cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 40 results. Next

A262386 Numerators of a semi-convergent series leading to the third Stieltjes constant gamma_3.

Original entry on oeis.org

0, 1, -17, 967, -4523, 33735311, -9301169, 127021899032857, -3546529522734769, 5633317707758173, -1935081812850766373, 779950247074296817622891, -1261508681536108282229, 350992098387568751020053498509, -17302487974885784968377519342317, 26213945071317075538702463006927083
Offset: 1

Views

Author

Keywords

Comments

gamma_3 = + 1/120 - 17/1008 + 967/28800 - 4523/49896 + 33735311/101088000 - ..., see formulas (46)-(47) in the reference below.

Examples

			Numerators of -0/1, 1/120, -17/1008, 967/28800, -4523/49896, 33735311/101088000, ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Numerator[-BernoulliB[2*n]*(HarmonicNumber[2*n - 1]^3 - 3*HarmonicNumber[2*n - 1]*HarmonicNumber[2*n - 1, 2] + 2*HarmonicNumber[2*n - 1, 3])/(2*n)]; Table[a[n], {n, 1, 20}]
  • PARI
    a(n) = numerator(-bernfrac(2*n)*(sum(k=1,2*n-1,1/k)^3 -3*sum(k=1,2*n-1,1/k)*sum(k=1,2*n-1,1/k^2) + 2*sum(k=1,2*n-1,1/k^3))/(2*n));

Formula

a(n) = numerator(-B_{2n}*(H^3_{2n-1}-3*H_{2n-1}*H^(2){2n-1}+2*H^(3){2n-1})/(2n)), where B_n, H_n and H^(k)_n are Bernoulli, harmonic and generalized harmonic numbers respectively.

A255505 Numerator of Bernoulli(2n)/(2n!).

Original entry on oeis.org

1, 1, -1, 1, -1, 1, -691, 1, -3617, 43867, -174611, 77683, -236364091, 657931, -3392780147, 1723168255201, -7709321041217, 151628697551, -26315271553053477373, 154210205991661, -261082718496449122051, 1520097643918070802691
Offset: 0

Views

Author

Jean-François Alcover, Feb 24 2015

Keywords

Comments

This sequence is different from A001067 or A046968 or A141590, at least at a(52).

Examples

			The sequence Bernoulli(2n)/(2n!) (n >= 0) begins 1/2, 1/12, -1/120, 1/504, -1/1440, 1/3168, -691/3931200, 1/8640, -3617/41126400, ...
		

Crossrefs

Cf. A000367, A001067, A046968, A141590, A255506 (denominator).

Programs

  • Magma
    [Numerator(Bernoulli(2*n)/(2*Factorial(n))):n in [0..30]]; // Vincenzo Librandi, Feb 24 2015
    
  • Mathematica
    Table[Numerator[BernoulliB[2 n]/(2 n!)], {n, 0, 25}]
  • PARI
    a(n) = numerator(bernfrac(2*n)/(2*n!)); \\ Michel Marcus, Feb 24 2015
    
  • Sage
    [numerator(bernoulli(2*n)/(2*factorial(n))) for n in (0..25)] # Bruno Berselli, Feb 24 2015

A262856 Numerators of the Nielsen-Jacobsthal series leading to Euler's constant.

Original entry on oeis.org

1, 43, 20431, 2150797323119, 9020112358835722225404403, 51551916515442115079024221439308876243677598340510141
Offset: 1

Views

Author

Keywords

Comments

gamma = 1 - 1/12 - 43/420 - 20431/240240 - 2150797323119/36100888223400 - ..., see formula (36) in the reference below.

Examples

			Numerators of 1/12, 43/420, 20431/240240, 2150797323119/36100888223400, ...
		

Crossrefs

Cf. A075266, A075267, A001620, A195189, A002657, A002790, A262235, A075266, A006953, A001067, A262858 (denominators of this series).

Programs

  • GAP
    List(List([1..6],n->n*Sum([2^n+1..2^(n+1)],k->(-1)^(k+1)/k)),NumeratorRat); # Muniru A Asiru, Oct 29 2018
  • Magma
    [Numerator(n*(&+[(-1)^(k+1)/k: k in [2^n+1..2^(n+1)]])): n in [1..6]]; // G. C. Greubel, Oct 28 2018
    
  • Mathematica
    a[n_] := Numerator[n*Sum[(-1)^(k + 1)/k, {k, 2^n + 1, 2^(n + 1)}]]; Table[a[n], {n, 1, 8}]
  • PARI
    a(n) = numerator(n*sum(k=2^n + 1,2^(n + 1),(-1)^(k + 1)/k));
    

Formula

a(n) = n * Sum_{k = 2^n + 1 .. 2^(n + 1)} (-1)^(k + 1)/k.

A262858 Denominators of the Nielsen-Jacobsthal series leading to Euler's constant.

Original entry on oeis.org

12, 420, 240240, 36100888223400, 236453376820564453502272320, 2225626015166235263233958200740039423756478781341512000
Offset: 1

Views

Author

Keywords

Comments

gamma = 1 - 1/12 - 43/420 - 20431/240240 - 2150797323119/36100888223400 - ..., see formula (36) in the reference below.

Examples

			Denominators of 1/12, 43/420, 20431/240240, 2150797323119/36100888223400, ...
		

Crossrefs

Cf. A075266, A075267, A001620, A195189, A002657, A002790, A262235, A075266, A006953, A001067, A262856 (numerators of this series).

Programs

  • GAP
    List(List([1..6],n->n*Sum([2^n+1..2^(n+1)],k->(-1)^(k+1)/k)),DenominatorRat); # Muniru A Asiru, Oct 29 2018
  • Magma
    [Denominator(n*(&+[(-1)^(k+1)/k: k in [2^n+1..2^(n+1)]])): n in [1..6]];  // G. C. Greubel, Oct 28 2018
    
  • Mathematica
    a[n_] := Denominator[n*Sum[(-1)^(k + 1)/k, {k, 2^n + 1, 2^(n + 1)}]]; Table[a[n], {n, 1, 8}]
  • PARI
    a(n) = denominator(n*sum(k=2^n + 1,2^(n + 1),(-1)^(k + 1)/k));
    

Formula

a(n) = n * Sum_{k = 2^n + 1 .. 2^(n + 1)} (-1)^(k + 1)/k.

A119766 Numbers n such that numerator of Bernoulli(n)/n is (apart from sign) 1 or a prime.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 26, 34, 36, 38, 42, 74, 114, 118, 396, 674, 1870, 4306, 22808
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2006

Keywords

Comments

In 1911 Ramanujan believed that the numerator of Bernoulli(n)/n for n even was (apart from sign) always either 1 or a prime. This is false.

Examples

			As an example, Bernoulli(20)/20 = -174611/6600, but 174611 = 283*617. - _Robert G. Wilson v_, Jun 22 2006
		

References

  • S. Ramanujan, Some properties of Bernoulli's numbers, J. Indian Math. Soc., 3 (1911), 219-234.

Crossrefs

Programs

  • Maple
    A119766 := proc(nmax) local numr; for n from 2 to nmax by 2 do numr := abs(numer(bernoulli(n)/n)) ; if numr = 1 or isprime(numr) then print(n) ; fi ; od ; end : A119766(2000) ; # R. J. Mathar, Jun 21 2006
  • Mathematica
    OldPrimeQ[n_] := Abs[n]==1 || PrimeQ[Abs[n]]; Select[Range[2000], OldPrimeQ[Numerator[BernoulliB[ # ]/# ]] &] (* T. D. Noe, Jun 20 2006 *)

Extensions

a(21) and a(22) from T. D. Noe, Jun 20 2006

A231273 Numerator of zeta(4n)/(zeta(2n) * Pi^(2n)).

Original entry on oeis.org

1, 1, 1, 691, 3617, 174611, 236364091, 3392780147, 7709321041217, 26315271553053477373, 261082718496449122051, 2530297234481911294093, 5609403368997817686249127547, 61628132164268458257532691681, 354198989901889536240773677094747
Offset: 0

Views

Author

Leo Depuydt, Nov 07 2013

Keywords

Comments

Integer component of the numerator of a close variant of Euler's infinite prime product zeta(2n) = Product_{k>=1} (prime(k)^(2n))/(prime(k)^(2n)-1), namely with all minus signs changed into plus signs, as follows: zeta(4n)/zeta(2n) = Product_{k>=1} (prime(k)^(2n))/(prime(k)^(2n)+1). The transcendental component is Pi^(2n).
For a detailed account of the results, including proof and relation to the zeta function, see Links for the PDF file submitted as supporting material.
The reference to Apostol is to a discussion of the equivalence of 1) zeta(2s)/zeta(s) and 2) a related infinite prime product, that is, Product_{sigma>1} prime(n)^s/(prime(n)^s + 1), with s being a complex variable such that s = sigma + i*t where sigma and t are real (following Riemann), using a type of proof different from the one posted below involving zeta(4n)/zeta(2n). On this, see also Hardy and Wright cited below. - Leo Depuydt, Nov 22 2013, Nov 27 2013
The background of the sequence is now described in the link below to L. Depuydt, The Prime Sequence ... . - Leo Depuydt, Aug 22 2014
From Robert Israel, Aug 22 2014: (Start)
Numerator of (-1)^n*B(4*n)*4^n*(2*n)!/(B(2*n)*(4*n)!), where B(n) are the Bernoulli numbers (see A027641 and A027642).
Not the same as abs(A001067(2*n)): they differ first at n=17.
(End)

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976, p. 231.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fourth Edition, Clarendon Press, 1960, p. 255.

Crossrefs

Cf. A231327 (corresponding denominator).
Cf. A114362 and A114363 (closely related results).
Cf. A001067, A046968, A046988, A098087, A141590, A156036 (same number sequence, though in various transformations (alternation of signs, intervening numbers, and so on)).

Programs

  • Maple
    seq(numer((-1)^n*bernoulli(4*n)*4^n*(2*n)!/(bernoulli(2*n)*(4*n)!)),n=0..100); # Robert Israel, Aug 22 2014
  • Mathematica
    Numerator[Table[Zeta[4n]/(Zeta[2n] * Pi^(2n)), {n, 0, 15}]] (* T. D. Noe, Nov 18 2013 *)

A358625 a(n) = numerator of Bernoulli(n, 1) / n for n >= 1, a(0) = 1.

Original entry on oeis.org

1, 1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373, 0, 154210205991661, 0, -261082718496449122051
Offset: 0

Views

Author

Peter Luschny, Dec 02 2022

Keywords

Comments

The rational numbers r(n) = Bernoulli(n, 1) / n are called the 'divided Bernoulli numbers'. r(n) is a p-integer for all primes p if p - 1 does not divide n. This is sometimes called 'Adams's theorem' (Ireland and Rosen). The important Kummer congruences for the Bernoulli numbers (1851) are stated in terms of the r(n).

Examples

			Rationals: 1, 1/2, 1/12, 0, -1/120, 0, 1/252, 0, -1/240, 0, 1/132, ...
Note that a(68) = -4633713579924631067171126424027918014373353 but A120082(68) = -125235502160125163977598011460214000388469.
		

References

  • Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, Vol. 84, Graduate Texts in Mathematics, Springer-Verlag, 2nd edition, 1990. [Prop. 15.2.4, p. 238]

Crossrefs

Programs

  • GAP
    Concatenation([1, 1], List([2..45], n-> NumeratorRat(Bernoulli(n)/(n)))); # G. C. Greubel, Sep 19 2019
  • Magma
    [1, 1] cat [Numerator(Bernoulli(n)/(n)): n in [2..45]]; // G. C. Greubel, Sep 19 2019
    
  • Maple
    A358625 := n -> ifelse(n = 0, 1, numer(bernoulli(n, 1) / n)):
    seq(A358625(n), n = 0.. 40);
    # Alternative:
    egf := 1 + x + log(1 - exp(-x)) - log(x): ser := series(egf, x, 42):
    seq(numer(n! * coeff(ser, x, n)), n = 0..40);
  • Mathematica
    Join[{1, 1}, Table[Numerator[BernoulliB[n] / n], {n, 2, 45}]]
  • PARI
    a(n) = if (n<=1, 1, numerator(bernfrac(n)/n)); \\ Michel Marcus, Feb 24 2015
    

Formula

a(n) = numerator(n! * [x^n](1 + x + log(1 - exp(-x)) - log(x))).
a(n) = numerator(-zeta(1 - n)) for n >= 1.
a(n) = numerator(Euler(n-1, 1) / (2*(2^n - 1))) for n >= 1.
denominator(r(2*n)) = A006953(n) for n >= 1.
denominator(r(2*n)) / 2 = A036283(n) for n >= 1.
denominator(r(2*n)) / 12 = A202318(n) for n >= 1.
denominator(r(2*n)) = (1/2) * A053657(2*n+1) / A053657(2*n-1) for n >= 1.

A043303 Numerator of B(4n+2)/(2n+1) where B(m) are the Bernoulli numbers.

Original entry on oeis.org

1, 1, 1, 1, 43867, 77683, 657931, 1723168255201, 151628697551, 154210205991661, 1520097643918070802691, 25932657025822267968607, 19802288209643185928499101, 29149963634884862421418123812691, 2913228046513104891794716413587449, 396793078518930920708162576045270521
Offset: 0

Views

Author

Benoit Cloitre, Apr 04 2002

Keywords

Comments

Note that numerator of B(2n)/n is odd so B(2n)/(2n), B(2n)/(4n), etc. have the same numerators. - Michael Somos, Feb 01 2004

References

  • Bruce Berndt, Ramanujan's Notebooks Part II, Springer-Verlag; see Infinite series, p. 262.

Crossrefs

Programs

  • Maple
    seq(numer(bernoulli(4*n+2)/(2*n+1)),n=0..30); # Robert Israel, Sep 18 2016
  • Mathematica
    Table[BernoulliB[4n+2]/(2n+1),{n,0,20}]//Numerator (* Harvey P. Dale, Aug 13 2018 *)
  • PARI
    a(n)=if(n<0,0,numerator(bernfrac(4*n+2)/(2*n+1)))

Formula

B(4*n+2)/(8*n+4) = Sum_{k>=1} k^(4*n+1)/(exp(2*Pi*k)-1).
a(n) = A001067(2n+1).

A231327 Denominator of rational component of zeta(4n)/zeta(2n).

Original entry on oeis.org

1, 15, 105, 675675, 34459425, 16368226875, 218517792968475, 30951416768146875, 694097901592400930625, 23383376494609715287281703125, 2289686345687357378035370971875, 219012470258383844016431785453125, 4791965046290912124048163518904807546875
Offset: 0

Views

Author

Leo Depuydt, Nov 07 2013

Keywords

Comments

Denominator of a close variant of Euler's infinite prime product zeta(2n) = Product_{k>=1} (prime(k)^(2n))/(prime(k)^(2n)-1), namely with all minus signs changed into plus signs, as follows: zeta(4n)/zeta(2n) = Product_{k>=1} prime(k)^(2n)/(prime(k)^(2n)+1).
For a detailed account of the results in question, including proof and relation to the zeta function, see the PDF file submitted as supporting material in A231273.
The reference to Apostol below is a discussion of the equivalence of 1) zeta(2s)/zeta(s) and 2) a related infinite prime product, that is, Product_{sigma>1} prime(n)^s/(prime(n)^s + 1), with s being a complex variable such that s = sigma + i*t where sigma and t are real (following Riemann), using a type of proof different from the one posted below involving zeta(4n)/zeta(2n). - Leo Depuydt, Nov 22 2013
Denominator of B(4*n)*4^n*(2*n)!/(B(2*n)*(4*n)!) where B(n) are the Bernoulli numbers (see A027641 and A027642). - Robert Israel, Aug 22 2014

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976, p. 231.

Crossrefs

Cf. A231273 (the corresponding numerator).
Cf. A114362 and A114363 (closely related results).
Cf. A001067, A046968, A046988, A098087, A141590, and A156036 (same number sequence as found in numerator, though in various transformations (alternation of sign, intervening numbers, and so on)).
Cf. A027641 and A027642.

Programs

  • Maple
    seq(denom(bernoulli(4*n)*4^n*(2*n)!/(bernoulli(2*n)*(4*n)!)),n=0..100); # Robert Israel, Aug 22 2014
  • Mathematica
    Denominator[Table[Zeta[4 n]/Zeta[2 n], {n, 0, 15}]] (* T. D. Noe, Nov 15 2013 *)

A342318 a(n) = numerator(((i^n * PolyLog(1 - n, -i) + (-i)^n * PolyLog(1 - n, i))) / (4^n - 2^n)) if n > 0 and a(0) = 1. Here i denotes the imaginary unit.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 61, 1, 1385, 1, 50521, 691, 2702765, 1, 199360981, 3617, 19391512145, 43867, 2404879675441, 174611, 370371188237525, 77683, 69348874393137901, 236364091, 15514534163557086905, 657931, 4087072509293123892361, 3392780147, 1252259641403629865468285
Offset: 0

Views

Author

Peter Luschny, Mar 22 2021

Keywords

Comments

The defining formula simultaneously represents the numerators of the unsigned divided Bernoulli numbers and the unsigned Euler secant numbers. Some authors consider the divided Bernoulli numbers B(n)/n to be more fundamental than B(n). For instance, B(n)/n is a p-integer for all primes p for which p - 1 does not divide n (see Ireland and Rosen).

Examples

			r(n) = 1, 1/2, 1/12, 1/56, 1/120, 5/992, 1/252, 61/16256, 1/240, 1385/261632, 1/132, ...
		

References

  • K. Ireland and M. Rosen, A classical introduction to modern number theory, vol. 84, Graduate Texts in Mathematics. Springer-Verlag, 2nd edition, 1990. [Prop. 15.2.4, p. 238]

Crossrefs

Cf. A342319 (denominator), A001067, A000364, A122045.

Programs

  • Maple
    a := n -> `if`(n <= 2, 1, `if`(n::even, numer(abs(bernoulli(n))/n), abs(euler(n - 1)))); seq(a(n), n = 0..29);
  • Mathematica
    r[s_] := If[s == 0, 1, (I^s PolyLog[1 - s, -I] + (-I)^s PolyLog[1 - s, I]) / (4^s - 2^s)]; Table[r[n], {n, 0, 29}] // Numerator

Formula

a(2*n) = |A001067(n)| for n > 0.
a(2*n+1) = A000364(n) = |A122045(2*n)|.
Previous Showing 21-30 of 40 results. Next