cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A000970 Fermat coefficients.

Original entry on oeis.org

1, 7, 25, 66, 143, 273, 476, 775, 1197, 1771, 2530, 3510, 4750, 6293, 8184, 10472, 13209, 16450, 20254, 24682, 29799, 35673, 42375, 49980, 58565, 68211, 79002, 91025, 104371, 119133, 135408, 153296, 172900, 194327, 217686, 243090, 270655
Offset: 5

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Cf. A258708.

Programs

  • Haskell
    a000970 n = a258708 n (n - 5)  -- Reinhard Zumkeller, Jun 23 2015
  • Maple
    A000970:=-(2*z**4+3*z**5+3*z**2+4*z**3+3*z+1)/(z**4+z**3+z**2+z+1)/(z-1)**5; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[(3x^5+2x^4+4x^3+3x^2+3x+1)/((1-x^5)(1-x)^4),{x,0,50}],x] (* Vincenzo Librandi, Mar 28 2012 *)
    LinearRecurrence[{4,-6,4,-1,1,-4,6,-4,1},{1,7,25,66,143,273,476,775,1197},40] (* Harvey P. Dale, Sep 06 2017 *)
  • PARI
    Vec((3*x^5+2*x^4+4*x^3+3*x^2+3*x+1)/(1-x^5)/(1-x)^4+O(x^99)) \\ Charles R Greathouse IV, Mar 28 2012
    

Formula

G.f.: x^5(3x^5 + 2x^4 + 4x^3 + 3x^2 + 3x + 1)/((1-x^5)(1-x)^4).
a(n) = A258708(n,n-5) = A258708(2*n-7,2). - Reinhard Zumkeller, Jun 23 2015

Extensions

More terms from Sean A. Irvine, Sep 25 2011

A000971 Fermat coefficients.

Original entry on oeis.org

1, 9, 42, 132, 334, 728, 1428, 2584, 4389, 7084, 10963, 16380, 23751, 33563, 46376, 62832, 83657, 109668, 141778, 181001, 228459, 285384, 353127, 433160, 527085, 636636, 763686, 910252, 1078500, 1270752, 1489488, 1737355, 2017169, 2331924
Offset: 6

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A258708.

Programs

  • Haskell
    a000971 n = a258708 n (n - 6)  -- Reinhard Zumkeller, Jun 23 2015
  • Maple
    (1+3*z+3*z^7+z^8+3*z^2-4*z^3+10*z^4-4*z^5+3*z^6)/(z^6+z^3+1)/(-1+z)^6;
  • Mathematica
    CoefficientList[Series[(1+3*x+3*x^7+x^8+3*x^2-4*x^3+10*x^4-4*x^5+3*x^6)/(x^6+x^3+1)/(-1+x)^6,{x,0,40}],x] (* Vincenzo Librandi, Mar 28 2012 *)
  • PARI
    Vec((1+3*z+3*z^7+z^8+3*z^2-4*z^3+10*z^4-4*z^5+3*z^6)/(z^6+z^3+1)/(z-1)^6+O(x^99)) \\ Charles R Greathouse IV, Mar 28 2012
    

Formula

G.f.: (1 + 3x + 3x^7 + x^8 + 3x^2 - 4x^3 + 10x^4 - 4x^5 + 3x^6)/(x^6 + x^3 + 1)/(-1+x)^6 (see MAPLE line).
a(n) = A258708(n,n-6). - Reinhard Zumkeller, Jun 23 2015

Extensions

More terms from Sean A. Irvine, Sep 25 2011

A000972 Fermat coefficients.

Original entry on oeis.org

1, 12, 66, 245, 715, 1768, 3876, 7752, 14421, 25300, 42287, 67860, 105183, 158224, 231880, 332112, 466089, 642341, 870922, 1163580, 1533939, 1997688, 2572780, 3279640, 4141382, 5184036, 6436782, 7932196, 9706503, 11799840, 14256528, 17125353, 20459857
Offset: 7

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A258708.

Programs

  • Haskell
    a000972 n = a258708 n (n - 7)  -- Reinhard Zumkeller, Jun 23 2015
    
  • Maple
    a := n->floor((2*n)*(2*n+1)*(2*n+2)*(2*n+3)*(2*n+4)*(2*n+5)/7!);
  • Mathematica
    Table[Floor[((2*n)*(2*n+1)*(2*n+2)*(2*n+3)*(2*n+4)*(2*n+5)/7!)],{n,1,30}] (* Vincenzo Librandi, Apr 10 2012 *)
    With[{c=7!,t=Times@@(2n+Range[0,5])},Table[Floor[t/c],{n,30}]] (* Harvey P. Dale, Apr 20 2014 *)
  • PARI
    Vec(x^7*(1 + 6*x + 9*x^2 + 9*x^3 + 10*x^4 + 7*x^5 + 12*x^6 + 6*x^7 + 4*x^8) / ((1 - x)^7*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)) + O(x^50)) \\ Colin Barker, Mar 28 2017

Formula

a(n) = A258708(n,n-7). - Reinhard Zumkeller, Jun 23 2015
G.f.: x^7*(1 + 6*x + 9*x^2 + 9*x^3 + 10*x^4 + 7*x^5 + 12*x^6 + 6*x^7 + 4*x^8) / ((1 - x)^7*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)). - Colin Barker, Mar 28 2017

A011793 Triangle of numbers of irreducible Euler sums.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 3, 3, 1, 2, 5, 3, 1, 1, 5, 7, 4, 1, 3, 8, 9, 4, 1, 1, 7, 14, 12, 5, 1, 3, 14, 20, 15, 5, 1, 1, 9, 25, 30, 18, 6, 1, 4, 20, 42, 40, 22, 6, 1, 1, 12, 42, 66, 55, 26, 7, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A258708.

Programs

  • Mathematica
    t[n_, k_] := (2/(n+k))*Sum[ If[ EvenQ[d], MoebiusMu[d/2]*Binomial[(n+k)/d, (n-k)/d], 0], {d, Intersection[ Divisors[n+k], Divisors[n-k]]}]; t[1, 1] = t[2, 1] = 1;row[1] = row[2] = {1}; row[n_] := Table[t[n, k], {k, 2 - Mod[n, 2], n-1, 2}]; Flatten[ Table[ row[n], {n, 1, 17}]] (* Jean-François Alcover, Jun 15 2012, after David Broadhurst *)

A259486 a(n) = 3*n^2 - 3*n + 1 + 6*floor((n-1)*(n-2)/6).

Original entry on oeis.org

1, 7, 19, 43, 73, 109, 157, 211, 271, 343, 421, 505, 601, 703, 811, 931, 1057, 1189, 1333, 1483, 1639, 1807, 1981, 2161, 2353, 2551, 2755, 2971, 3193, 3421, 3661, 3907, 4159, 4423, 4693, 4969, 5257, 5551, 5851, 6163, 6481, 6805, 7141, 7483, 7831, 8191, 8557
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 28 2015

Keywords

Comments

Start with the geometric picture for the centered hex numbers (A003215). Here, each hexagonal figure in the sequence is the aggregate of smaller unit hexes (with n hexes along each side). Then, when possible, add additional unit hexes to each side except for the corners --> do this repeatedly with the same restriction until no hexes can be added. a(n) gives the area of each figure (see example).
a(n) == 1 mod 6. - Robert Israel, Jun 29 2015

Examples

			-----------------------------------------------------------------------
Figure 1
-----------------------------------------------------------------------
                                                  __    __    __
                                                 /  \__/  \__/  \
                                                 \_*/  \__/  \*_/
                              __               __/  \__/  \__/  \__
                           __/  \__           /  \__/  \__/  \__/  \
            __          __/  \__/  \__        \__/  \__/  \__/  \__/
         __/  \__      /  \__/  \__/  \     __/  \__/  \__/  \__/  \__
.__     /  \__/  \     \__/  \__/  \__/    / *\__/  \__/  \__/  \__/* \
/  \    \__/  \__/     /  \__/  \__/  \    \__/  \__/  \__/  \__/  \__/
\__/    /  \__/  \     \__/  \__/  \__/       \__/  \__/  \__/  \__/
        \__/  \__/     /  \__/  \__/  \       /  \__/  \__/  \__/  \
           \__/        \__/  \__/  \__/       \__/  \__/  \__/  \__/
                          \__/  \__/             \__/  \__/  \__/
                             \__/                / *\__/  \__/* \
                                                 \__/  \__/  \__/
n=1         n=2               n=3                       n=4
-----------------------------------------------------------------------
Table 1
-----------------------------------------------------------------------
a(1) = 1                              =  1
a(2) = 3  + 2(2)                      =  7
a(3) = 5  + 2(3+4)                    =  19
a(4) = 7  + 2(4+5+6)          + 6(1)  =  43
a(5) = 9  + 2(5+6+7+8)        + 6(2)  =  73
a(6) = 11 + 2(6+7+8+9+10)     + 6(3)  =  109
a(7) = 13 + 2(7+8+9+10+11+12) + 6(5)  =  157
...
		

Crossrefs

Cf. A003215 (hex numbers), A000969, A130518, A255840 (similar, with squares).

Programs

  • Magma
    [3*n^2 - 3*n + 1 + 6*Floor((n-1)*(n-2)/6) : n in [1..100]];
    
  • Magma
    I:=[1,7,19,43,73]; [n le 5 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-3)-2*Self(n-4)+Self(n-5): n in [1..60]]; // Vincenzo Librandi, Jul 14 2015
  • Maple
    A259486:=n->3*n^2 - 3*n + 1 + 6*floor((n-1)*(n-2)/6): seq(A259486(n), n=1..100);
  • Mathematica
    Table[3 n^2 - 3 n + 1 + 6 Floor[(n - 1) (n - 2)/6], {n, 50}] (* or *)
    CoefficientList[Series[(1 + 5 x + 6 x^2 + 11 x^3 + x^4)/((1 - x)^3 (1 + x + x^2)), {x, 0, 50}], x]
    LinearRecurrence[{2, -1, 1, -2, 1}, {1, 7, 19, 43, 73}, 50]; (* Vincenzo Librandi, Jul 14 2015 *)

Formula

G.f.: (1+5*x+6*x^2+11*x^3+x^4)/((1-x)^3*(1+x+x^2)).
a(n) = 2*a(n-1)-a(n-2)+a(n-3)-2*a(n-4)+a(n-5), n>5.
a(n) = A003215(n+1) + 6*A130518(n+1).
From Robert Israel, Jun 29 2015: (Start)
a(n) = 4*n^2 - 6*n + 1 if 3 divides n, 4*n^2 - 6*n + 3 otherwise.
a(n) = 1 + 6 * A000969(n-2) for n >= 2. (End)
a(n) = 4*n^2 - 6*n + 3^sign(n mod 3). - Wesley Ivan Hurt, Jul 13 2015

A320259 Terms that are on the y-axis of the square spiral built with 2*k, 2*k+1, 2*k+1 for k >= 0.

Original entry on oeis.org

0, 2, 5, 9, 15, 22, 30, 40, 51, 63, 77, 92, 108, 126, 145, 165, 187, 210, 234, 260, 287, 315, 345, 376, 408, 442, 477, 513, 551, 590, 630, 672, 715, 759, 805, 852, 900, 950, 1001, 1053, 1107, 1162, 1218, 1276, 1335
Offset: 0

Views

Author

Paul Curtz, Oct 08 2018

Keywords

Comments

a(n) mod 9 is of period 27.
The spiral:
28--29--29--30--31--31--32
|
27 13--14--15--15--16--17
| | |
27 13 4---5---5---6 17
| | | | |
26 12 3 0---1 7 18
| | | | | |
25 11 3---2---1 7 19
| | | |
25 11--10---9---9---8 19
| |
24--23--23--22--21--21--20

Examples

			G.f. = 2*x + 5*x^2 + 9*x^3 + 15*x^4 + 22*x^5 + 30*x^6 + ... - _Michael Somos_, Nov 13 2018
		

Crossrefs

Cf. A000969, A004396, A004523, A004767, A004772 (first differences), A211480, A002264, A143978.

Programs

  • GAP
    a:=[0,2,5,9,15];; for n in [6..50] do a[n]:=2*a[n-1]-a[n-2]+a[n-3]-2*a[n-4]+a[n-5]; od; a; # Muniru A Asiru, Oct 08 2018
  • Maple
    seq(coeff(series(x^2*(2+x+x^2)/((1-x)^3*(1+x+x^2)),x,n+1), x, n), n = 1 .. 50); # Muniru A Asiru, Oct 08 2018
  • Mathematica
    LinearRecurrence[{2,-1,1,-2,1}, {0, 2, 5, 9, 15}, 50] (* or *)
    CoefficientList[Series[x*(2 + x + x^2) / ((1 - x)^3*(1 + x + x^2)), {x, 0, 50}], x] (* Stefano Spezia, Oct 09 2018 *)
    a[ n_] := Quotient[(n + 1) (2 n + 1), 3]; (* Michael Somos, Nov 13 2018 *)
  • PARI
    concat(0, Vec(x*(2 + x + x^2) / ((1 - x)^3*(1 + x + x^2)) + O(x^60))) \\ Colin Barker, Oct 08 2018
    
  • PARI
    {a(n) = (n + 1) * (2*n + 1) \ 3}; /* Michael Somos, Nov 13 2018 */
    

Formula

a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5), a(0)=0, a(1)=2, a(2)=5, a(3)=9, a(4)=15.
a(n) = a(n-1) + A004772(n+1), a(0)=0, n>0.
a(n+15) = a(n-15) + 10*A004767(n).
a(-n-1) = ({0} U A000969(n)) = 0, 1, 3, 7, ... = b(n), the full x-axis terms.
a(-n-1) + a(n) = 0, 3, 8, 16, ... = A211480(n+1).
a(n) = b(n) + A004523(n+1).
G.f.: x*(2 + x + x^2) / ((1 - x)^3*(1 + x + x^2)). - Colin Barker, Oct 08 2018
a(n) = A143978(n) + A002264(n+2).
a(n) = A000969(-2-n) for all n in Z. - Michael Somos, Nov 13 2018

A320281 Terms that are on the positive x-axis of the square spiral built with 2*k, 2*k+1, 2*k+1 for k >= 0.

Original entry on oeis.org

0, 1, 7, 18, 35, 57, 84, 117, 155, 198, 247, 301, 360, 425, 495, 570, 651, 737, 828, 925, 1027, 1134, 1247, 1365, 1488, 1617, 1751, 1890, 2035, 2185, 2340, 2501, 2667, 2838, 3015, 3197, 3384, 3577, 3775, 3978
Offset: 0

Views

Author

Paul Curtz, Oct 09 2018

Keywords

Comments

Resulting spiral:
28--29--29--30--31--31--32
|
27 13--14--15--15--16--17
| | |
27 13 4---5---5---6 17
| | | | |
26 12 3 0---1 7 18
| | | | | |
25 11 3---2---1 7 19
| | | |
25 11--10---9---9---8 19
| |
24--23--23--22--21--21--20
.
a(n) mod 9 is of period 27. a(n) mod 10 is of period 30.
The NE diagonal starting at 1 is A301696. - Klaus Purath, May 15 2021

Crossrefs

Cf. A000969.

Programs

  • Mathematica
    LinearRecurrence[{2,-1,1,-2,1},{0,1,7,18,35},100] (* Paolo Xausa, Nov 13 2023 *)
  • PARI
    concat(0, Vec(x*(1 + 5*x + 5*x^2 + 5*x^3) / ((1 - x)^3*(1 + x + x^2)) + O(x^50))) \\ Colin Barker, Oct 09 2018

Formula

a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5), a(0)=0, a(1)=1, a(2)=7, a(3)=18, a(4)=35.
a(n+2) - 2*a(n-1) + a(n) = period 3: repeat [5, 5, 6].
a(-n) = 0, 5, 15, 30, 51, 77, 108, 145, ... is the sequence of the terms on the positive y-axis.
G.f.: x*(1 + 5*x + 5*x^2 + 5*x^3) / ((1 - x)^3*(1 + x + x^2)). - Colin Barker, Oct 09 2018
Previous Showing 21-27 of 27 results.