A262386
Numerators of a semi-convergent series leading to the third Stieltjes constant gamma_3.
Original entry on oeis.org
0, 1, -17, 967, -4523, 33735311, -9301169, 127021899032857, -3546529522734769, 5633317707758173, -1935081812850766373, 779950247074296817622891, -1261508681536108282229, 350992098387568751020053498509, -17302487974885784968377519342317, 26213945071317075538702463006927083
Offset: 1
Numerators of -0/1, 1/120, -17/1008, 967/28800, -4523/49896, 33735311/101088000, ...
The sequence of denominators is
A262387.
Cf.
A001067,
A001620,
A002206,
A006953,
A075266,
A082633,
A086279,
A086280,
A195189,
A262235,
A262382,
A262383,
A262384,
A262385.
-
a[n_] := Numerator[-BernoulliB[2*n]*(HarmonicNumber[2*n - 1]^3 - 3*HarmonicNumber[2*n - 1]*HarmonicNumber[2*n - 1, 2] + 2*HarmonicNumber[2*n - 1, 3])/(2*n)]; Table[a[n], {n, 1, 20}]
-
a(n) = numerator(-bernfrac(2*n)*(sum(k=1,2*n-1,1/k)^3 -3*sum(k=1,2*n-1,1/k)*sum(k=1,2*n-1,1/k^2) + 2*sum(k=1,2*n-1,1/k^3))/(2*n));
A255505
Numerator of Bernoulli(2n)/(2n!).
Original entry on oeis.org
1, 1, -1, 1, -1, 1, -691, 1, -3617, 43867, -174611, 77683, -236364091, 657931, -3392780147, 1723168255201, -7709321041217, 151628697551, -26315271553053477373, 154210205991661, -261082718496449122051, 1520097643918070802691
Offset: 0
The sequence Bernoulli(2n)/(2n!) (n >= 0) begins 1/2, 1/12, -1/120, 1/504, -1/1440, 1/3168, -691/3931200, 1/8640, -3617/41126400, ...
-
[Numerator(Bernoulli(2*n)/(2*Factorial(n))):n in [0..30]]; // Vincenzo Librandi, Feb 24 2015
-
Table[Numerator[BernoulliB[2 n]/(2 n!)], {n, 0, 25}]
-
a(n) = numerator(bernfrac(2*n)/(2*n!)); \\ Michel Marcus, Feb 24 2015
-
[numerator(bernoulli(2*n)/(2*factorial(n))) for n in (0..25)] # Bruno Berselli, Feb 24 2015
A262856
Numerators of the Nielsen-Jacobsthal series leading to Euler's constant.
Original entry on oeis.org
1, 43, 20431, 2150797323119, 9020112358835722225404403, 51551916515442115079024221439308876243677598340510141
Offset: 1
Numerators of 1/12, 43/420, 20431/240240, 2150797323119/36100888223400, ...
Cf.
A075266,
A075267,
A001620,
A195189,
A002657,
A002790,
A262235,
A075266,
A006953,
A001067,
A262858 (denominators of this series).
-
List(List([1..6],n->n*Sum([2^n+1..2^(n+1)],k->(-1)^(k+1)/k)),NumeratorRat); # Muniru A Asiru, Oct 29 2018
-
[Numerator(n*(&+[(-1)^(k+1)/k: k in [2^n+1..2^(n+1)]])): n in [1..6]]; // G. C. Greubel, Oct 28 2018
-
a[n_] := Numerator[n*Sum[(-1)^(k + 1)/k, {k, 2^n + 1, 2^(n + 1)}]]; Table[a[n], {n, 1, 8}]
-
a(n) = numerator(n*sum(k=2^n + 1,2^(n + 1),(-1)^(k + 1)/k));
A262858
Denominators of the Nielsen-Jacobsthal series leading to Euler's constant.
Original entry on oeis.org
12, 420, 240240, 36100888223400, 236453376820564453502272320, 2225626015166235263233958200740039423756478781341512000
Offset: 1
Denominators of 1/12, 43/420, 20431/240240, 2150797323119/36100888223400, ...
Cf.
A075266,
A075267,
A001620,
A195189,
A002657,
A002790,
A262235,
A075266,
A006953,
A001067,
A262856 (numerators of this series).
-
List(List([1..6],n->n*Sum([2^n+1..2^(n+1)],k->(-1)^(k+1)/k)),DenominatorRat); # Muniru A Asiru, Oct 29 2018
-
[Denominator(n*(&+[(-1)^(k+1)/k: k in [2^n+1..2^(n+1)]])): n in [1..6]]; // G. C. Greubel, Oct 28 2018
-
a[n_] := Denominator[n*Sum[(-1)^(k + 1)/k, {k, 2^n + 1, 2^(n + 1)}]]; Table[a[n], {n, 1, 8}]
-
a(n) = denominator(n*sum(k=2^n + 1,2^(n + 1),(-1)^(k + 1)/k));
A119766
Numbers n such that numerator of Bernoulli(n)/n is (apart from sign) 1 or a prime.
Original entry on oeis.org
1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 26, 34, 36, 38, 42, 74, 114, 118, 396, 674, 1870, 4306, 22808
Offset: 1
As an example, Bernoulli(20)/20 = -174611/6600, but 174611 = 283*617. - _Robert G. Wilson v_, Jun 22 2006
- S. Ramanujan, Some properties of Bernoulli's numbers, J. Indian Math. Soc., 3 (1911), 219-234.
-
A119766 := proc(nmax) local numr; for n from 2 to nmax by 2 do numr := abs(numer(bernoulli(n)/n)) ; if numr = 1 or isprime(numr) then print(n) ; fi ; od ; end : A119766(2000) ; # R. J. Mathar, Jun 21 2006
-
OldPrimeQ[n_] := Abs[n]==1 || PrimeQ[Abs[n]]; Select[Range[2000], OldPrimeQ[Numerator[BernoulliB[ # ]/# ]] &] (* T. D. Noe, Jun 20 2006 *)
A231273
Numerator of zeta(4n)/(zeta(2n) * Pi^(2n)).
Original entry on oeis.org
1, 1, 1, 691, 3617, 174611, 236364091, 3392780147, 7709321041217, 26315271553053477373, 261082718496449122051, 2530297234481911294093, 5609403368997817686249127547, 61628132164268458257532691681, 354198989901889536240773677094747
Offset: 0
- T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976, p. 231.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fourth Edition, Clarendon Press, 1960, p. 255.
Cf.
A231327 (corresponding denominator).
-
seq(numer((-1)^n*bernoulli(4*n)*4^n*(2*n)!/(bernoulli(2*n)*(4*n)!)),n=0..100); # Robert Israel, Aug 22 2014
-
Numerator[Table[Zeta[4n]/(Zeta[2n] * Pi^(2n)), {n, 0, 15}]] (* T. D. Noe, Nov 18 2013 *)
A358625
a(n) = numerator of Bernoulli(n, 1) / n for n >= 1, a(0) = 1.
Original entry on oeis.org
1, 1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373, 0, 154210205991661, 0, -261082718496449122051
Offset: 0
Rationals: 1, 1/2, 1/12, 0, -1/120, 0, 1/252, 0, -1/240, 0, 1/132, ...
Note that a(68) = -4633713579924631067171126424027918014373353 but A120082(68) = -125235502160125163977598011460214000388469.
- Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, Vol. 84, Graduate Texts in Mathematics, Springer-Verlag, 2nd edition, 1990. [Prop. 15.2.4, p. 238]
- Peter Luschny, Table of n, a(n) for n = 0..300
- Arnold Adelberg, Shaofang Hong and Wenli Ren, Bounds of Divided Universal Bernoulli Numbers and Universal Kummer Congruences, Proceedings of the American Mathematical Society, Vol. 136(1), 2008, p. 61-71.
- Bernd C. Kellner, The structure of Bernoulli numbers, arXiv:math/0411498 [math.NT], 2004.
-
Concatenation([1, 1], List([2..45], n-> NumeratorRat(Bernoulli(n)/(n)))); # G. C. Greubel, Sep 19 2019
-
[1, 1] cat [Numerator(Bernoulli(n)/(n)): n in [2..45]]; // G. C. Greubel, Sep 19 2019
-
A358625 := n -> ifelse(n = 0, 1, numer(bernoulli(n, 1) / n)):
seq(A358625(n), n = 0.. 40);
# Alternative:
egf := 1 + x + log(1 - exp(-x)) - log(x): ser := series(egf, x, 42):
seq(numer(n! * coeff(ser, x, n)), n = 0..40);
-
Join[{1, 1}, Table[Numerator[BernoulliB[n] / n], {n, 2, 45}]]
-
a(n) = if (n<=1, 1, numerator(bernfrac(n)/n)); \\ Michel Marcus, Feb 24 2015
A043303
Numerator of B(4n+2)/(2n+1) where B(m) are the Bernoulli numbers.
Original entry on oeis.org
1, 1, 1, 1, 43867, 77683, 657931, 1723168255201, 151628697551, 154210205991661, 1520097643918070802691, 25932657025822267968607, 19802288209643185928499101, 29149963634884862421418123812691, 2913228046513104891794716413587449, 396793078518930920708162576045270521
Offset: 0
- Bruce Berndt, Ramanujan's Notebooks Part II, Springer-Verlag; see Infinite series, p. 262.
-
seq(numer(bernoulli(4*n+2)/(2*n+1)),n=0..30); # Robert Israel, Sep 18 2016
-
Table[BernoulliB[4n+2]/(2n+1),{n,0,20}]//Numerator (* Harvey P. Dale, Aug 13 2018 *)
-
a(n)=if(n<0,0,numerator(bernfrac(4*n+2)/(2*n+1)))
A231327
Denominator of rational component of zeta(4n)/zeta(2n).
Original entry on oeis.org
1, 15, 105, 675675, 34459425, 16368226875, 218517792968475, 30951416768146875, 694097901592400930625, 23383376494609715287281703125, 2289686345687357378035370971875, 219012470258383844016431785453125, 4791965046290912124048163518904807546875
Offset: 0
- T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976, p. 231.
Cf.
A231273 (the corresponding numerator).
-
seq(denom(bernoulli(4*n)*4^n*(2*n)!/(bernoulli(2*n)*(4*n)!)),n=0..100); # Robert Israel, Aug 22 2014
-
Denominator[Table[Zeta[4 n]/Zeta[2 n], {n, 0, 15}]] (* T. D. Noe, Nov 15 2013 *)
A342318
a(n) = numerator(((i^n * PolyLog(1 - n, -i) + (-i)^n * PolyLog(1 - n, i))) / (4^n - 2^n)) if n > 0 and a(0) = 1. Here i denotes the imaginary unit.
Original entry on oeis.org
1, 1, 1, 1, 1, 5, 1, 61, 1, 1385, 1, 50521, 691, 2702765, 1, 199360981, 3617, 19391512145, 43867, 2404879675441, 174611, 370371188237525, 77683, 69348874393137901, 236364091, 15514534163557086905, 657931, 4087072509293123892361, 3392780147, 1252259641403629865468285
Offset: 0
r(n) = 1, 1/2, 1/12, 1/56, 1/120, 5/992, 1/252, 61/16256, 1/240, 1385/261632, 1/132, ...
- K. Ireland and M. Rosen, A classical introduction to modern number theory, vol. 84, Graduate Texts in Mathematics. Springer-Verlag, 2nd edition, 1990. [Prop. 15.2.4, p. 238]
-
a := n -> `if`(n <= 2, 1, `if`(n::even, numer(abs(bernoulli(n))/n), abs(euler(n - 1)))); seq(a(n), n = 0..29);
-
r[s_] := If[s == 0, 1, (I^s PolyLog[1 - s, -I] + (-I)^s PolyLog[1 - s, I]) / (4^s - 2^s)]; Table[r[n], {n, 0, 29}] // Numerator
Comments