A165426
a(1) = 1, a(2) = 8, a(n) = product of the previous terms for n >= 3.
Original entry on oeis.org
1, 8, 8, 64, 4096, 16777216, 281474976710656, 79228162514264337593543950336, 6277101735386680763835789423207666416102355444464034512896
Offset: 1
-
a[1]:= 1; a[2]:= 8; a[n_]:= Product[a[j], {j,1,n-1}]; Table[a[n],{n,1, 12}] (* G. C. Greubel, Oct 19 2018 *)
-
{a(n) = if(n==1, 1, if(n==2, 8, prod(j=1,n-1, a(j))))};
for(n=1,10, print1(a(n), ", ")) \\ G. C. Greubel, Oct 19 2018
A340666
A(n,k) is derived from n by replacing each 0 in its binary representation with a string of k 0's; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 4, 3, 1, 0, 1, 8, 3, 4, 3, 0, 1, 16, 3, 16, 5, 3, 0, 1, 32, 3, 64, 9, 6, 7, 0, 1, 64, 3, 256, 17, 12, 7, 1, 0, 1, 128, 3, 1024, 33, 24, 7, 8, 3, 0, 1, 256, 3, 4096, 65, 48, 7, 64, 9, 3, 0, 1, 512, 3, 16384, 129, 96, 7, 512, 33, 10, 7
Offset: 0
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 4, 8, 16, 32, 64, 128, 256, ...
3, 3, 3, 3, 3, 3, 3, 3, 3, ...
1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, ...
3, 5, 9, 17, 33, 65, 129, 257, 513, ...
3, 6, 12, 24, 48, 96, 192, 384, 768, ...
7, 7, 7, 7, 7, 7, 7, 7, 7, ...
1, 8, 64, 512, 4096, 32768, 262144, 2097152, 16777216, ...
...
Rows n=0..17, 19 give:
A000004,
A000012,
A000079,
A010701,
A000302,
A000051(k+1),
A007283,
A010727,
A001018,
A087289,
A007582(k+1),
A062709(k+2),
A164346,
A181565(k+1),
A005009,
A181404(k+3),
A001025,
A199493,
A253208(k+1).
-
A:= (n, k)-> Bits[Join](subs(0=[0$k][], Bits[Split](n))):
seq(seq(A(n, d-n), n=0..d), d=0..12);
# second Maple program:
A:= proc(n, k) option remember; `if`(n<2, n,
`if`(irem(n, 2, 'r')=1, A(r, k)*2+1, A(r, k)*2^k))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
A[n_, k_] := FromDigits[IntegerDigits[n, 2] /. 0 -> Sequence @@ Table[0, {k}], 2];
Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 02 2021 *)
A367700
Number of degree 2 vertices in the n-Menger sponge graph.
Original entry on oeis.org
12, 72, 744, 11256, 201960, 3871416, 76138536, 1512609912, 30171384168, 602782587960, 12050495247528, 240968665611768, 4819043435788776, 96378229818994104, 1927543485550004520, 38550700825394191224, 771012665426135994984, 15420242499878035355448, 308404763528431125030312
Offset: 1
The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices. Thus a(1) = 12.
-
LinearRecurrence[{31,-244,480}, {12, 72, 744}, 25] (* Paolo Xausa, Nov 28 2023 *)
-
def A367700(n): return (5*20**n+(34<<3*n)+216*3**n)//85 # Chai Wah Wu, Nov 27 2023
A367701
Number of degree 3 vertices in the n-Menger sponge graph.
Original entry on oeis.org
8, 152, 2744, 49688, 941624, 18381464, 363917240, 7248334616, 144725667128, 2892582307736, 57836189374136, 1156600107729944, 23131012640050232, 462612336455034008, 9252183397644168632, 185043161299165038872, 3700859172747355380536, 74017151029040948253080
Offset: 1
The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices. Thus a(1) = 8.
- Allan Bickle, Degrees of Menger and Sierpinski Graphs, Congr. Num. 227 (2016) 197-208.
- Allan Bickle, MegaMenger Graphs, The College Mathematics Journal, 49 1 (2018) 20-26.
- Eric Weisstein's World of Mathematics, Menger Sponge Graph.
- Index entries for linear recurrences with constant coefficients, signature (32,-275,724,-480).
-
LinearRecurrence[{32,-275,724,-480},{8,152,2744,49688},25] (* Paolo Xausa, Nov 28 2023 *)
-
def A367701(n): return ((3*5**n<<(n<<1)+3)+(51<<(3*n+1))-(3**(n+3)<<4))//85+8 # Chai Wah Wu, Nov 28 2023
A367702
Number of degree 4 vertices in the n-Menger sponge graph.
Original entry on oeis.org
0, 144, 2784, 57552, 1180320, 23889936, 480221280, 9624275280, 192645717024, 3854200280208, 77094305873376, 1541968557881808, 30840030795738528, 616805893363960080, 12336160087905835872, 246723539526229152336, 4934473492678780614432, 98689491470837087102352
Offset: 1
The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices. Thus a(1) = 0.
-
LinearRecurrence[{32,-275,724,-480},{0,144,2784,57552},25] (* Paolo Xausa, Nov 29 2023 *)
-
def A367702(n): return ((5**n<<(n<<1)+5)-(17<<(3*n+2))+(3**(n+4)<<3))//85-24 # Chai Wah Wu, Nov 28 2023
A367706
Number of degree 5 vertices in the n-Menger sponge graph.
Original entry on oeis.org
0, 24, 1272, 27192, 537720, 10638648, 211640184, 4223114808, 84382898808, 1687017131832, 33735198879096, 674662776506424, 13492925768472696, 269855876817045816, 5397096426544159608, 107941759648376656440, 2158833841895083390584, 43176666029284877542200, 863533234116651651590520
Offset: 1
The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices. Thus a(1) = 0.
-
LinearRecurrence[{32,-275,724,-480},{0,24,1272,27192},25] (* Paolo Xausa, Nov 29 2023 *)
-
def A367706(n): return ((7*5**n<<(n<<1)+1)+(17<<(3*n+1))-(3**(n+3)<<5))//85+24 # Chai Wah Wu, Nov 28 2023
A367707
Number of degree 6 vertices in the n-Menger sponge graph.
Original entry on oeis.org
0, 8, 456, 14312, 338376, 7218536, 148082760, 2991665384, 60074332872, 1203417692264, 24083810625864, 481799892270056, 9636987359949768, 192747663544965992, 3855016602355831368, 77100838700834961128, 1542020827252644619464, 30840448970959051746920, 616809238826486098348872
Offset: 1
The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices. Thus a(1) = 0.
-
LinearRecurrence[{32,-275,724,-480},{0,8,456,14312},25] (* Paolo Xausa, Nov 29 2023 *)
-
def A367707(n): return ((5**(n+1)<<(n<<1)+1)-(51<<(3*n+1))+(3**(n+3)<<4))//85-8 # Chai Wah Wu, Nov 28 2023
A001555
a(n) = 1^n + 2^n + ... + 8^n.
Original entry on oeis.org
8, 36, 204, 1296, 8772, 61776, 446964, 3297456, 24684612, 186884496, 1427557524, 10983260016, 84998999652, 660994932816, 5161010498484, 40433724284976, 317685943157892, 2502137235710736, 19748255868485844, 156142792528260336, 1236466399775623332
Offset: 0
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe and Robert Israel, Table of n, a(n) for n = 0..1000 (n = 0..200 from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 368
- Index entries for linear recurrences with constant coefficients, signature (36, -546, 4536, -22449, 67284, -118124, 109584, -40320).
-
seq(add(j^n,j=1..8), n=0..20); # Robert Israel, Aug 23 2015
-
Table[Total[Range[8]^n], {n, 0, 20}] (* T. D. Noe, Aug 09 2012 *)
-
first(m)=vector(m,n,n--;sum(i=1,8,i^n)) \\ Anders Hellström, Aug 23 2015
A013614
Triangle of coefficients in expansion of (1+7x)^n.
Original entry on oeis.org
1, 1, 7, 1, 14, 49, 1, 21, 147, 343, 1, 28, 294, 1372, 2401, 1, 35, 490, 3430, 12005, 16807, 1, 42, 735, 6860, 36015, 100842, 117649, 1, 49, 1029, 12005, 84035, 352947, 823543, 823543, 1, 56, 1372, 19208, 168070, 941192, 3294172, 6588344, 5764801
Offset: 0
Triangle starts:
1;
1, 7;
1, 14, 49;
1, 21, 147, 343;
1, 28, 294, 1372, 2401;
1, 35, 490, 3430, 12005, 16807;
...
-
T:= n-> (p-> seq(coeff(p, x, k), k=0..n))((1+7*x)^n):
seq(T(n), n=0..10); # Alois P. Heinz, Jul 24 2015
-
T[n_, k_] := 7^k*Binomial[n, k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 23 2016 *)
A038484
Sums of 2 distinct powers of 8.
Original entry on oeis.org
9, 65, 72, 513, 520, 576, 4097, 4104, 4160, 4608, 32769, 32776, 32832, 33280, 36864, 262145, 262152, 262208, 262656, 266240, 294912, 2097153, 2097160, 2097216, 2097664, 2101248, 2129920, 2359296, 16777217, 16777224, 16777280, 16777728, 16781312, 16809984, 17039360, 18874368
Offset: 1
-
Total/@Subsets[8^Range[0,10],{2}]//Union (* Harvey P. Dale, Jul 04 2022 *)
-
from math import isqrt
def A038484(n): return (1<<(a:=isqrt(n<<3)+1&-2)+(m:=a>>1))+(1<<3*(n-1-(m*(m-1)>>1))) # Chai Wah Wu, Apr 04 2025
Comments