A001249
Squares of tetrahedral numbers: a(n) = binomial(n+3,n)^2.
Original entry on oeis.org
1, 16, 100, 400, 1225, 3136, 7056, 14400, 27225, 48400, 81796, 132496, 207025, 313600, 462400, 665856, 938961, 1299600, 1768900, 2371600, 3136441, 4096576, 5290000, 6760000, 8555625, 10732176, 13351716, 16483600, 20205025, 24601600, 29767936, 35808256
Offset: 0
-
A001249 := proc(n) binomial(n+3,n)^2 end proc: seq(A001249(n),n=0..10) ; # Zerinvary Lajos, May 17 2006
-
Table[Binomial[n + 3, 3]^2, {n, 0, 100}] (* T. D. Noe, Jun 26 2012 *)
-
a(n)=binomial(n+3,3)^2 \\ Charles R Greathouse IV, Sep 24 2015
A035038
a(n) = 2^n - C(n,0) - C(n,1) - ... - C(n,5).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 8, 37, 130, 386, 1024, 2510, 5812, 12911, 27824, 58651, 121670, 249528, 507624, 1026876, 2069256, 4158861, 8344056, 16721761, 33486026, 67025182, 134116144, 268313018, 536724316, 1073567387, 2147277280, 4294724471, 8589650318, 17179537972
Offset: 0
-
a035038 n = a035038_list !! n
a035038_list = map (sum . drop 6) a007318_tabl
-- Reinhard Zumkeller, Jun 20 2015
-
[n le 5 select 0 else (&+[Binomial(n,j): j in [6..n]]): n in [0..50]]; // G. C. Greubel, Mar 20 2023
-
a:= n-> (Matrix(7, (i,j)-> if (i=j-1) then 1 elif j=1 then [8,-27,50,-55, 36,-13,2][i] else 0 fi)^(n))[1,7]:
seq(a(n), n=0..30); # Alois P. Heinz, Aug 05 2008
-
Table[Sum[Binomial[n, k+6], {k,0,n}], {n,0,30}] (* Zerinvary Lajos, Jul 08 2009 *)
Table[2^n-Total[Binomial[n,Range[0,5]]],{n,0,40}] (* Harvey P. Dale, Oct 24 2017 *)
-
[sum(binomial(n,j) for j in range(6,n+1)) for n in range(51)] # G. C. Greubel, Mar 20 2023
A085439
a(n) = Sum_{i=1..n} binomial(i+1,2)^4.
Original entry on oeis.org
1, 82, 1378, 11378, 62003, 256484, 871140, 2550756, 6651381, 15802006, 34776742, 71791798, 140366759, 261917384, 469277384, 811379400, 1359360681, 2214396762, 3517606762, 5462416762, 8309813083, 12406965164, 18209748140, 26309748140, 37466388765, 52644875166
Offset: 1
a(15) = (2520*(15^9) +22680*(15^8) +79920*(15^7) +136080*(15^6) +107352*(15^5) +22680*(15^4) -10080*(15^3) +1728*15)/9! = 469277384.
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Cf.
A000292,
A087127,
A024166,
A024166,
A085438,
A085440,
A085441,
A085442,
A000332,
A086020,
A086021,
A086022,
A000389,
A086023,
A086024,
A000579,
A086025,
A086026,
A000580,
A086027,
A086028,
A027555,
A086029,
A086030.
-
[(2520*n^9 +22680*n^8 +79920*n^7 +136080*n^6 +107352*n^5 +22680*n^4 -10080*n^3 +1728*n)/Factorial(9): n in [1..30]]; // G. C. Greubel, Nov 22 2017
-
Table[(2520*(n^9) + 22680*(n^8) + 79920*(n^7) + 136080*(n^6) + 107352*(n^5) + 22680*(n^4) - 10080*(n^3) + 1728*n)/9!, {n, 1, 50}] (* G. C. Greubel, Nov 22 2017 *)
-
Vec(x*(x^6+72*x^5+603*x^4+1168*x^3+603*x^2+72*x+1)/(x-1)^10 + O(x^100)) \\ Colin Barker, May 02 2014
-
a(n) = sum(i=1, n, binomial(i+1, 2)^4); \\ Michel Marcus, Nov 22 2017
A085440
a(n) = Sum_{i=1..n} binomial(i+1,2)^5.
Original entry on oeis.org
1, 244, 8020, 108020, 867395, 4951496, 22161864, 82628040, 267156165, 770440540, 2022773116, 4909947484, 11150268935, 23913084560, 48796284560, 95322158736, 179163294729, 325374464580, 572984364580, 981394464580, 1639143014731, 2675722491224, 4277290592600
Offset: 1
- Elisabeth Busser and Gilles Cohen, Neuro-Logies - "Chercher, jouer, trouver", La Recherche, April 1999, No. 319, page 97.
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Cf.
A000292,
A087127,
A024166,
A024166,
A085438,
A085439,
A085441,
A085442,
A000332,
A086020,
A086021,
A086022,
A000389,
A086023,
A086024,
A000579,
A086025,
A086026,
A000580,
A086027,
A086028,
A027555,
A086029,
A086030.
-
[(113400*n^11 +1247400*n^10 +5544000*n^9 +12474000*n^8 +14196600*n^7 +6237000*n^6 -831600*n^5 +1108800*n^3 -172800*n )/Factorial(11): n in [1..30]]; // G. C. Greubel, Nov 22 2017
-
Table[(113400*n^11 +1247400*n^10 +5544000*n^9 +12474000*n^8 +14196600*n^7 +6237000*n^6 -831600*n^5 +1108800*n^3 -172800*n)/11!, {n,1,50}] (* G. C. Greubel, Nov 22 2017 *)
-
for(n=1,30, print1(sum(k=1,n, binomial(k+1,2)^5), ", ")) \\ G. C. Greubel, Nov 22 2017
A085441
a(n) = Sum_{i=1..n} binomial(i+1,2)^6.
Original entry on oeis.org
1, 730, 47386, 1047386, 12438011, 98204132, 580094436, 2756876772, 11060642397, 38741283022, 121395233038, 346594833742, 914464085783, 2254559726408, 5240543726408, 11568062614344, 24395756421273, 49397866465794, 96443747465794, 182209868465794
Offset: 1
a(5) = C(7,3)*[191*106 + 450*(18*C(14,10) + 3851*C(13,10) + 61839*C(12,10) + 225352*C(11,10) + 225352*C(10,10))]/10010 = 12438011.
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Index entries for linear recurrences with constant coefficients, signature (14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1).
Cf.
A000292,
A087127,
A024166,
A024166,
A085438,
A085439,
A085440,
A085442,
A000332,
A086020,
A086021,
A086022,
A000389,
A086023,
A086024,
A000579,
A086025,
A086026,
A000580,
A086027,
A086028,
A027555,
A086029,
A086030,
A234253.
-
[(n/960960)*(6112 - 40040*n^2 + 78078*n^4 + 15015*n^5 + 19305*n^6 + 225225*n^7 + 335335*n^8 + 225225*n^9 + 80535*n^10 + 15015*n^11 + 1155*n^12): n in [1..30]]; // G. C. Greubel, Nov 22 2017
-
f:= sum(binomial(1+i,2)^6,i=1..n):
seq(f, n=1..30); # Robert Israel, Nov 22 2017
-
Table[Sum[Binomial[i+1,2]^6,{i,n}],{n,20}] (* or *) LinearRecurrence[ {14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1},{1,730,47386,1047386,12438011, 98204132,580094436, 2756876772,11060642397, 38741283022,121395233038, 346594833742, 914464085783, 2254559726408},20] (* Harvey P. Dale, Jun 05 2017 *)
-
for(n=1,30, print1(sum(k=1,n, binomial(k+1,2)^6), ", ")) \\ G. C. Greubel, Nov 22 2017
A154286
a(n) = E(k)*C(n+k,k) = Euler(k)*binomial(n+k,k) for k=4.
Original entry on oeis.org
5, 25, 75, 175, 350, 630, 1050, 1650, 2475, 3575, 5005, 6825, 9100, 11900, 15300, 19380, 24225, 29925, 36575, 44275, 53130, 63250, 74750, 87750, 102375, 118755, 137025, 157325, 179800, 204600, 231880, 261800, 294525, 330225, 369075, 411255
Offset: 0
-
[(n+1)*(n+2)*(n+3)*(n+4)*5 div 24: n in [0..40]]; // Vincenzo Librandi, Sep 10 2016
-
seq(euler(4)*binomial(n+4,4),n=0..32);
-
CoefficientList[Series[-5/(x - 1)^5, {x, 0, 35}], x] (* Robert G. Wilson v, Jan 29 2015 *)
Table[(n + 1)*(n + 2)*(n + 3)*(n + 4)*5/24, {n, 0, 25}] (* G. C. Greubel, Sep 09 2016 *)
LinearRecurrence[{5,-10,10,-5,1},{5,25,75,175,350},40] (* Harvey P. Dale, Nov 18 2021 *)
-
x='x+O('x^99); Vec(5/(1-x)^5) \\ Altug Alkan, Sep 10 2016
A001769
Expansion of 1/((1+x)*(1-x)^7).
Original entry on oeis.org
1, 6, 22, 62, 148, 314, 610, 1106, 1897, 3108, 4900, 7476, 11088, 16044, 22716, 31548, 43065, 57882, 76714, 100386, 129844, 166166, 210574, 264446, 329329, 406952, 499240, 608328, 736576, 886584, 1061208, 1263576, 1497105, 1765518, 2072862, 2423526, 2822260, 3274194, 3784858
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 17.
- Index entries for linear recurrences with constant coefficients, signature (6,-14,14,0,-14,14,-6,1).
-
[(4*n^6+96*n^5+910*n^4+4320*n^3+10696*n^2+12864*n+5715)/5760+(-1)^n/128: n in [0..40]]; // Vincenzo Librandi, Aug 15 2011
-
CoefficientList[Series[1/((1+x)(1-x)^7),{x,0,30}],x] (* or *) LinearRecurrence[ {6,-14,14,0,-14,14,-6,1},{1,6,22,62,148,314,610,1106},40] (* Harvey P. Dale, May 24 2015 *)
-
a(n)=(4*n^6+96*n^5+910*n^4+4320*n^3+10696*n^2+12864*n)\/5760+1 \\ Charles R Greathouse IV, Apr 17 2012
A062337
Primes whose sum of digits is 7.
Original entry on oeis.org
7, 43, 61, 151, 223, 241, 313, 331, 421, 601, 1033, 1051, 1123, 1213, 1231, 1303, 1321, 2113, 2131, 2203, 2221, 2311, 3121, 3301, 4003, 4021, 4111, 4201, 5011, 5101, 10141, 10303, 10321, 10501, 11113, 11131, 11311, 12211, 12301, 13003, 14011, 20023, 20113
Offset: 1
601 is a prime with sum of the digits = 7, hence belongs to the sequence.
Cf. similar sequences listed in
A244918.
-
[p: p in PrimesUpTo(250000) | &+Intseq(p) eq 7]; // Vincenzo Librandi, Jul 08 2014
-
A062337 := proc(n)
option remember ;
local p ;
if n = 1 then
7;
else
p := nextprime(procname(n-1)) ;
while true do
if digsum(p) = 7 then # digsum in oeis.org/transforms.txt
return p;
else
p := nextprime(p) ;
end if;
end do:
end if;
end proc:
seq(A062337(n),n=1..80) ; # R. J. Mathar, May 22 2025
-
Select[Prime[Range[3000]], Plus @@ IntegerDigits[ # ] == 7 &] (* Zak Seidov, Feb 17 2005 *)
-
A062337(lim)={my(pow=ceil(log(floor(lim)-.5)/log(10)),n);print("Checking for members of A062337 up to 10^"pow);for(a=0,pow-1,for(b=0,a,for(c=0,b,for(d=0,c,for(e=0,d,for(f=0,e,n=10^a+10^b+10^c+10^d+10^e+10^f+1;if(isprime(n),print1(n","))))))))};
-
select( {is_A062337(p, s=7)=sumdigits(p)==s&&isprime(p)}, primes([1, 14321])) \\ 2nd optional parameter for similar sequences with other digit sums. M. F. Hasler, Mar 09 2022
-
{A062337_upto_length(L, s=7, a=List(), u=[10^(L-k)|k<-[1..L]])=forvec(d=[[1, L]|i<-[1..s]], isprime(p=vecsum(vecextract(u, d))) && listput(a, p), 1); Vecrev(a)} \\ M. F. Hasler, Mar 09 2022
More terms from Larry Reeves (larryr(AT)acm.org), Jul 06 2001
A087107
This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of tetrahedral numbers. The p-th row (p>=1) contains a(i,p) for i=1 to 3*p-2, where a(i,p) satisfies Sum_{i=1..n} C(i+2,3)^p = 4 * C(n+3,4) * Sum_{i=1..3*p-2} a(i,p) * C(n-1,i-1)/(i+3).
Original entry on oeis.org
1, 1, 3, 3, 1, 1, 15, 69, 147, 162, 90, 20, 1, 63, 873, 5191, 16620, 31560, 36750, 25830, 10080, 1680, 1, 255, 9489, 130767, 919602, 3832650, 10238000, 18244380, 21990360, 17745000, 9198000, 2772000, 369600, 1, 1023, 97953, 2903071, 40317780
Offset: 1
Row 3 contains 1,15,69,147,162,90,20, so Sum_{i=1..n} C(i+2,3)^3 = 4 * C(n+3,4) * [ a(1,3)/4 + a(2,3)*C(n-1,1)/5 + a(3,3)*C(n-1,2)/6 + ... + a(7,3)*C(n-1,6)/10 ] = 4 * C(n+3,4) * [ 1/4 + 15*C(n-1,1)/5 + 69*C(n-1,2)/6 + 147*C(n-1,3)/7 + 162*C(n-1,4)/8 + 90*C(n-1,5)/9 + 20*C(n-1,6)/10 ]. Cf. A086021 for more details.
From _Peter Bala_, Mar 11 2018: (Start)
Table begins
n=0 | 1
n=1 | 1 3 3 1
n=2 | 1 15 69 147 162 90 20
n=3 | 1 63 873 5191 16620 31560 36750 25830 10080 1680
...
Row 2: C(i+3,3)^2 = C(i,0) + 15*C(i,1) + 69*C(i,2) + 147*C(i,3) + 162*C(i,4) + 90*C(i,5) + 20*C(i,6). Hence, Sum_{i = 0..n-1} C(i+3,3)^2 = C(n,1) + 15*C(n,2) + 69*C(n,3) + 147*C(n,4) + 162*C(n,5) + 90*C(n,6) + 20*C(n,7). (End)
Cf.
A000292,
A024166,
A087127,
A024166,
A085438,
A085439,
A085440,
A085441,
A085442,
A000332,
A086020,
A086021,
A086022,
A087108,
A000389,
A086023,
A086024,
A087109,
A000579,
A086025,
A086026,
A087110,
A000580,
A086027,
A086028,
A087111,
A027555,
A086029,
A086030.
-
seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+3, 3)^n, i= 0..k), k = 0..3*n), n = 0..8); # Peter Bala, Mar 11 2018
-
a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 4, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 3, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 3*p - 2}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
-
{a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 4, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 3, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 3*p-2, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017
A087111
This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of binomial coefficients C(n,7). The p-th row (p>=1) contains a(i,p) for i=1 to 7*p-6, where a(i,p) satisfies Sum_{i=1..n} C(i+6,7)^p = 8 * C(n+7,8) * Sum_{i=1..7*p-6} a(i,p) * C(n-1,i-1)/(i+7).
Original entry on oeis.org
1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 63, 1169, 10703, 58821, 214123, 545629, 1004307, 1356194, 1347318, 974862, 500346, 172788, 36036, 3432, 1, 511, 45633, 1589567, 29302889, 333924087, 2577462937, 14287393351, 59159005164, 188008120188
Offset: 1
Row 3 contains 1,63,1169,...,3432, so Sum_{i=1..n} C(i+6,7)^3 = 8 * C(n+7,8) * [ a(1,3)/8 + a(2,3)*C(n-1,1)/9 + a(3,3)*C(n-1,2)/10 + ... + a(15,3)*C(n-1,14)/22 ] = 8 * C(n+7,8) * [ 1/8 + 63*C(n-1,1)/9 + 1169*C(n-1,2)/10 + ... + 3432*C(n-1,14)/22 ]. Cf. A086030 for more details.
Cf.
A000292,
A024166,
A087127,
A024166,
A085438,
A085439,
A085440,
A085441,
A085442,
A087107,
A000332,
A086020,
A086021,
A086022,
A087108,
A000389,
A086023,
A086024,
A087109,
A000579,
A086025,
A086026,
A087110,
A000580,
A086027,
A086028,
A027555,
A086029,
A086030,
A087127.
-
seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+7, 7)^n, i = 0..k), k = 0..7*n), n = 0..4); # Peter Bala, Mar 11 2018
-
a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 8, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 7, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 7*p - 6}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
-
{a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 8, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 7, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 7*p-6, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017
Comments