cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 123 results. Next

A104473 a(n) = binomial(n+2,2)*binomial(n+6,2).

Original entry on oeis.org

15, 63, 168, 360, 675, 1155, 1848, 2808, 4095, 5775, 7920, 10608, 13923, 17955, 22800, 28560, 35343, 43263, 52440, 63000, 75075, 88803, 104328, 121800, 141375, 163215, 187488, 214368, 244035, 276675, 312480, 351648, 394383, 440895, 491400, 546120, 605283, 669123
Offset: 0

Views

Author

Zerinvary Lajos, Apr 18 2005

Keywords

Examples

			a(0) = C(0+2,2)*C(0+6,2) = C(2,2)*C(6,2) = 1*15 = 155.
a(6) = 1*3*5 + 2*4*6 + 3*5*7 + 4*6*8 + 5*7*9 + 6*8*10 + 7*9*11 = 1848.
		

Crossrefs

Subsequence of A085780.

Programs

  • Magma
    [Binomial(n+2, 2)*Binomial(n+6, 2): n in [0..50]]; // Vincenzo Librandi, Apr 28 2014
    
  • Mathematica
    f[n_] := Binomial[n + 2, 2] Binomial[n + 6, 2]; Table[f[n], {n,0,40}] (* Robert G. Wilson v, Apr 20 2005 *)
    CoefficientList[Series[3 (5-4*x+x^2)/(1-x)^5, {x,0,40}], x] (* Vincenzo Librandi, Apr 28 2014 *)
  • PARI
    a(n)=binomial(n+2,2)*binomial(n+6,2) \\ Charles R Greathouse IV, Jun 07 2013
    
  • SageMath
    def A104473(n): return binomial(n+2,2)*binomial(n+6,2)
    print([A104473(n) for n in range(51)]) # G. C. Greubel, Mar 05 2025

Formula

a(n) = (1/4)*(n+1)*(n+2)*(n+5)*(n+6).
a(n) = A034856(n+2)^2 - 1. - J. M. Bergot, Dec 14 2010
G.f.: 3*(5-4*x+x^2)/(1-x)^5. - Colin Barker, Sep 21 2012
a(n) = Sum_{i=1..n+1} i*(i+2)*(i+4). - Bruno Berselli, Apr 28 2014
a(n) = A000217(n)*A000217(n+4) = 3*A033275(n+4). - R. J. Mathar, Nov 29 2015
From Amiram Eldar, Aug 30 2022: (Start)
Sum_{n>=0} 1/a(n) = 43/450.
Sum_{n>=0} (-1)^n/a(n) = 16*log(2)/15 - 154/225. (End)
From G. C. Greubel, Mar 05 2025: (Start)
a(n) = 90*A000579(n+6)/A000279(n+3).
E.g.f.: (1/4)*(60 + 192*x + 114*x^2 + 20*x^3 + x^4)*exp(x). (End)

A116082 a(n) = C(n,7) + C(n,6) + C(n,5) + C(n,4) + C(n,3) + C(n,2) + C(n,1).

Original entry on oeis.org

0, 1, 3, 7, 15, 31, 63, 127, 254, 501, 967, 1815, 3301, 5811, 9907, 16383, 26332, 41225, 63003, 94183, 137979, 198439, 280599, 390655, 536154, 726205, 971711, 1285623, 1683217, 2182395, 2804011, 3572223, 4514872, 5663889, 7055731, 8731847
Offset: 0

Views

Author

Jonathan Vos Post, Mar 13 2006

Keywords

Comments

Number of compositions with at most three parts distinct from 1 and with a sum at most n. - Beimar Naranjo, Mar 12 2024

Crossrefs

Programs

  • Magma
    [n*(n^6-14*n^5+112*n^4-350*n^3+1099*n^2+364*n+3828)/5040: n in [0..40]]; // Vincenzo Librandi, Jun 21 2011
    
  • Maple
    a:=n->n*(n^6-14*n^5+112*n^4-350*n^3+1099*n^2+364*n+3828)/5040: seq(a(n),n=0..35); # Emeric Deutsch, Apr 14 2006
    seq(sum(binomial(n,k),k=1..7),n=0..35); # Zerinvary Lajos, Dec 14 2007
  • Mathematica
    Table[Total[Binomial[n,Range[7]]],{n,0,40}] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{0,1,3,7,15,31,63,127},41](* Harvey P. Dale, Aug 05 2011 *)
  • PARI
    for(n=0,30, print1(n*(n^6 -14*n^5 +112*n^4 -350*n^3 +1099*n^2 +364*n +3828)/5040, ", ")) \\ G. C. Greubel, Nov 25 2017

Formula

a(n) = A000580(n) + A000579(n) + A000389(n) + A000332(n) + A000292(n) + A000217(n) + n.
a(n) = A000580(n) + A115567(n).
a(n) = n*(n^6 - 14*n^5 + 112*n^4 - 350*n^3 + 1099*n^2 + 364*n + 3828)/5040. - Emeric Deutsch, Apr 14 2006
G.f.: x*(1 - 5*x + 11*x^2 - 13*x^3 + 9*x^4 - 3*x^5 + x^6)/(1-x)^8. - R. J. Mathar, Jun 20 2011
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8), with a(0)=0, a(1)=1, a(2)=3, a(3)=7, a(4)=15, a(5)=31, a(6)=63, a(7)=127. - Harvey P. Dale, Aug 05 2011

A140405 a(n) = binomial(n+6, 6)*5^n.

Original entry on oeis.org

1, 35, 700, 10500, 131250, 1443750, 14437500, 134062500, 1173046875, 9775390625, 78203125000, 604296875000, 4532226562500, 33120117187500, 236572265625000, 1656005859375000, 11385040283203125, 77016448974609375, 513442993164062500, 3377914428710937500
Offset: 0

Views

Author

Zerinvary Lajos, Jun 16 2008

Keywords

Comments

With a different offset, number of n-permutations (n>=6) of 6 objects: t, u, v, z, x, y with repetition allowed, containing exactly six (6) u's.
If n=6 then a(0)=1.
Example: a(1)=35 because we have
uuuuuut, uuuuutu, uuuutuu, uuutuuu, uutuuuu, utuuuuu, tuuuuuu,
uuuuuuv, uuuuuvu, uuuuvuu, uuuvuuu, uuvuuuu, uvuuuuu, vuuuuuu,
uuuuuuz, uuuuuzu, uuuuzuu, uuuzuuu, uuzuuuu, uzuuuuu, zuuuuuu,
uuuuuux, uuuuuxu, uuuuxuu, uuuxuuu, uuxuuuu, uxuuuuu, xuuuuuu,
uuuuuuy, uuuuuyu, uuuuyuu, uuuyuuu, uuyuuuu, uyuuuuu, yuuuuuu.

Crossrefs

Programs

  • Maple
    seq(binomial(n+6,6)*5^n,n=0..18);
  • Mathematica
    Table[Binomial[n+6,6]5^n,{n,0,20}] (* Harvey P. Dale, Dec 03 2017 *)

Formula

G.f.: 1/(1-5*x)^7. - Zerinvary Lajos, Aug 06 2008
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 6856 - 30720*log(5/4).
Sum_{n>=0} (-1)^n/a(n) = 233280*log(6/5) - 42531. (End)

A162669 a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)/5.

Original entry on oeis.org

0, 144, 1008, 4032, 12096, 30240, 66528, 133056, 247104, 432432, 720720, 1153152, 1782144, 2673216, 3907008, 5581440, 7814016, 10744272, 14536368, 19381824, 25502400, 33153120, 42625440, 54250560, 68402880, 85503600, 106024464, 130491648, 159489792, 193666176
Offset: 0

Views

Author

Vincenzo Librandi, Jul 10 2009

Keywords

Crossrefs

Cf. A000579.

Programs

  • GAP
    List([0..30], n-> 144*Binomial(n+5, 6)); # G. C. Greubel, Aug 27 2019
  • Magma
    [n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)/5: n in [1..30]]; // Vincenzo Librandi, Mar 05 2012
    
  • Maple
    seq(144*binomial(n+5,6), n = 0..30); # G. C. Greubel, Aug 27 2019
  • Mathematica
    CoefficientList[Series[144*x/(1-x)^7,{x,0,30}],x] (* Vincenzo Librandi, Mar 05 2012 *)
    Table[(Times@@(n+Range[0,5]))/5,{n,0,30}] (* Harvey P. Dale, Jul 01 2019 *)
    144*Binomial[Range[30] +4, 6] (* G. C. Greubel, Aug 27 2019 *)
  • PARI
    vector(30, n, 144*binomial(n+4,6)) \\ G. C. Greubel, Aug 27 2019
    
  • Sage
    [144*binomial(n+5,6) for n in (0..30)] # G. C. Greubel, Aug 27 2019
    

Formula

From R. J. Mathar, Jul 13 2009: (Start)
a(n) = 144 * A000579(n+5).
G.f.: 144*x/(1-x)^7. (End)
E.g.f.: x*(720 +1800*x +1200*x^2 +300*x^3 +30*x^4 +x^5)*exp(x)/5. - G. C. Greubel, Aug 27 2019
From Amiram Eldar, Jan 09 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/120.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/3 - 661/720. (End)

Extensions

Definition factorized, offset corrected by R. J. Mathar, Jul 13 2009

A166810 Number of n X 6 1..2 arrays containing at least one of each value, all equal values connected, rows considered as a single number in nondecreasing order, and columns considered as a single number in nondecreasing order.

Original entry on oeis.org

5, 26, 82, 208, 460, 922, 1714, 3001, 5003, 8006, 12374, 18562, 27130, 38758, 54262, 74611, 100945, 134594, 177098, 230228, 296008, 376738, 475018, 593773, 736279, 906190, 1107566, 1344902, 1623158, 1947790, 2324782, 2760679, 3262621, 3838378, 4496386, 5245784, 6096452, 7059050, 8145058, 9366817
Offset: 1

Views

Author

R. H. Hardin, Oct 21 2009

Keywords

Comments

This sequence (and A166812, A166813) correspond to k-tuples x with 0<= x(i+1) <= x(i) <= k except (0,0,0..) and (k,k,k...), where x(i) is the index of the first 2 in row i of the array (or 0 if none); the number of those are the binomials minus 2. - Robert Israel, Nov 23 2015

Examples

			Some solutions for n=4
...1.1.1.1.1.2...1.1.1.1.2.2...1.1.1.1.1.1...1.1.1.1.1.1...1.1.1.1.1.1
...1.1.1.1.1.2...1.1.1.1.2.2...1.1.1.1.1.1...1.1.1.1.1.2...1.1.1.1.1.2
...1.1.1.1.2.2...1.1.1.1.2.2...1.1.1.1.1.2...1.1.1.2.2.2...1.1.1.1.1.2
...1.1.1.2.2.2...1.1.1.1.2.2...1.1.1.1.2.2...2.2.2.2.2.2...1.1.1.1.1.2
------
...1.1.1.1.1.2...1.1.1.2.2.2...1.1.1.1.1.2...1.1.1.1.2.2...1.1.1.1.1.2
...1.1.2.2.2.2...1.1.2.2.2.2...1.1.1.1.2.2...1.1.1.1.2.2...1.1.1.1.1.2
...1.2.2.2.2.2...1.1.2.2.2.2...1.1.1.1.2.2...1.2.2.2.2.2...1.1.2.2.2.2
...1.2.2.2.2.2...1.1.2.2.2.2...1.1.2.2.2.2...1.2.2.2.2.2...1.1.2.2.2.2
		

Programs

  • Maple
    seq(binomial(n+6,6)-2, n=1..100); # Robert Israel, Nov 24 2015
  • PARI
    Vec(1-2/(1-x)+1/(1-x)^7 + O(x^100)) \\ Altug Alkan, Nov 24 2015

Formula

a(n) = A000579(n+6)-2. - R. J. Mathar, Nov 24 2015
G.f.: 1 - 2/(1-x) + 1/(1-x)^7. - Robert Israel, Nov 24 2015

A213808 Triangle of numbers C^(7)(n,k) of combinations with repetitions from n different elements over k for each of them not more than 7 appearances allowed.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 35, 1, 5, 15, 35, 70, 126, 1, 6, 21, 56, 126, 252, 462, 1, 7, 28, 84, 210, 462, 924, 1716, 1, 8, 36, 120, 330, 792, 1716, 3432, 6427, 1, 9, 45, 165, 495, 1287, 3003, 6435, 12861, 24229, 1, 10, 55, 220, 715, 2002, 5005, 11440, 24300, 48520, 91828
Offset: 0

Views

Author

Keywords

Comments

For k <= 6, the triangle coincides with triangle A213745.

Examples

			Triangle begins
n/k |  0     1     2     3     4     5     6     7     8
----+---------------------------------------------------
  0 |  1
  1 |  1     1
  2 |  1     2     3
  3 |  1     3     6    10
  4 |  1     4    10    20    35
  5 |  1     5    15    35    70   126
  6 |  1     6    21    56   126   252   462
  7 |  1     7    28    84   210   462   924  1716
  8 |  1     8    36   120   330   792  1716  3432  6427
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^r*Binomial[n, r]*Binomial[n - 8*r + k - 1, n - 1], {r, 0, Floor[k/8]}], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Nov 25 2017 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(if(n==0 && k==0, 1, sum(r=0, floor(k/8), (-1)^r*binomial(n,r)*binomial(n-8*r + k-1,n-1))), ", "))) \\ G. C. Greubel, Nov 25 2017

Formula

T(n,k) = Sum_{r=0..floor(k/8)} (-1)^r*C(n,r)*C(n-8*r+k-1, n-1).
T(n,0)=1, T(n,1)=n, T(n,2)=A000217(n) for n > 1, T(n,3)=A000292(n) for n >= 3, T(n,4)=A000332(n) for n >= 7, T(n,5)=A000389(n) for n >= 9, T(n,6)=A000579(n) for n >= 11, T(n,7)=A000580(n) for n >= 13.

A344101 Expansion of Product_{k>=1} (1 + x^k)^binomial(k+5,6).

Original entry on oeis.org

1, 1, 7, 35, 133, 511, 1869, 6797, 24095, 83938, 286734, 964348, 3196984, 10460310, 33813984, 108076908, 341821250, 1070484009, 3321584021, 10217036263, 31169524988, 94351439060, 283498600776, 845848778722, 2506779443603, 7381617323598, 21603241378334, 62853440151768
Offset: 0

Views

Author

Ilya Gutkovskiy, May 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 27; CoefficientList[Series[Product[(1 + x^k)^Binomial[k + 5, 6], {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d Binomial[d + 5, 6], {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 27}]

Formula

G.f.: exp( Sum_{k>=1} (-1)^(k+1) * x^k / (k*(1 - x^k)^7) ).

A363173 Number of triangles inside a regular n-gon formed by intersecting line segments, considering all configurations of 3 line segments from 6 distinct vertices.

Original entry on oeis.org

0, 0, 0, 0, 7, 16, 84, 180, 462, 796, 1716, 2856, 5005, 7744, 12376, 17508, 27132, 38160, 54264, 73788, 100947, 132216, 177100, 228748, 296010, 374808, 475020, 584140, 736281, 903168, 1107568, 1341232, 1623160, 1939308, 2324784, 2755380, 3262623, 3832080, 4496388
Offset: 3

Views

Author

Paolo Xausa, May 19 2023

Keywords

Crossrefs

Column k = 6 of A363174.

Programs

  • Mathematica
    A363173list[nmax_]:=Module[{d},d[m_,n_]:=Boole[Divisible[n,m]];Table[Binomial[n, 6]-If[EvenQ[n],((1/8n^2-9/8n+7/4)d[2,n]+3/4d[4,n]+(6n-106/3)d[6,n]-33d[12,n]-36d[18,n]-24d[24,n]+96d[30,n]+72d[42,n]+264d[60,n]+96d[84,n]+48d[90,n]+96d[120,n]+48d[210,n])n,0],{n,3,nmax}]];A363173list[50]

Formula

a(n) = binomial(n,6) = A000579(n) if n is odd, A000579(n) - A260417(n/2) if n is even.

A065949 Bessel polynomial {y_n}'''(0).

Original entry on oeis.org

0, 0, 0, 90, 630, 2520, 7560, 18900, 41580, 83160, 154440, 270270, 450450, 720720, 1113840, 1670760, 2441880, 3488400, 4883760, 6715170, 9085230, 12113640, 15939000, 20720700, 26640900, 33906600, 42751800, 53439750, 66265290, 81557280, 99681120, 121041360, 146084400
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2001

Keywords

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Programs

  • Mathematica
    Drop[90*Binomial[Range[40]-3,6],5] (* Harvey P. Dale, Sep 20 2013 *)
  • PARI
    for(n=0,50, print1(90*binomial(n+3,6), ", ")) \\ G. C. Greubel, Aug 15 2017

Formula

a(n) = 90 * C(n-3, 6) = 90 * A000579(n-3). - Ralf Stephan, Sep 03 2003
From Colin Barker, Aug 01 2013: (Start)
a(n) = ((-2+n)*(-1+n)*n*(1+n)*(2+n)*(3+n))/8.
G.f.: -90*x^3 / (x-1)^7. (End)
E.g.f.: (1/8)*x^3*(120 + 90*x + 18*x^2 + x^3)*exp(x). - G. C. Greubel, Aug 15 2017

Extensions

More terms from Colin Barker, Aug 01 2013

A096754 Triangle read by rows giving coefficients of the trigonometric expansion of Cos(n*x).

Original entry on oeis.org

1, 1, 0, -1, 1, 0, -3, 1, 0, -6, 0, 1, 1, 0, -10, 0, 5, 1, 0, -15, 0, 15, 0, -1, 1, 0, -21, 0, 35, 0, -7, 1, 0, -28, 0, 70, 0, -28, 0, 1, 1, 0, -36, 0, 126, 0, -84, 0, 9, 1, 0, -45, 0, 210, 0, -210, 0, 45, 0, -1, 1, 0, -55, 0, 330, 0, -462, 0, 165, 0, -11, 1, 0, -66, 0, 495, 0, -924, 0, 495, 0, -66, 0, 1, 1, 0, -78, 0, 715
Offset: 1

Views

Author

Robert G. Wilson v, Jul 07 2004

Keywords

Comments

T(n,k)=cos(n,k)*cos(pi*k/2) begins {1}, {1,0}, {1,0,-1}, {1,0,-3,0},... - Paul Barry, May 21 2006

Examples

			The trigonometric expansion of Cos(4x) = Cos[x]^4 - 6*Cos[x]^2*Sin[x]^2 + Sin[x]^4, therefore the fourth row is 1, 0, -6, 0, 1.
The trigonometric expansion of Cos(5x) = Cos[x]^5 - 10*Cos[x]^3*Sin[x]^2 + 5*Cos[x]*Sin[x]^4, therefore the fifth row of the triangle is 1, 0, -10, 0, 5
The table begins:
1
1 0 -1
1 0 -3
1 0 -6 0 1
1 0 -10 0 5
1 0 -15 0 15 0 -1
1 0 -21 0 35 0 -7
1 0 -28 0 70 0 -28 0 1
		

Crossrefs

Another version of the triangle in A034839. Cf. A095704.
First column is A000012 = C(n, 0), third column is A000217 = C(n, 2), fifth column is A000332 = C(n, 4), seventh column is A000579 = C(n, 6), ninth column is A000581 = C(n, 8).
A001287 = C(n, 10), A010965 = C(n, 12), A010967 = C(n, 14), A010969 = C(n, 16), A010971 = C(n, 18),
A010973 = C(n, 20), A010975 = C(n, 22), A010977 = C(n, 24), A010979 = C(n, 26), A010981 = C(n, 28),
A010983 = C(n, 30), A010985 = C(n, 32), A010987 = C(n, 34), A010989 = C(n, 36), A010991 = C(n, 38),
A010993 = C(n, 40), A010995 = C(n, 42), A010997 = C(n, 44), A010999 = C(n, 46), A011001 = C(n, 48),
A017714 = C(n, 50), A017716 = C(n, 52), A017718 = C(n, 54), A017720 = C(n, 56), etc.

Programs

  • Mathematica
    Flatten[Table[ Plus @@ CoefficientList[ TrigExpand[ Cos[n*x]], { Cos[x], Sin[x]}], {n, 13}]]
Previous Showing 91-100 of 123 results. Next