1;
  1, 108993, 1319518787, 1302709376779, 1302709376779, 1319518787, 108993, 1;
		

Crossrefs

Cf. A000539 (powers of 5).

Programs

  • Magma
    f:= func< n | Binomial(n+2,2)^2*(2*n^2+6*n+3)/3 >;
    function T(n,k)
      if k eq 0 or k eq n then return 1;
      else return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 02 2021
  • Maple
    T:= proc(n, k) option remember;
          if k=0 or k=n then 1
        else T(n-1, k) + T(n-1, k-1) + ((n+1)^2*(n+2)^2*(2*n^2+6*n+3)/12)*T(n-2, k-1)
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 02 2021
  • Mathematica
    T[n_, k_]:= T[n,k]= If[k==0 || k==n, 1, T[n-1, k] + T[n-1, k-1] + ((n+1)^2*(n+2)^2*(2*n^2+6*n+3)/12)*T[n-2, k-1] ];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Mar 02 2021 *)
  • Sage
    def f(n): return binomial(n+2,2)^2*(2*n^2+6*n+3)/3
    def T(n,k):
        if (k==0 or k==n): return 1
        else: return T(n-1, k) + T(n-1, k-1) + f(n)*T(n-2, k-1)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 02 2021
    

Formula

T(n, k) = T(n-1, k) + T(n-1, k-1) + ((n+1)^2*(n+2)^2*(2*n^2 +6*n +3)/12)*T(n-2, k-1) with T(n, 0) = T(n, n) = 1.

Extensions

Edited by G. C. Greubel, Mar 02 2021

A254471 Sixth partial sums of fifth powers (A000584).

Original entry on oeis.org

1, 38, 456, 3210, 16290, 65922, 225576, 677742, 1834755, 4559620, 10547888, 22958364, 47415108, 93547260, 177288240, 324223524, 574358277, 988774554, 1658764600, 2718164150, 4359769830, 6856910190, 10591453080, 16089775650, 24068499975, 35492110056
Offset: 1

Views

Author

Luciano Ancora, Feb 15 2015

Keywords

Examples

			First differences:   1, 31, 211,  781,  2101,  4651, ... (A022521)
-------------------------------------------------------------------------
The fifth powers:    1, 32, 243, 1024,  3125,  7776, ... (A000584)
-------------------------------------------------------------------------
First partial sums:  1, 33, 276, 1300,  4425, 12201, ... (A000539)
Second partial sums: 1, 34, 310, 1610,  6035, 18236, ... (A101092)
Third partial sums:  1, 35, 345, 1955,  7990, 26226, ... (A101099)
Fourth partial sums: 1, 36, 381, 2336, 10326, 36552, ... (A254644)
Fifth partial sums:  1, 37, 418, 2754, 13080, 49632, ... (A254682)
Sixth partial sums:  1, 38, 456, 3210, 16290, 65922, ... (this sequence)
		

Crossrefs

Programs

  • Magma
    [n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n)*(-29+54*n+ 81*n^2+24*n^3+2*n^4)/665280: n in [1..30]]; // Vincenzo Librandi, Feb 15 2015
    
  • Mathematica
    Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (6 + n) (- 29 + 54 n + 81 n^2 + 24 n^3 + 2 n^4)/665280, {n, 23}] (* or *) CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/(- 1 + x)^12, {x, 0, 28}], x]
  • PARI
    vector(50,n,n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(-29 + 54*n + 81*n^2 + 24*n^3 + 2*n^4)/665280) \\ Derek Orr, Feb 19 2015

Formula

G.f.: (x + 26*x^2 + 66*x^3 + 26*x^4 + x^5)/(- 1 + x)^12.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(-29 + 54*n + 81*n^2 + 24*n^3 + 2*n^4)/665280.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) + n^5.

A062393 a(n) = n^5 - (n-1)^5 + (n-2)^5 - ... +(-1)^n*0^5.

Original entry on oeis.org

0, 1, 31, 212, 812, 2313, 5463, 11344, 21424, 37625, 62375, 98676, 150156, 221137, 316687, 442688, 605888, 813969, 1075599, 1400500, 1799500, 2284601, 2869031, 3567312, 4395312, 5370313, 6511063, 7837844, 9372524, 11138625, 13161375
Offset: 0

Views

Author

Henry Bottomley, Jun 21 2001

Keywords

Comments

The general formula for alternating sums of powers is in terms of the Swiss-Knife polynomials P(n,x) A153641 2^(-n-1)(P(n,1)-(-1)^k P(n,2k+1)). Thus a(k) = |2^(-6)(P(5,1)-(-1)^k P(5,2k+1))|. - Peter Luschny, Jul 12 2009

Crossrefs

Cf. A000539, A000584. A062392 for 4th powers, A152725 for 6th powers.

Programs

  • Maple
    a := n -> (1-(-1)^n+n^2*(n^2*(2*n+5)-5))/4; # Peter Luschny, Jul 12 2009
  • Mathematica
    k=0;lst={k};Do[k=n^5-k;AppendTo[lst, k], {n, 1, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
    Table[Total[(Times@@@Partition[Riffle[Range[n,0,-1],{1,-1},{2,-1,2}],2])^5],{n,0,30}] (* or *) LinearRecurrence[ {5,-9,5,5,-9,5,-1},{0,1,31,212,812,2313,5463},40] (* Harvey P. Dale, Feb 01 2013 *)
  • PARI
    { a=0; for (n=0, 1000, write("b062393.txt", n, " ", a=n^5 - a) ) } \\ Harry J. Smith, Aug 07 2009

Formula

a(n) = (2*n^5 + 5*n^4 - 5*n^2 + 1 - (-1)^n)/4 = n^5 - a(n-1).
G.f.: x*(x^4 + 26*x^3 + 66*x^2 + 26*x + 1)/((x-1)^6*(x+1)). - Colin Barker, Sep 19 2012
a(0)=0, a(1)=1, a(2)=31, a(3)=212, a(4)=812, a(5)=2313, a(6)=5463, a(n) = 5*a(n-1) - 9*a(n-2) + 5*a(n-3) + 5*a(n-4) - 9*a(n-5) + 5*a(n-6) - a(n-7). - Harvey P. Dale, Feb 01 2013
Previous Showing 11-20 of 68 results. Next