cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 50 results. Next

A108400 a(n) = Product_{k = 0..n} (2^k * k!).

Original entry on oeis.org

1, 2, 16, 768, 294912, 1132462080, 52183852646400, 33664847019245568000, 347485857744891213250560000, 64560982045934655213753964953600000, 239901585047846581083822477336190648320000000
Offset: 0

Views

Author

Philippe Deléham, Jul 02 2005

Keywords

Comments

Hankel transform (see A001906 for definition) of the sequences A000898, A001861, A035009(with first term omitted), A047974, A067147(unsigned version), A083886.
Hankel transform of the sequence with e.g.f. exp(x^2). Also (-1)^C(n+1,2)*a(n) is the Hankel transform of the sequence with e.g.f. exp(-x^2). - Paul Barry, Feb 12 2008
Let T(n,k) = (n+1)^k * (1+(-1)^(n-k))/2, then a(n) = det(T(i,j); 0<=i, j<=n). - Paul Barry, Feb 12 2008

Crossrefs

Programs

  • Magma
    BarnesG:= func< n | (&*[Factorial(j): j in [0..n-2]]) >;
    [2^Binomial(n+1,2)*BarnesG(n+2): n in [0..15]]; // G. C. Greubel, Jun 21 2022
    
  • Mathematica
    Table[Product[k!*2^k, {k,0,n}], {n,0,10}] (* Vaclav Kotesovec, Nov 14 2014 *)
    Table[2^Binomial[n+1,2]*BarnesG[n+2], {n,0,15}] (* G. C. Greubel, Jun 21 2022 *)
  • SageMath
    def barnes_g(n): return product(factorial(j) for j in (0..n-2))
    [2^binomial(n+1,2)*barnes_g(n+2) for n in (0..15)] # G. C. Greubel, Jun 21 2022

Formula

a(n) = A006125(n+1)*A000178(n).
a(n) = Product_{i=1..n} Product_{j=0..i-1} {2*(i-j)}. - Paul Barry, Aug 02 2008
a(n) ~ 2^((n+1)^2/2) * n^(n^2/2+n+5/12) * Pi^((n+1)/2) / (A * exp(3*n^2/4+n-1/12)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 14 2014

A202828 Expansion of e.g.f.: exp(4*x/(1-2*x)) / sqrt(1-4*x^2).

Original entry on oeis.org

1, 4, 36, 400, 5776, 97344, 1915456, 42406144, 1049760000, 28558296064, 848579961856, 27271456395264, 943132599095296, 34877026635366400, 1373536895379849216, 57351382681767706624, 2530646978003730497536, 117614221470591038521344, 5742190572014854792806400
Offset: 0

Views

Author

Paul D. Hanna, Dec 25 2011

Keywords

Comments

a(n) is the number of good involutions of the linear Alexander quandle (Z/4nZ, 2n+1); see Ta, Thm. 5.11 and cf. A387317. - Luc Ta, Aug 26 2025

Examples

			E.g.f.: A(x) = 1 + 4*x + 36*x^2/3! + 400*x^3/3! + 5776*x^4/4! + 97344*x^5/5! +...
where A(x) = 1 + 2^2*x + 6^2*x^2/2! + 20^2*x^3/3! + 76^2*x^4/4! + 312^2*x^5/5! +...+ A000898(n)^2*x^n/n! +...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!(Laplace( Exp(4*x/(1-2*x))/Sqrt(1-4*x^2) ))); // G. C. Greubel, Jun 21 2022
    
  • Mathematica
    CoefficientList[Series[Exp[4*x/(1-2*x)]/Sqrt[1-4*x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, May 23 2013 *)
  • PARI
    {a(n)=n!*polcoeff(exp(4*x/(1-2*x)+x*O(x^n))/sqrt(1-4*x^2+x*O(x^n)),n)}
    
  • PARI
    {a(n)=sum(k=0,n\2,2^(n-2*k)*n!/((n-2*k)!*k!))^2}
    
  • PARI
    {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
    {Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1), n)}
    {a(n)=sum(k=0, n, Stirling1(n, k)*Bell(k)*2^k)^2}
    
  • SageMath
    def A202828_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( exp(4*x/(1-2*x))/sqrt(1-4*x^2) ).egf_to_ogf().list()
    A202828_list(40) # G. C. Greubel, Jun 21 2022

Formula

a(n) = A000898(n)^2, where the e.g.f. of A000898 is exp(2*x + x^2).
a(n) = ( Sum_{k=0..[n/2]} 2^(n-2*k) * n!/((n-2*k)!*k!) )^2.
a(n) = ( Sum_{k=0..n} Stirling1(n, k)*2^k*Bell(k) )^2. [From formula by Vladeta Jovovic in A000898].
a(n) ~ n^n*exp(2*sqrt(2*n)-1-n)*2^(n-1). - Vaclav Kotesovec, May 23 2013
D-finite with recurrence: a(n) = 2*(n+1)*a(n-1) + 4*(n-1)*(n+1)*a(n-2) - 8*(n-1)*(n-2)^2*a(n-3). - Vaclav Kotesovec, May 23 2013
a(n) = 2^n*A277378(n). - R. J. Mathar, Jan 20 2020

A135401 a(n) = number of permutations (p(1),p(2),p(3),...,p(n)) of (1,2,3,...n) each of which is its own inverse and is such that p(k) = n + 1 - p(n+1-k) for all k in the range 1 <= k <= n.

Original entry on oeis.org

1, 1, 2, 2, 6, 6, 20, 20, 76, 76, 312, 312, 1384, 1384, 6512, 6512, 32400, 32400, 168992, 168992, 921184, 921184, 5222208, 5222208, 30710464, 30710464, 186753920, 186753920, 1171979904, 1171979904, 7573069568, 7573069568, 50305536256, 50305536256, 342949298688
Offset: 0

Views

Author

Leroy Quet, Dec 11 2007

Keywords

Comments

a(n) is also the number of ways to place n points on an n X n grid with pairwise distinct abscissa, pairwise distinct ordinate, mirror symmetry and 180-degree rotational symmetry. Note that both diagonals are actually axes of symmetry. See also A297708, A000085, A001813, and A006882. - Manfred Scheucher, Jan 04 2018
a(n) is the number of standard Young tableaux of size n invariant under Schützenberger involution. - Ludovic Schwob, Feb 17 2024

Examples

			For n = 6 we can have the permutation (3,5,1,6,2,4). This permutation is its own inverse permutation. Furthermore, 7 = p(1)+p(6) = p(2)+p(5) = p(3)+p(4) = 3+4 = 5+2 = 1+6. So this permutation among others is included in the count of permutations when n=6.
a(4) = 6 because we have 1234, 1324, 3412, 2143, 4231 and 4321.
		

Crossrefs

Programs

  • Maple
    with(combinat): with(group): a:=proc(n) local P,ct,j,pc,prc: P:=permute(n): ct:= 0: for j to factorial(n) do pc:=convert(P[j], 'disjcyc'): prc:=[seq(n+1-P[j][n+1-k],k=1..n)]: if invperm(pc)=pc and P[j]=prc then ct:=ct+1 else end if end do: ct end proc: seq(a(n),n=0..9); # Emeric Deutsch, Dec 31 2007
  • Mathematica
    a898[n_] := Sum[2^k StirlingS1[n, k] BellB[k], {k, 0, n}];
    a =.; a[n_] := a898[Floor[n/2]];
    Table[a[n], {n, 0, 40}]
    (* or: *)
    a[n_] := a[n] = Which[n==0 || n==-2, 1, OddQ[n], a[n-1],
       True, 2 a[n-2] + (n-2) a[n-4]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, May 13 2019, updated Jul 25 2022 *)
  • PARI
    print1(1", "1", ");a=0;b=1;for(n=1,25,c=2*(b+(n-1)*a);print1(c", "c", ");a=b;b=c) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 26 2008
    
  • Sage
    def a135401(n):
        return sum(binomial(n//2,2*k)*binomial(2*k,k)*factorial(k)*2**(n//2-2*k) for k in range(1+n//4))
    for n in range(100): print(n, a135401(n)) # Manfred Scheucher, Jan 07 2018

Formula

a(n) = A000898(floor(n/2)). - Conjectured by Leroy Quet, Jan 20 2008; proved by Max Alekseyev, Jan 21 2008: (Start)
Let p = (p(1),...,p(n)) be a permutation such that p(k) = n + 1 - p(n+1-k) for all 1 <= k <= n.
Then 2-set {k, n+1-k} (i.e., where the sum of elements is n+1) is mapped by p into {p(k), p(n+1-k)} with the same property p(k) + p(n+1-k) = n+1. Therefore every such permutation induces a permutation q on the 2-sets {k, n+1-k}, and for odd n has a fixed point p((n+1)/2) = (n+1)/2.
Furthermore, it is easy to see that if p is self-inverse then so is q.
Let s=floor(n/2). For every permutation q on the sets {k, n+1-k}, 1 <= k <= s, let's count how many p induce it.
It is clear that if q has exactly m fixed points (and so the other s-m 2-sets form pairs of inverses under q), then there exist 2^m ways to define p on the fixed points of q and 2^((s-m)/2) ways to define p on the remaining elements.
Hence the total number of permutations p inducing q is 2^m * 2^((s-m)/2) = 2^((s+m)/2). The number of permutations q on s elements with exactly m fixed points is nonzero only if m and s are of the same oddness and in this case it is binomial(s,m) * (s-m)! / 2^((s-m)/2) / ((s-m)/2)! = binomial(s,m) * (s-m-1)!! = s! / m! / 2^((s-m)/2) / ((s-m)/2)!.
Hence a(n) = Sum s! * 2^m / m! / ((s-m)/2)!, where sum is taken over m=0,1...,s of the same oddness as s. Let s-m=2t so that m=s-2t and a(n) = Sum_{t=0..floor(s/2)} s! * 2^(s-2t) / ((s-2t)! * t!) = s! * [x^s] e^(2x) * e^(x^2) = s! * [x^s] e^(x^2+2x) = A000898(s), according to its e.g.f. QED
(End)
a(n) = Sum_{k=0..floor(n/2)} binomial(floor(n/2),2k) *binomial(2k,k) *k! *2^(floor(n/2)-2k). (See A000898 for the original formula by N. Calkin, for further equivalent expressions, and for (exponential) generating function.) - Manfred Scheucher, Jan 07 2018

Extensions

5 more terms from Emeric Deutsch, Dec 31 2007
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 26 2008
a(0)=1 prepended by Alois P. Heinz, Jan 03 2018

A300056 Number of normal standard domino tableaux whose shape is the integer partition with Heinz number n.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 0, 2, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 3, 1, 0, 0, 3, 0, 3, 2, 1, 0, 0, 0, 0, 1, 0, 3, 1, 0, 4, 2, 0, 0, 1, 0, 0, 1, 0, 1, 6, 0, 0, 3, 1, 0, 4, 0, 5, 0, 0, 0, 1, 1, 8, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 6, 4, 0, 0, 1, 0, 6, 1, 0, 6, 5, 0, 6, 3, 1, 2, 10, 0, 0, 1, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Feb 23 2018

Keywords

Comments

A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers. A standard domino tableau is a generalized Young tableau in which all rows and columns are weakly increasing and all regions are dominos. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(75) = 6 tableaux:
1 2 4   1 2 3   1 2 2   1 1 4   1 1 4   1 1 3
1 2 4   1 2 3   1 3 3   2 3 4   2 2 4   2 2 3
3 3     4 4     4 4     2 3     3 3     4 4
		

Crossrefs

A300120 Number of skew partitions whose quotient diagram is connected and whose numerator has weight n.

Original entry on oeis.org

2, 6, 12, 26, 44, 86, 136, 239, 376, 613, 930, 1485, 2194, 3355, 4948, 7372, 10656, 15660, 22359, 32308
Offset: 1

Views

Author

Gus Wiseman, Feb 25 2018

Keywords

Comments

The diagram of a connected skew partition is required to be connected as a polyomino but can have empty rows or columns.

Examples

			The a(3) = 12 skew partitions:
(3)/()   (3)/(1)   (3)/(2)    (3)/(3)
(21)/()  (21)/(11) (21)/(2)   (21)/(21)
(111)/() (111)/(1) (111)/(11) (111)/(111)
		

Crossrefs

Programs

  • Mathematica
    undcon[y_]:=Select[Tuples[Range[0,#]&/@y],Function[v,GreaterEqual@@v&&With[{r=Select[Range[Length[y]],y[[#]]=!=v[[#]]&]},Or[Length[r]<=1,And@@Table[v[[i]]
    				

A300122 Number of normal generalized Young tableaux of size n with all rows and columns weakly increasing and all regions connected skew partitions.

Original entry on oeis.org

1, 4, 13, 51, 183, 771, 3087, 13601, 59933, 278797, 1311719, 6453606, 32179898, 166075956, 871713213, 4704669005, 25831172649, 145260890323
Offset: 1

Views

Author

Gus Wiseman, Feb 25 2018

Keywords

Comments

The diagram of a connected skew partition is required to be connected as a polyomino but can have empty rows or columns. A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers.

Examples

			The a(3) = 13 tableaux:
1 1 1   1 1 2   1 2 2   1 2 3
.
1 1   1 1   1 2   1 2   1 3
1     2     1     3     2
.
1   1   1   1
1   1   2   2
1   2   2   3
		

Crossrefs

Programs

  • Mathematica
    undcon[y_]:=Select[Tuples[Range[0,#]&/@y],Function[v,GreaterEqual@@v&&With[{r=Select[Range[Length[y]],y[[#]]=!=v[[#]]&]},Or[Length[r]<=1,And@@Table[v[[i]]
    				

A000902 Expansion of e.g.f. (1/2)*(exp(2*x + x^2) + 1).

Original entry on oeis.org

1, 1, 3, 10, 38, 156, 692, 3256, 16200, 84496, 460592, 2611104, 15355232, 93376960, 585989952, 3786534784, 25152768128, 171474649344, 1198143415040, 8569374206464, 62668198184448, 468111364627456, 3568287053001728
Offset: 0

Views

Author

Keywords

Comments

Number of solutions to the rook problem on a 2n X 2n board having a certain symmetry group (see Robinson for details).
One more than the number of ordered pairs of minimally intersecting partitions such that p consists of exactly two blocks.
The number of B-orbits in the symmetric space of type DIII, SO_{2n}(C)/GL_n(C) where B is a Borel subgroup of SO_{2n}(C). These are parameterized by "type DIII (n,n)-clans". E.g., for n=2, the a(2)=3 type DIII (2,2)-clans are ++--, --++, and 1212. See [Bingham and Ugurlu] link. - Aram Bingham, Feb 08 2020

References

  • L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals 1/2 * A000898(n) for n>0.

Programs

  • Haskell
    a000902 n = a000902_list !! n
    a000902_list = 1 : 1 : 3 : map (* 2) (zipWith (+)
       (drop 2 a000902_list) (zipWith (*) [2..] $ tail a000902_list))
    -- Reinhard Zumkeller, Sep 10 2013
    
  • Magma
    a:=[1,3]; [1] cat [n le 2 select a[n] else 2*Self(n-1) + (2*n-2)*Self(n-2):n in [1..22]]; // Marius A. Burtea, Feb 12 2020
  • Maple
    # Comment from the authors: For Maple program see A000903.
    A000902 := n -> `if`(n=0, 1, I^(-n)*orthopoly[H](n, I)/2):
    seq(A000902(n), n=0..22); # Peter Luschny, Nov 29 2017
  • Mathematica
    n = 22; CoefficientList[ Series[(1/2)*(Exp[2*x+x^2] + 1), {x, 0, n}], x] * Table[k!, {k, 0, n}]
    (* Jean-François Alcover, May 18 2011 *)
    With[{nn=30},CoefficientList[Series[(Exp[2x+x^2]+1)/2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 27 2025 *)

Formula

a(n) = 2*a(n-1) + (2n-2)*a(n-2) for n >= 3. - N. J. A. Sloane, Sep 23 2006
a(n) = 1 + n!/(2e) * [x^n] Sum[l>=0, 1/l! * {(1+x)^l-1}^2].
For asymptotics see the Robinson paper.
But the asymptotic formula in the Robinson paper is wrong (see A000898, discussion from Oct 01 2013). - Vaclav Kotesovec, Aug 04 2014
a(n) ~ 2^(n/2-3/2) * n^(n/2) * exp(sqrt(2*n)-n/2-1/2). - Vaclav Kotesovec, Aug 04 2014
a(n) = (i/2)^(1 - n)*KummerU((1 - n)/2, 3/2, -1) for n>=1. - Peter Luschny, Nov 29 2017
a(n) = Sum_{r=0..floor(n/2)} 2^(n-2r-1) * {(n!)/(r!(n-2r)!)}. - Aram Bingham, Feb 08 2020

A192989 Expansion of e.g.f.: exp((1+x)^3 - 1).

Original entry on oeis.org

1, 3, 15, 87, 585, 4383, 35919, 318195, 3015441, 30354075, 322626159, 3603292047, 42120047385, 513557128503, 6512375759535, 85673471945067, 1166675225150241, 16413589529042355, 238151194659626319, 3558129109803374535
Offset: 0

Views

Author

Paul D. Hanna, Jul 13 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + 3*x + 15*x^2/2! + 87*x^3/3! + 585*x^4/4! +...
		

Crossrefs

Programs

  • GAP
    List([0..20], n-> Sum([0..n], k-> (-1)^(n-k)*3^k*Bell(k)* Stirling1(n,k) )); # G. C. Greubel, Jul 25 2019
  • Magma
    [(&+[3^k*Bell(k)*StirlingFirst(n,k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Jul 25 2019
    
  • Mathematica
    CoefficientList[Series[E^((1+x)^3-1), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jul 15 2014 *)
    Table[Sum[ (-1)^(n - k) Abs[StirlingS1[n, k]] 3^k BellB[k], {k, 0, n}], {n, 0, 20}] (* Emanuele Munarini, Aug 31 2017 *)
  • Maxima
    a(n) := sum((-1)^(n-k)*abs(stirling1(n,k))*3^k*belln(k),k,0,n);
    makelist(a(n),n,0,12); /* Emanuele Munarini, Aug 31 2017 */
    
  • PARI
    {a(n)=if(n<0, 0, n!*polcoeff(exp((1+x)^3-1+x*O(x^n)), n))}
    
  • PARI
    {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
    {Bell(n)=n!*polcoeff(exp(exp(x+x*O(x^n))-1), n)}
    {a(n)=sum(k=0, n, Stirling1(n, k)*Bell(k)*3^k)}
    
  • Sage
    [sum((-1)^(n-k)*3^k*bell_number(k)*stirling_number1(n,k) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Jul 25 2019
    

Formula

a(n) = Sum_{k=0..n} Stirling1(n, k)*Bell(k) * 3^k.
Conjecture: a(n) -3*a(n-1) +6*(-n+1)*a(n-2) -3*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, May 12 2014
Remark: the above conjectured recurrence is true and can be easily obtained from the e.g.f. - Emanuele Munarini, Aug 31 2017
a(n) ~ 3^(n/3-1/2) * exp(-2*n/3 + 3^(1/3)*n^(2/3) + 3^(-1/3)*n^(1/3) - 2/3) * n^(2*n/3) * (1 + 23/(54*(n/3)^(1/3)) + 3149/(29160*(n/3)^(2/3))). - Vaclav Kotesovec, Jul 15 2014

A294042 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp((1+x)^k - 1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 15, 20, 1, 0, 1, 5, 28, 87, 76, 1, 0, 1, 6, 45, 232, 585, 312, 1, 0, 1, 7, 66, 485, 2248, 4383, 1384, 1, 0, 1, 8, 91, 876, 6145, 24544, 35919, 6512, 1, 0, 1, 9, 120, 1435, 13716, 88245, 295456, 318195, 32400, 1, 0
Offset: 0

Views

Author

Seiichi Manyama, Oct 22 2017

Keywords

Examples

			Square array A(n,k) begins:
   1, 1,   1,    1,     1,     1, ...
   0, 1,   2,    3,     4,     5, ...
   0, 1,   6,   15,    28,    45, ...
   0, 1,  20,   87,   232,   485, ...
   0, 1,  76,  585,  2248,  6145, ...
   0, 1, 312, 4383, 24544, 88245, ...
		

Crossrefs

Columns k=0..5 give A000007, A000012, A000898, A192989, A202824, A202825.
Rows n=0..2 give A000012, A001477, A000384.
Main diagonal gives A294045.

Formula

A(0,k) = 1 and A(n,k) = k * (n-1)! * Sum_{j=1..min(k,n)} binomial(k-1,j-1) * A(n-j,k)/(n-j)! for n > 0.
A(n,k) = Sum_{j=0..n} k^j * Stirling1(n,j) * Bell(j). - Seiichi Manyama, Jan 31 2024

A300123 Number of ways to tile the diagram of the integer partition with Heinz number n using connected skew partitions.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 8, 4, 10, 8, 16, 8, 32, 16, 20, 8, 64, 20, 128, 16, 40, 32, 256, 16, 52, 64, 52, 32, 512, 40, 1024, 16, 80, 128, 104, 40, 2048, 256, 160, 32, 4096, 80, 8192, 64, 104, 512, 16384, 32, 272, 104
Offset: 1

Views

Author

Gus Wiseman, Feb 25 2018

Keywords

Comments

The diagram of a connected skew partition is required to be connected as a polyomino but can have empty rows or columns. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Crossrefs

Previous Showing 11-20 of 50 results. Next