cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 86 results. Next

A292555 Number of rooted unlabeled trees on n nodes where each node has at most 10 children.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4765, 12483, 32964, 87785, 235305, 634628, 1720524, 4686842, 12820920, 35206475, 97010705, 268154003, 743351390, 2066090876, 5756490561, 16074597300, 44980514021, 126109353817, 354202275766, 996517941454
Offset: 0

Views

Author

Marko Riedel, Sep 18 2017

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    a:= n-> `if`(n=0, 1, b(n-1$2, 10$2)):
    seq(a(n), n=0..35);  # Alois P. Heinz, Sep 20 2017
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[ Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, t - j, k], {j, 0, Min[t, n/i]}]]];
    a[n_] := If[n == 0, 1, b[n - 1, n - 1, 10, 10]];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 04 2018, after Alois P. Heinz *)

Formula

Functional equation of G.f. is T(z) = z + z*Sum_{q=1..10} Z(S_q)(T(z)) with Z(S_q) the cycle index of the symmetric group. Alternate FEQ is
T(z) = 1 + z*Z(S_10)(T(z)).
a(n) = Sum_{j=1..10} A244372(n,j) for n>0, a(0) = 1. - Alois P. Heinz, Sep 20 2017
a(n) / a(n+1) ~ 0.338329194566131211670667671160855741193081902868090986608524... - Robert A. Russell, Feb 11 2023

A036671 Number of isomers C_n H_{2n} without double bonds.

Original entry on oeis.org

0, 0, 1, 2, 5, 12, 29, 73, 185, 475, 1231, 3232, 8506, 22565, 60077, 160629, 430724, 1158502, 3122949, 8437289, 22836877, 61918923, 168139339, 457225555, 1244935251, 3393754661, 9261681937, 25301337669, 69184724389, 189349490641
Offset: 1

Views

Author

Keywords

Comments

Equivalently, the number of simple unicyclic graphs on n unlabeled vertices with all degrees at most 4. See table 1 in Michael A. Kappler reference. - Jonathan Vos Post, Dec 07 2005, Andrew Howroyd, May 22 2018

References

  • Camden A. Parks and James B. Hendrickson, Enumeration of monocyclic and bicyclic carbon skeletons, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991). See page 335 Table 1.
  • J. B. Hendrikson and C. A. Parks, "Generation and Enumeration of Carbon skeletons", J. Chem. Inf. Comput. Sci, vol. 31 (1991) pp. 101-107. See Table 2, column 3 on page 103.

Crossrefs

Programs

  • PARI
    \\ here G is A000598 as series
    G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g,x,x^2)*g/2 + subst(g,x,x^3)/3) + O(x^n)); g}
    seq(n)={my(t=G(n-2)); t=x*(t^2+subst(t,x,x^2))/2; my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); Vec(sum(k=3, n, sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/k + if(k%2, g(1)*g(2)^(k\2), (g(1)^2+g(2))*g(2)^(k/2-1)/2))/2, -n)} \\ Andrew Howroyd, May 22 2018

Formula

Polya reference gives an explicit g.f.; so does Parks et al.

Extensions

More terms from Vladeta Jovovic, Aug 19 2001

A000200 Number of bicentered hydrocarbons with n atoms.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 3, 3, 9, 15, 38, 73, 174, 380, 915, 2124, 5134, 12281, 30010, 73401, 181835, 452165, 1133252, 2851710, 7215262, 18326528, 46750268, 119687146, 307528889, 792716193, 2049703887, 5314775856, 13817638615, 36012395538
Offset: 0

Views

Author

N. J. A. Sloane, E. M. Rains (rains(AT)caltech.edu)

Keywords

References

  • Busacker and Saaty, Finite Graphs and Networks, 1965, p. 201 (they reproduce Cayley's mistakes).
  • A. Cayley, "On the mathematical theory of isomers", Phil. Mag. vol. 67 (1874), 444-447.
  • A. Cayley, "Über die analytischen Figuren, welche in der Mathematik Baeume genannt werden...", Chem. Ber. 8 (1875), 1056-1059.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A000200 = A000602 - A000022 for n>0.
Cf. A010373.

Programs

  • Maple
    N := 45: for i from 1 to N do tt := t[ i ]-t[ i-1 ]; b[ i ] := series((tt^2+subs(z=z^2,tt))/2+O(z^(N+1)),z,200): od: i := 'i': bicent := series(sum(b[ i ],i=1..N),z,200); G000200 := bicent; A000200 := n->coeff(G000200,z,n);
    # Maple code continues from A000022: bicentered == unordered pair of ternary trees of the same height:
  • Mathematica
    n = 40; (* algorithm from Rains and Sloane *)
    S3[f_,h_,x_] := f[h,x]^3/6 + f[h,x] f[h,x^2]/2 + f[h,x^3]/3;
    T[-1,z_] := 1;  T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S3[T,h-1,z]z, z], n+1];
    Sum[Take[CoefficientList[z^(n+1) + (T[h,z] - T[h-1,z])^2/2 + (T[h,z^2] - T[h-1,z^2])/2, z],n+1], {h,0,n/2}] (* Robert A. Russell, Sep 15 2018 *)

A295461 Number of unlabeled rooted trees with 2n + 1 nodes in which all outdegrees are even.

Original entry on oeis.org

1, 1, 2, 5, 12, 33, 91, 264, 780, 2365, 7274, 22727, 71784, 229094, 737215, 2390072, 7798020, 25587218, 84377881, 279499063, 929556155, 3102767833, 10390936382, 34903331506, 117564309276, 396994228503, 1343716120550, 4557952756658, 15491856887741
Offset: 0

Views

Author

Gus Wiseman, Jan 13 2018

Keywords

Examples

			The a(3) = 5 trees: (o(o(oo))), (o(oooo)), ((oo)(oo)), (ooo(oo)), (oooooo).
		

Crossrefs

Programs

  • Mathematica
    erut[n_]:=erut[n]=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[erut/@c]]]/@Select[IntegerPartitions[n-1],EvenQ[Length[#]]&]];
    Table[Length[erut[n]],{n,1,30,2}]

A305059 Triangle read by rows: T(n,k) is the number of connected unicyclic graphs on n unlabeled nodes with cycle length k and all nodes having degree at most 4.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 6, 4, 1, 1, 15, 8, 4, 1, 1, 33, 24, 9, 5, 1, 1, 83, 55, 28, 12, 5, 1, 1, 196, 147, 71, 40, 13, 6, 1, 1, 491, 365, 198, 106, 47, 16, 6, 1, 1, 1214, 954, 521, 317, 136, 63, 18, 7, 1, 1, 3068, 2431, 1418, 868, 428, 190, 73, 21, 7, 1, 1
Offset: 3

Views

Author

Andrew Howroyd, May 24 2018

Keywords

Comments

Equivalently, the number of monocyclic skeletons with n carbon atoms and a ring size of k.

Examples

			Triangle begins:
     1;
     1,   1;
     3,   1,   1;
     6,   4,   1,   1;
    15,   8,   4,   1,   1;
    33,  24,   9,   5,   1,  1;
    83,  55,  28,  12,   5,  1,  1;
   196, 147,  71,  40,  13,  6,  1, 1;
   491, 365, 198, 106,  47, 16,  6, 1, 1;
  1214, 954, 521, 317, 136, 63, 18, 7, 1, 1;
  ...
		

Crossrefs

Row sums are A036671.
Cf. A000598.

Programs

  • Mathematica
    G[n_] := Module[{g}, Do[g[x_] = 1 + x*(g[x]^3/6 + g[x^2]*g[x]/2 + g[x^3]/3) + O[x]^n // Normal, {n}]; g[x]];
    T[n_, k_] := Module[{t = G[n], g}, t = x*((t^2 + (t /. x -> x^2))/2); g[e_] = (Normal[t + O[x]^Quotient[n, e]] /. x -> x^e) + O[x]^n // Normal; Coefficient[(Sum[EulerPhi[d]*g[d]^(k/d), {d, Divisors[k]}]/k + If[OddQ[ k], g[1]*g[2]^Quotient[k, 2], (g[1]^2 + g[2])*g[2]^(k/2-1)/2])/2, x, n]];
    Table[T[n, k], {n, 3, 13}, {k, 3, n}] // Flatten (* Jean-François Alcover, Jul 03 2018, after Andrew Howroyd *)
  • PARI
    \\ here G is A000598 as series
    G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
    T(n,k)={my(t=G(n)); t=x*(t^2+subst(t, x, x^2))/2; my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); polcoeff((sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/k + if(k%2, g(1)*g(2)^(k\2), (g(1)^2+g(2))*g(2)^(k/2-1)/2))/2, n)}

A121331 Number of bridged bicyclic skeletons with n carbon atoms (see Parks et al. for precise definition).

Original entry on oeis.org

1, 2, 6, 15, 39, 99, 258, 671, 1762, 4657, 12372, 33036, 88590, 238483, 644045, 1744542, 4737341, 12894158, 35165994, 96083192, 262951511, 720685274, 1977846334, 5434588909, 14949284828, 41163690109, 113451949753, 312955174089, 863965424349, 2386874582238
Offset: 5

Views

Author

N. J. A. Sloane, Aug 27 2006

Keywords

Comments

Equivalently, the number of connected graphs on n unlabeled nodes with exactly 2 cycles of the same even length joined along half their length and all nodes having degree at most 4. The resulting graph will have three equal length cycles. - Andrew Howroyd, May 25 2018

Examples

			From _Andrew Howroyd_, May 25 2018: (Start)
Illustration of graphs for n=5 and n=6:
    o          o--o       o
   /|\        /|\        /|\
  o o o      o o o      o o o--o
   \|/        \|/        \|/
    o          o          o
.
Illustration of graphs for n=7:
    o--o      o--o--o   o--o        o        o          o   o
   /|\       /|\       /|\         /|\      /|\        /|\ /
  o o o     o o o     o o o--o    o o o    o o o--o   o o o
   \|/       \|/       \|/       / \|/ \    \|/   |    \|/ \
    o--o      o         o       o   o   o    o    o     o   o
(End)
		

Crossrefs

Programs

  • Mathematica
    G[n_] := Module[{g}, g[] = 0; Do[g[x] = 1 + x*(g[x]^3/6 + g[x^2]*g[x]/2 + g[x^3]/3) + O[x]^n // Normal, {n}]; g[x]];
    C1[n_] := Sum[(d1^(3*k)+3*d1^k*d2^k + 2*d3^k), {k, 1, Quotient[n, 3]}]/12;
    C2[n_] := Sum[(d1^Mod[k, 2]*d2^Quotient[k, 2])^3 + 3*d1^Mod[k, 2]* d2^(Quotient[k, 2] + k) + 2*d3^Mod[k, 2]*d6^Quotient[k, 2], {k, 1, Quotient[n, 3]}]/12;
    seq[n_] := Module[{s, d, g}, s = G[n]; d = x*(s^2 + (s /. x -> x^2))/2; g[p_, e_] := Normal[(p+O[x]^(Quotient[n, e]+1))] /. x :> x^e; g[s, 1]^2* (C1[n-2] /. Thread[{d1, d2, d3} :> {g[d, 1], g[d, 2], g[d, 3]}]) + g[s, 2]*(C2[n-2] /. Thread[{d1, d2, d3, d6} :> {g[d, 1], g[d, 2], g[d, 3], g[d, 6]}]) + O[x]^n] // CoefficientList[#, x]& // Drop[#, 3]&;
    seq[33] (* Jean-François Alcover, Sep 08 2019, after Andrew Howroyd *)
  • PARI
    \\ here G is A000598 as series
    G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g}
    C1(n)={sum(k=1, n\3, (d1^(3*k) + 3*d1^k*d2^k + 2*d3^k))/12}
    C2(n)={sum(k=1, n\3, (d1^(k%2)*d2^(k\2))^3 + 3*d1^(k%2)*d2^(k\2+k) + 2*d3^(k%2)*d6^(k\2))/12}
    seq(n)={my(s=G(n)); my(d=x*(s^2+subst(s, x, x^2))/2); my(g(p,e)=subst(p + O(x*x^(n\e)), x, x^e)); Vec(O(x^n/x) + g(s,1)^2*substvec(C1(n-2),[d1,d2,d3],[g(d,1), g(d,2), g(d,3)]) + g(s,2)*substvec(C2(n-2), [d1,d2,d3,d6], [g(d,1), g(d,2), g(d,3), g(d,6)]))} \\ Andrew Howroyd, May 25 2018

Formula

a(n) ~ c * d^n / sqrt(n), where d = 1/A261340 = 2.815460033176150746526616778..., c = 0.0064202170754... . - Vaclav Kotesovec, Sep 08 2019

Extensions

Corrected by Franklin T. Adams-Watters and T. D. Noe, Oct 25 2006
a(24) corrected and terms a(26) and beyond from Andrew Howroyd, May 25 2018

A301344 Regular triangle where T(n,k) is the number of semi-binary rooted trees with n nodes and k leaves.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 4, 1, 0, 0, 1, 6, 4, 0, 0, 0, 1, 9, 11, 2, 0, 0, 0, 1, 12, 24, 9, 0, 0, 0, 0, 1, 16, 46, 32, 3, 0, 0, 0, 0, 1, 20, 80, 86, 20, 0, 0, 0, 0, 0, 1, 25, 130, 203, 86, 6, 0, 0, 0, 0, 0, 1, 30, 200, 423, 283, 46, 0, 0, 0, 0, 0, 0, 1, 36, 295, 816, 786, 234, 11, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2018

Keywords

Comments

A rooted tree is semi-binary if all outdegrees are <= 2. The number of semi-binary trees with n nodes is equal to the number of binary trees with n+1 leaves; see A001190.

Examples

			Triangle begins:
1
1   0
1   1   0
1   2   0   0
1   4   1   0   0
1   6   4   0   0   0
1   9  11   2   0   0   0
1  12  24   9   0   0   0   0
1  16  46  32   3   0   0   0   0
1  20  80  86  20   0   0   0   0   0
1  25 130 203  86   6   0   0   0   0   0
The T(6,3) = 4 semi-binary rooted trees: ((o(oo))), (o((oo))), (o(o(o))), ((o)(oo)).
		

Crossrefs

Programs

  • Mathematica
    rbt[n_]:=rbt[n]=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[rbt/@c]]]/@Select[IntegerPartitions[n-1],Length[#]<=2&]];
    Table[Length[Select[rbt[n],Count[#,{},{-2}]===k&]],{n,15},{k,n}]

A002094 Number of unlabeled connected loop-less graphs on n nodes containing exactly one cycle (of length at least 2) and with all nodes of degree <= 4.

Original entry on oeis.org

0, 1, 2, 5, 10, 25, 56, 139, 338, 852, 2145, 5513, 14196, 36962, 96641, 254279, 671640, 1781840, 4742295, 12662282, 33898923, 90981264, 244720490, 659591378, 1781048728, 4817420360, 13050525328, 35405239155, 96180222540, 261603173201, 712364210543
Offset: 1

Views

Author

Keywords

Comments

A pair of parallel edges is permitted and is regarded as a cycle of length 2.
The original definition in A Handbook of Integer Sequences (1973) based on Schiff (1875) was simply "Alcohols". - N. J. A. Sloane, Mar 22 2018
Schiff used an now outdated terminology and did not use the term "alcohols", but in German "zweiwerthige Kohlenwasserstoffe C_{n}H_{2n} ..." and later "... deren je zwei verfuegbare Affinitaeten ... durch Alkoholradikale befriedigt sind.", translated "bivalent hydrocarbons ... whose free valences ... are covered by alcohol radicals". At that time the meaning of "alcohol radical" was different from modern terminology, now meaning an -OH group, but in Schiff's terminology another C_{x}H{y} hydrocarbon group was meant. The organic compounds that are described by the graphs of this sequence in modern chemical terminology are the acyclic alkenes, with exactly one double carbon-to-carbon bond, and the monocyclic cycloalkanes (see Wikipedia links). - Hugo Pfoertner, Mar 29 2018

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000294, A000598, A000602, A000625, A000642, A001429 (unbound degrees), A068051.

Programs

  • Maple
    # cycle index of cyclic group C_n
    cycC_n := proc(n::integer,a)
        local d ;
        add(numtheory[phi](d)*a[d]^(n/d),d=numtheory[divisors](n)) ;
        %/n ;
    end proc:
    # cycle index of dihedral group
    cyD_n := proc(n::integer,a)
        cycC_n(n,a)/2 ;
        if type(n,'odd') then
            %+ a[1]*a[2]^((n-1)/2)/2 ;
        else
            %+ ( a[1]^2*a[2]^((n-2)/2) +a[2]^(n/2) )/4 ;
        end if;
    end proc:
    a000642 := [
        1, 1, 2, 3, 7, 14, 32, 72, 171, 405, 989, 2426, 6045, 15167, 38422, 97925,
        251275, 648061, 1679869, 4372872, 11428365, 29972078, 78859809, 208094977,
        550603722, 1460457242, 3882682803, 10344102122, 27612603765, 73844151259,
        197818389539, 530775701520, 1426284383289] ;
    g := [add(a000642[i]*x^i,i=1..nops(a000642)) ];
    for i from 2 to nops(a000642) do
        g := [op(g), subs(x=x^i,g[1]) ] ;
    end do:
    Nmax := nops(a000642) :
    G := 0 ;
    for c from 2 to Nmax do
        f := cyD_n(c,g) ;
        G := G+ taylor(f,x=0,Nmax) ;
    end do:
    taylor(G,x=0,Nmax) ;
    gfun[seriestolist](%) ; # R. J. Mathar, Mar 17 2018
  • Mathematica
    terms = 31;
    cycC[n_, a_] := Sum[EulerPhi[d] a[[d]]^(n/d), {d, Divisors[n]}]/n;
    cyD[n_, a_] := Module[{cc}, cc = (1/2)cycC[n, a]; If[OddQ[n], (1/2)a[[1]]* a[[2]]^((n-1)/2)+cc, (1/4)(a[[1]]^2 a[[2]]^((n-2)/2) + a[[2]]^(n/2)) + cc]];
    B[] = 0; Do[B[x] = Normal[(1/6) x (2 B[x^3] + 3 B[x^2] B[x] + B[x]^3) + O[x]^terms+1], terms];
    A[x_] = (1/2) x (B[x^2] + B[x]^2) + O[x]^(terms+2);
    a000642 = Rest[CoefficientList[A[x], x]];
    g = {Sum[x^i a000642[[i]], {i, 1, terms+1}]};
    For[i = 2, i <= Length[a000642], i++, g = Flatten[Append[g, g[[1]] /. x -> x^i]]];
    For[G = 0; c = 2, c < terms+1, c++, f = cyD[c, g]; G = Series[f, {x, 0, terms+1}] + G];
    Most[Rest[CoefficientList[G, x]]] (* Jean-François Alcover, Mar 26 2020, after R. J. Mathar *)

Formula

Let A(x) denote the generating function for A000598 (Number of rooted ternary trees with n nodes), i.e., A(x) = 1+(1/6)*x*(A(x)^3+3*A(x)*A(x^2)+2*A(x^3)), and set B(x)=(A(x)^2+A(x^2))/2. With D_k(x) being the cycle polynomial of the regular k-gon for k>=2, the final generating function is then given by Sum_{k>=2} x^k*D_k(B(x)), which can be evaluated very quickly. - Sascha Kurz, Mar 18 2018

Extensions

Better definition from R. J. Mathar; terms beyond 852 from R. J. Mathar and Sean A. Irvine, Mar 17 2018

A010372 Number of unrooted quartic trees with n (unlabeled) nodes and possessing a centroid; number of n-carbon alkanes C(n)H(2n +2) with a centroid ignoring stereoisomers.

Original entry on oeis.org

1, 0, 1, 1, 3, 2, 9, 8, 35, 39, 159, 202, 802, 1078, 4347, 6354, 24894, 38157, 148284, 237541, 910726, 1511717, 5731580, 9816092, 36797588, 64658432, 240215803, 431987953, 1590507121, 2917928218, 10660307791, 19910436898
Offset: 1

Views

Author

Keywords

Comments

The degree of each node is <= 4.
A centroid is a node with less than n/2 nodes in each of the incident subtrees, where n is the number of nodes in the tree. If a centroid exists it is unique.
Ignoring stereoisomers means that the children of a node are unordered. They can be permuted in any way and it is still the same tree. See A086194 for the analogous sequence with stereoisomers counted.

References

  • F. Harary, Graph Theory, p. 36, for definition of centroid.

Crossrefs

A000602(n) = a(n) + A010373(n/2) for n even, A000602(n) = a(n) for n odd.

Programs

  • Maple
    with(combstruct): Alkyl := proc(n) combstruct[count]([ U,{U=Prod(Z,Set(U,card<=3))},unlabeled ],size=n) end:
    centeredHC := proc(n) option remember; local f,k,z,f2,f3,f4; f := 1 + add(Alkyl(k)*z^k, k=0..iquo(n-1,2));
    f2 := series(subs(z=z^2,f), z, n+1); f3 := series(subs(z=z^3,f), z, n+1); f4 := series(subs(z=z^4,f), z, n+1);
    f := series(f*f3/3+f4/4+f2^2/8+f2*f^2/4+f^4/24, z, n+1); coeff(f, z, n-1) end: seq(centeredHC(n), n=1..32);

Extensions

Description revised by Steve Strand (snstrand(AT)comcast.net), Aug 20 2003

A010373 Number of unrooted quartic trees with 2n (unlabeled) nodes and possessing a bicentroid; number of 2n-carbon alkanes C(2n)H(4n+2) with a bicentroid, ignoring stereoisomers.

Original entry on oeis.org

1, 1, 3, 10, 36, 153, 780, 4005, 22366, 128778, 766941, 4674153, 29180980, 185117661, 1193918545, 7800816871, 51584238201, 344632209090, 2324190638055, 15804057614995, 108277583483391, 746878494484128, 5183852459907628
Offset: 1

Views

Author

Keywords

Comments

The degree of each node is <= 4.
A bicentroid is an edge which connects two subtrees of exactly m/2 nodes, where m is the number of nodes in the tree. If a bicentroid exists it is unique. Clearly trees with an odd number of nodes cannot have a bicentroid.
Ignoring stereoisomers means that the children of a node are unordered. They can be permuted in any way and it is still the same tree. See A086200 for the analogous sequence with stereoisomers counted.

References

  • F. Harary, Graph Theory, p. 36, for definition of bicentroid.

Crossrefs

A000602(n) = A010372(n) + a(n/2) for n even, A000602(n) = A010372(n) for n odd.

Programs

  • Maple
    M[1146] := [ T,{T=Union(Epsilon,U),U=Prod(Z,Set(U,card<=3))},unlabeled ]:
    bicenteredHC := proc(n) option remember; if n mod 2<>0 then 0 else binomial(count(M[ 1146 ],size=n/2)+1,2) fi end:
  • Mathematica
    m = 24; a[x_] = Sum[c[k]*x^k, {k, 0, m}]; s[x_] = Series[ 1 + (1/6)*x*(a[x]^3 + 3*a[x]*a[x^2] + 2*a[x^3]) - a[x], {x, 0, m}]; eq = Thread[ CoefficientList[s[x], x] == 0];
    Do[so[k] = Solve[eq[[1]], c[k-1]][[1]]; eq = Rest[eq] /. so[k], {k, 1, m+1}]; b = Array[c, m, 0] /. Flatten[ Array[so, m+1] ]; Rest[b*(b+1)/2] (* Jean-François Alcover, Jul 25 2011, after A000598 *)

Formula

a(n) = b(n)*(b(n)+1)/2, where b(n) = A000598[ n ].

Extensions

Description revised by Steve Strand (snstrand(AT)comcast.net), Aug 20 2003
Previous Showing 21-30 of 86 results. Next