cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 134 results. Next

A165426 a(1) = 1, a(2) = 8, a(n) = product of the previous terms for n >= 3.

Original entry on oeis.org

1, 8, 8, 64, 4096, 16777216, 281474976710656, 79228162514264337593543950336, 6277101735386680763835789423207666416102355444464034512896
Offset: 1

Views

Author

Jaroslav Krizek, Sep 17 2009

Keywords

Programs

  • Mathematica
    a[1]:= 1; a[2]:= 8; a[n_]:= Product[a[j], {j,1,n-1}]; Table[a[n],{n,1, 12}] (* G. C. Greubel, Oct 19 2018 *)
  • PARI
    {a(n) = if(n==1, 1, if(n==2, 8, prod(j=1,n-1, a(j))))};
    for(n=1,10, print1(a(n), ", ")) \\ G. C. Greubel, Oct 19 2018

Formula

a(1) = 1, a(2) = 8, a(n) = Product_{i=1..n-1} a(i), n >= 3.
a(1) = 1, a(2) = 8, a(n) = A001018(2^(n-3)) = 8^(2^(n-3)), n >= 3.
a(1) = 1, a(2) = 8, a(3) = 8, a(n) = (a(n-1))^2, n >= 4.
a(n) = 8^A166444(n). [uncovered by sequencedb.net]. - R. J. Mathar, Jun 30 2021

A340666 A(n,k) is derived from n by replacing each 0 in its binary representation with a string of k 0's; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 4, 3, 1, 0, 1, 8, 3, 4, 3, 0, 1, 16, 3, 16, 5, 3, 0, 1, 32, 3, 64, 9, 6, 7, 0, 1, 64, 3, 256, 17, 12, 7, 1, 0, 1, 128, 3, 1024, 33, 24, 7, 8, 3, 0, 1, 256, 3, 4096, 65, 48, 7, 64, 9, 3, 0, 1, 512, 3, 16384, 129, 96, 7, 512, 33, 10, 7
Offset: 0

Views

Author

Alois P. Heinz, Jan 15 2021

Keywords

Examples

			Square array A(n,k) begins:
  0, 0,  0,   0,    0,     0,      0,       0,        0, ...
  1, 1,  1,   1,    1,     1,      1,       1,        1, ...
  1, 2,  4,   8,   16,    32,     64,     128,      256, ...
  3, 3,  3,   3,    3,     3,      3,       3,        3, ...
  1, 4, 16,  64,  256,  1024,   4096,   16384,    65536, ...
  3, 5,  9,  17,   33,    65,    129,     257,      513, ...
  3, 6, 12,  24,   48,    96,    192,     384,      768, ...
  7, 7,  7,   7,    7,     7,      7,       7,        7, ...
  1, 8, 64, 512, 4096, 32768, 262144, 2097152, 16777216, ...
  ...
		

Crossrefs

Columns k=0-2, 4 give: A038573, A001477, A084471, A084473.
Rows n=0..17, 19 give: A000004, A000012, A000079, A010701, A000302, A000051(k+1), A007283, A010727, A001018, A087289, A007582(k+1), A062709(k+2), A164346, A181565(k+1), A005009, A181404(k+3), A001025, A199493, A253208(k+1).
Main diagonal gives A340667.

Programs

  • Maple
    A:= (n, k)-> Bits[Join](subs(0=[0$k][], Bits[Split](n))):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
    # second Maple program:
    A:= proc(n, k) option remember; `if`(n<2, n,
         `if`(irem(n, 2, 'r')=1, A(r, k)*2+1, A(r, k)*2^k))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := FromDigits[IntegerDigits[n, 2] /. 0 -> Sequence @@ Table[0, {k}], 2];
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 02 2021 *)

Formula

A000120(A(n,k)) = A000120(n) = log_2(A(n,0)+1).
A023416(A(n,k)) = k * A023416(n) for n >= 1.

A367700 Number of degree 2 vertices in the n-Menger sponge graph.

Original entry on oeis.org

12, 72, 744, 11256, 201960, 3871416, 76138536, 1512609912, 30171384168, 602782587960, 12050495247528, 240968665611768, 4819043435788776, 96378229818994104, 1927543485550004520, 38550700825394191224, 771012665426135994984, 15420242499878035355448, 308404763528431125030312
Offset: 1

Views

Author

Allan Bickle, Nov 27 2023

Keywords

Comments

The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.

Examples

			The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices.  Thus a(1) = 12.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452, A359453 (numbers of corner and non-corner vertices).
Cf. A083233, A332705 (surface area).
Cf. A367701, A367702, A367706, A367707 (degrees 2 through 6).
Cf. A001018, A271939, A365602, A365606, A365607, A365608 (Sierpinski carpet graphs).

Programs

  • Mathematica
    LinearRecurrence[{31,-244,480}, {12, 72, 744}, 25] (* Paolo Xausa, Nov 28 2023 *)
  • Python
    def A367700(n): return (5*20**n+(34<<3*n)+216*3**n)//85 # Chai Wah Wu, Nov 27 2023

Formula

a(n) = (1/17)*20^n + (2/5)*8^n + (216/85)*3^n.
a(n) = 20*a(n-1) - (3/5)*8^n - (72/5)*3^n.
a(n) = 20^n - A367701(n) - A367702(n) - A367706(n) - A367707(n).
2*a(n) = 2*A291066(n) - 3*A367701(n) - 4*A365602(n) - 5*A367706(n) - 6*A367707(n).
G.f.: 12*x*(1 - 25*x + 120*x^2)/((1 - 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 27 2023

A367701 Number of degree 3 vertices in the n-Menger sponge graph.

Original entry on oeis.org

8, 152, 2744, 49688, 941624, 18381464, 363917240, 7248334616, 144725667128, 2892582307736, 57836189374136, 1156600107729944, 23131012640050232, 462612336455034008, 9252183397644168632, 185043161299165038872, 3700859172747355380536, 74017151029040948253080
Offset: 1

Views

Author

Allan Bickle, Nov 27 2023

Keywords

Comments

The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.

Examples

			The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices.  Thus a(1) = 8.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452, A359453 (numbers of corner and non-corner vertices).
Cf. A291066, A083233, A332705 (surface area).
Cf. A367700, A367701, A367702, A367706, A367707 (degrees 2 through 6).
Cf. A001018, A271939, A365606, A365607, A365608 (Sierpinski carpet graphs).

Programs

  • Mathematica
    LinearRecurrence[{32,-275,724,-480},{8,152,2744,49688},25] (* Paolo Xausa, Nov 28 2023 *)
  • Python
    def A367701(n): return ((3*5**n<<(n<<1)+3)+(51<<(3*n+1))-(3**(n+3)<<4))//85+8 # Chai Wah Wu, Nov 28 2023

Formula

a(n) = (24/85)*20^n + (6/5)*8^n - (432/85)*3^n + 8.
a(n) = 20*a(n-1) - (9/5)*8^n + (144/5)*3^n - 152.
a(n) = 20^n - A367700(n) - A367702(n) - A367706(n) - A367707(n).
3*a(n) = 2*A291066(n) - 2*A367700(n) - 4*A365602(n) - 5*A367706(n) - 6*A367707(n).
G.f.: 8*x*(1 - 13*x + 10*x^2 - 264*x^3)/((1 - x)*(1 - 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 27 2023

A367702 Number of degree 4 vertices in the n-Menger sponge graph.

Original entry on oeis.org

0, 144, 2784, 57552, 1180320, 23889936, 480221280, 9624275280, 192645717024, 3854200280208, 77094305873376, 1541968557881808, 30840030795738528, 616805893363960080, 12336160087905835872, 246723539526229152336, 4934473492678780614432, 98689491470837087102352
Offset: 1

Views

Author

Allan Bickle, Nov 27 2023

Keywords

Comments

The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.

Examples

			The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices.  Thus a(1) = 0.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452, A359453 (numbers of corner and non-corner vertices).
Cf. A291066, A083233, A332705 (surface area).
Cf. A367700, A367701, A367702, A367706, A367707 (degrees 2 through 6).
Cf. A001018, A271939, A365606, A365607, A365608 (Sierpinski carpet graphs).

Programs

  • Mathematica
    LinearRecurrence[{32,-275,724,-480},{0,144,2784,57552},25] (* Paolo Xausa, Nov 29 2023 *)
  • Python
    def A367702(n): return ((5**n<<(n<<1)+5)-(17<<(3*n+2))+(3**(n+4)<<3))//85-24 # Chai Wah Wu, Nov 28 2023

Formula

a(n) = (32/85)*20^n - (4/5)*8^n + (648/85)*3^n - 24.
a(n) = 20*a(n-1) + (6/5)*8^n - (216/5)*3^n + 456.
a(n) = 20^n - A367700(n) - A367701(n) - A367706(n) - A367707(n).
4*a(n) = 2*A291066(n) - 2*A367700(n) - 3*A367701(n) - 5*A367706(n) - 6*A367707(n).
G.f.: 12*x^2*(7 - 224*x + 1865*x^2 - 4308*x^3)/(5*(1 - x)*(1 - 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 28 2023

A367706 Number of degree 5 vertices in the n-Menger sponge graph.

Original entry on oeis.org

0, 24, 1272, 27192, 537720, 10638648, 211640184, 4223114808, 84382898808, 1687017131832, 33735198879096, 674662776506424, 13492925768472696, 269855876817045816, 5397096426544159608, 107941759648376656440, 2158833841895083390584, 43176666029284877542200, 863533234116651651590520
Offset: 1

Views

Author

Allan Bickle, Nov 27 2023

Keywords

Comments

The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.

Examples

			The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices.  Thus a(1) = 0.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452, A359453 (numbers of corner and non-corner vertices).
Cf. A291066, A083233, A332705 (surface area).
Cf. A367700, A367701, A367702, A367706, A367707 (degrees 2 through 6).
Cf. A001018, A271939, A365606, A365607, A365608 (Sierpinski carpet graphs).

Programs

  • Mathematica
    LinearRecurrence[{32,-275,724,-480},{0,24,1272,27192},25] (* Paolo Xausa, Nov 29 2023 *)
  • Python
    def A367706(n): return ((7*5**n<<(n<<1)+1)+(17<<(3*n+1))-(3**(n+3)<<5))//85+24 # Chai Wah Wu, Nov 28 2023

Formula

a(n) = (14/85)*20^n + (2/5)*8^n - (864/85)*3^n + 24.
a(n) = 20*a(n-1) - (3/5)*8^n + (288/5)*3^n - 456.
a(n) = 20^n - A367700(n) - A367701(n) - A367702(n) - A367707(n).
5*a(n) = 2*A291066(n) - 2*A367700(n) - 3*A367701(n) - 4*A365602(n) - 6*A367707(n).
G.f.: 24*x^2*(1 + 21*x - 288*x^2)/((1 - x)*(1- 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 28 2023

A367707 Number of degree 6 vertices in the n-Menger sponge graph.

Original entry on oeis.org

0, 8, 456, 14312, 338376, 7218536, 148082760, 2991665384, 60074332872, 1203417692264, 24083810625864, 481799892270056, 9636987359949768, 192747663544965992, 3855016602355831368, 77100838700834961128, 1542020827252644619464, 30840448970959051746920, 616809238826486098348872
Offset: 1

Views

Author

Allan Bickle, Nov 27 2023

Keywords

Comments

The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.

Examples

			The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices.  Thus a(1) = 0.
		

Crossrefs

Cf. A009964 (number of vertices), A291066 (number of edges).
Cf. A359452, A359453 (numbers of corner and non-corner vertices).
Cf. A291066, A083233, A332705 (surface area).
Cf. A367700, A367701, A367702, A367706, A367707 (degrees 2 through 6).
Cf. A001018, A271939, A365606, A365607, A365608 (Sierpinski carpet graphs).

Programs

  • Mathematica
    LinearRecurrence[{32,-275,724,-480},{0,8,456,14312},25] (* Paolo Xausa, Nov 29 2023 *)
  • Python
    def A367707(n): return ((5**(n+1)<<(n<<1)+1)-(51<<(3*n+1))+(3**(n+3)<<4))//85-8 # Chai Wah Wu, Nov 28 2023

Formula

a(n) = (2/17)*20^n - (6/5)*8^n + (432/85)*3^n - 8.
a(n) = 20*a(n-1) + (9/5)*8^n - (144/5)*3^n + 152.
a(n) = 20^n - A367700(n) - A367701(n) - A367702(n) - A367706(n).
6*a(n) = 2*A291066(n) - 2*A367700(n) - 3*A367701(n) - 4*A365602(n) - 5*A367706(n).
G.f.: 8*x^2*(1 + 25*x + 240*x^2)/((1 - x)*(1 - 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 28 2023

A001555 a(n) = 1^n + 2^n + ... + 8^n.

Original entry on oeis.org

8, 36, 204, 1296, 8772, 61776, 446964, 3297456, 24684612, 186884496, 1427557524, 10983260016, 84998999652, 660994932816, 5161010498484, 40433724284976, 317685943157892, 2502137235710736, 19748255868485844, 156142792528260336, 1236466399775623332
Offset: 0

Views

Author

Keywords

Comments

Conjectures for o.g.f.s for this type of sequence appear in the PhD thesis by Simon Plouffe. See A001552 for the reference. These conjectures are proved in a link given in A196837. [Wolfdieter Lang, Oct 15 2011]

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 813.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 8 of array A103438.

Programs

  • Maple
    seq(add(j^n,j=1..8), n=0..20); # Robert Israel, Aug 23 2015
  • Mathematica
    Table[Total[Range[8]^n], {n, 0, 20}] (* T. D. Noe, Aug 09 2012 *)
  • PARI
    first(m)=vector(m,n,n--;sum(i=1,8,i^n)) \\ Anders Hellström, Aug 23 2015

Formula

From Wolfdieter Lang, Oct 15 2011 (Start)
E.g.f.: (1-exp(8*x))/(exp(-x)-1) = Sum_{j=1..8} exp(j*x) (trivial).
O.g.f.: 4*(2-9*x)*(1-27*x+288*x^2-1539*x^3+4299*x^4-5886*x^5+3044*x^6) / Product_{j=1..8} (1-j*x). From the e.g.f. via Laplace transformation. See the proof in a link under A196837. (End)
a(n) = A001554(n) + A001018(n). - Michel Marcus, Jul 26 2013

Extensions

More terms from Jon E. Schoenfield, Mar 24 2010

A013614 Triangle of coefficients in expansion of (1+7x)^n.

Original entry on oeis.org

1, 1, 7, 1, 14, 49, 1, 21, 147, 343, 1, 28, 294, 1372, 2401, 1, 35, 490, 3430, 12005, 16807, 1, 42, 735, 6860, 36015, 100842, 117649, 1, 49, 1029, 12005, 84035, 352947, 823543, 823543, 1, 56, 1372, 19208, 168070, 941192, 3294172, 6588344, 5764801
Offset: 0

Views

Author

Keywords

Comments

T(n,k) equals the number of n-length words on {0,1,...,7} having n-k zeros. - Milan Janjic, Jul 24 2015

Examples

			Triangle starts:
1;
1, 7;
1, 14, 49;
1, 21, 147, 343;
1, 28, 294, 1372, 2401;
1, 35, 490, 3430, 12005, 16807;
...
		

Crossrefs

Cf. A000420 (right edge).

Programs

  • Maple
    T:= n-> (p-> seq(coeff(p, x, k), k=0..n))((1+7*x)^n):
    seq(T(n), n=0..10);  # Alois P. Heinz, Jul 24 2015
  • Mathematica
    T[n_, k_] := 7^k*Binomial[n, k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 23 2016 *)

Formula

G.f.: 1 / (1 - x(1+7y)).
T(n,k) = 7^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i)*6^(n-i). Row sums are 8^n = A001018. - Mircea Merca, Apr 28 2012

A038484 Sums of 2 distinct powers of 8.

Original entry on oeis.org

9, 65, 72, 513, 520, 576, 4097, 4104, 4160, 4608, 32769, 32776, 32832, 33280, 36864, 262145, 262152, 262208, 262656, 266240, 294912, 2097153, 2097160, 2097216, 2097664, 2101248, 2129920, 2359296, 16777217, 16777224, 16777280, 16777728, 16781312, 16809984, 17039360, 18874368
Offset: 1

Views

Author

Keywords

Crossrefs

Base-8 interpretation of A038444.

Programs

  • Mathematica
    Total/@Subsets[8^Range[0,10],{2}]//Union (* Harvey P. Dale, Jul 04 2022 *)
  • Python
    from math import isqrt
    def A038484(n): return (1<<(a:=isqrt(n<<3)+1&-2)+(m:=a>>1))+(1<<3*(n-1-(m*(m-1)>>1))) # Chai Wah Wu, Apr 04 2025

Extensions

More terms from Vincenzo Librandi, Aug 06 2009
Offset corrected by Amiram Eldar, Jul 14 2022
Previous Showing 61-70 of 134 results. Next