A323817
Number of connected set-systems covering n vertices with no singletons.
Original entry on oeis.org
1, 0, 1, 12, 1990, 67098648, 144115187673201808, 1329227995784915871895000743748659792, 226156424291633194186662080095093570015284114833799899656335137245499581360
Offset: 0
The a(3) = 12 set-systems:
{{1, 2, 3}}
{{1, 2}, {1, 3}}
{{1, 2}, {2, 3}}
{{1, 3}, {2, 3}}
{{1, 2}, {1, 2, 3}}
{{1, 3}, {1, 2, 3}}
{{2, 3}, {1, 2, 3}}
{{1, 2}, {1, 3}, {2, 3}}
{{1, 2}, {1, 3}, {1, 2, 3}}
{{1, 2}, {2, 3}, {1, 2, 3}}
{{1, 3}, {2, 3}, {1, 2, 3}}
{{1, 2}, {1, 3}, {2, 3},{1, 2, 3}}
The A323816(4) - a(4) = 3 disconnected set-systems covering n vertices with no singletons:
{{1, 2}, {3, 4}}
{{1, 3}, {2, 4}}
{{1, 4}, {2, 3}}
-
m:=10;
A323816:= func< n | (&+[(-1)^(n-j)*Binomial(n,j)*2^(2^j -j-1): j in [0..n]]) >;
f:= func< x | 1 + Log((&+[A323816(j)*x^j/Factorial(j): j in [0..m+2]])) >;
R:=PowerSeriesRing(Rationals(), m+1);
Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Oct 05 2022
-
b:= n-> add(2^(2^(n-j)-n+j-1)*binomial(n, j)*(-1)^j, j=0..n):
a:= proc(n) option remember; b(n)-`if`(n=0, 0, add(
k*binomial(n, k)*b(n-k)*a(k), k=1..n-1)/n)
end:
seq(a(n), n=0..8); # Alois P. Heinz, Jan 30 2019
-
nn=10;
ser=Sum[Sum[(-1)^(n-k)*Binomial[n,k]*2^(2^k-k-1),{k,0,n}]*x^n/n!,{n,0,nn}];
Table[SeriesCoefficient[1+Log[ser],{x,0,n}]*n!,{n,0,nn}]
-
m=10
def A323816(n): return sum((-1)^j*binomial(n,j)*2^(2^(n-j) -n+j-1) for j in range(n+1))
def A323817_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( 1 + log(sum(A323816(j)*x^j/factorial(j) for j in range(m+2))) ).egf_to_ogf().list()
A323817_list(m) # G. C. Greubel, Oct 05 2022
A327073
Number of labeled simple connected graphs with n vertices and exactly one bridge.
Original entry on oeis.org
0, 0, 1, 0, 12, 200, 7680, 506856, 58934848, 12205506096, 4595039095680, 3210660115278000, 4240401342141499392, 10743530775519296581944, 52808688280248604235191296, 507730995579614277599205009240, 9603347831901155679455061048606720, 358743609478638769812094362544644831968
Offset: 0
Connected graphs with no bridges are
A007146.
Connected graphs whose bridges are all leaves are
A322395.
Connected graphs with at least one bridge are
A327071.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]==1&&Count[Table[Length[Union@@Delete[#,i]]1,{i,Length[#]}],True]==1&]],{n,0,5}]
-
\\ See A095983.
seq(n)={my(p=x*deriv(log(sum(k=0, n-1, 2^binomial(k, 2) * x^k / k!) + O(x^n)))); Vec(serlaplace(log(x/serreverse(x*exp(p)))^2/2), -(n+1)) } \\ Andrew Howroyd, Dec 28 2020
A327149
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of simple labeled graphs covering n vertices with non-spanning edge-connectivity k.
Original entry on oeis.org
1, 0, 1, 0, 0, 3, 1, 3, 12, 15, 10, 1, 40, 180, 297, 180, 60, 10, 1
Offset: 0
Triangle begins:
1
{}
0 1
0 0 3 1
3 12 15 10 1
40 180 297 180 60 10 1
The corresponding triangle for vertex-connectivity is
A327126.
The corresponding triangle for spanning edge-connectivity is
A327069.
The non-covering version is
A327148.
Cf.
A001187,
A263296,
A322338,
A322395,
A326787,
A327097,
A327099,
A327102,
A327125,
A327129,
A327144.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&eConn[#]==k&]],{n,0,4},{k,0,Binomial[n,2]}]//.{foe___,0}:>{foe}
A327231
Number of labeled simple connected graphs covering a subset of {1..n} with at least one non-endpoint bridge (non-spanning edge-connectivity 1).
Original entry on oeis.org
0, 0, 1, 3, 18, 250, 5475, 191541, 11065572, 1104254964, 201167132805, 69828691941415, 47150542741904118, 62354150876493659118, 161919876753750972738791, 827272271567137357352991705, 8331016130913639432634637862600, 165634930763383717802534343776893928
Offset: 0
The a(2) = 1 through a(4) = 18 edge-sets:
{12} {12} {12}
{13} {13}
{23} {14}
{23}
{24}
{34}
{12,13,24}
{12,13,34}
{12,14,23}
{12,14,34}
{12,23,34}
{12,24,34}
{13,14,23}
{13,14,24}
{13,23,24}
{13,24,34}
{14,23,24}
{14,23,34}
Connected bridged graphs (spanning edge-connectivity 1) are
A327071.
BII-numbers of set-systems with non-spanning edge-connectivity 1 are
A327099.
Covering set-systems with non-spanning edge-connectivity 1 are
A327129.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
edgeConnSys[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],edgeConnSys[#]==1&]],{n,0,4}]
A371294
Numbers whose binary indices are connected and pairwise indivisible, where two numbers are connected iff they have a common factor. A hybrid ranking sequence for connected antichains of multisets.
Original entry on oeis.org
1, 2, 4, 8, 16, 32, 40, 64, 128, 160, 256, 288, 296, 416, 512, 520, 544, 552, 640, 672, 800, 808, 928, 1024, 2048, 2176, 2304, 2432, 2560, 2688, 2816, 2944, 4096, 8192, 8200, 8224, 8232, 8320, 8352, 8480, 8488, 8608, 8704, 8712, 8736, 8744, 8832, 8864, 8992
Offset: 1
The terms together with their prime indices of binary indices begin:
1: {{}}
2: {{1}}
4: {{2}}
8: {{1,1}}
16: {{3}}
32: {{1,2}}
40: {{1,1},{1,2}}
64: {{4}}
128: {{1,1,1}}
160: {{1,2},{1,1,1}}
256: {{2,2}}
288: {{1,2},{2,2}}
296: {{1,1},{1,2},{2,2}}
416: {{1,2},{1,1,1},{2,2}}
512: {{1,3}}
520: {{1,1},{1,3}}
544: {{1,2},{1,3}}
552: {{1,1},{1,2},{1,3}}
640: {{1,1,1},{1,3}}
672: {{1,2},{1,1,1},{1,3}}
800: {{1,2},{2,2},{1,3}}
808: {{1,1},{1,2},{2,2},{1,3}}
928: {{1,2},{1,1,1},{2,2},{1,3}}
For binary indices of binary indices we have
A326750, non-primitive
A326749.
For prime indices of prime indices we have
A329559, non-primitive
A305078.
For binary indices of prime indices we have
A371445, non-primitive
A325118.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Cf.
A001222,
A051026,
A285572,
A303362,
A304713,
A305079,
A316476,
A319496,
A319719,
A326704,
A371446.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],stableQ[bpe[#],Divisible]&&connectedQ[prix/@bpe[#]]&]
A125207
Total number of connected components in all subgraphs obtained from the complete labeled graph K_n by removing zero or more edges.
Original entry on oeis.org
1, 3, 13, 98, 1398, 39956, 2354240, 286394544, 71225744048, 35884971729760, 36419817759267072, 74221711070826087424, 303193538300703211111936, 2480118087478081928075065344, 40601989279034990139321984265216, 1329877330680067685563700135615633408
Offset: 1
For n=2, we have two graph on two vertices: complete and empty, the former has one connected component while the latter has two connected components. The total number of connected components is 3, which is a(2).
-
f[list_]:= Total[Table[i list[[i]],{i,1,Length[list]}]];
a= Sum[2^Binomial[n,2] x^n/n!,{n,0,20}];
Map[f, Transpose[Table[Rest[Range[0, 20]! CoefficientList[Series[Log[a]^k/k!, {x, 0, 20}],x]], {k, 1, 20}]]] (* Geoffrey Critzer, May 09 2011 *)
-
G=sum(n=0,30,2^(n*(n-1)/2)*x^n/n!) + O(x^31); v=Vec(G*log(G)); for(i=1,length(v),v[i]*=i!); print(v)
A322064
Number of ways to choose a stable partition of a simple connected graph with n vertices.
Original entry on oeis.org
1, 1, 1, 7, 141, 6533, 631875, 123430027, 48659732725, 39107797223409, 64702785181953175, 221636039917857648631, 1575528053913118966200441, 23249384407499950496231003021, 711653666389829384034090082068939, 45128328085994437067694854477617868995
Offset: 0
The a(3) = 7 stable partitions. The simple connected graph is on top, and below is a list of all its stable partitions.
{1,3}{2,3} {1,2}{2,3} {1,2}{1,3} {1,2}{1,3}{2,3}
-------- -------- -------- --------
{{1,2},{3}} {{1,3},{2}} {{1},{2,3}} {{1},{2},{3}}
{{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}}
Cf.
A000110,
A000569,
A001187,
A006125,
A048143,
A229048,
A240936,
A245883,
A277203,
A321911,
A321979,
A322063,
A322065.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Sum[Length[Select[Subsets[Complement[Subsets[Range[n],{2}],Union@@Subsets/@stn]],And[Union@@#==Range[n],Length[csm[#]]==1]&]],{stn,sps[Range[n]]}],{n,5}]
-
\\ See A322278 for M.
seq(n)={concat([1], (M(n)*vectorv(n,i,1))~)} \\ Andrew Howroyd, Dec 01 2018
A322278
Triangle read by rows: T(n,k) is the number of k-colored connected graphs on n labeled nodes up to permutation of the colors.
Original entry on oeis.org
1, 0, 1, 0, 3, 4, 0, 19, 84, 38, 0, 195, 2470, 3140, 728, 0, 3031, 108390, 307390, 186360, 26704, 0, 67263, 7192444, 42747460, 52630060, 18926544, 1866256, 0, 2086099, 726782784, 9030799218, 20784069600, 14401134944, 3463311488, 251548592
Offset: 1
Triangle begins:
1;
0, 1;
0, 3, 4;
0, 19, 84, 38;
0, 195, 2470, 3140, 728;
0, 3031, 108390, 307390, 186360, 26704;
0, 67263, 7192444, 42747460, 52630060, 18926544, 1866256;
...
-
M(n, K=n)={
my(p=sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n));
my(q=sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n));
my(W=vector(K, k, Col(serlaplace(log(serconvol(q, p^k))))));
Mat(vector(K, k, sum(i=1, k, (-1)^(k-i)*binomial(k,i)*W[i])/k!));
}
my(T=M(7)); for(n=1, #T, print(T[n, 1..n]))
A326964
Number of connected set-systems covering a subset of {1..n}.
Original entry on oeis.org
1, 2, 7, 112, 32253, 2147316942, 9223372023968335715, 170141183460469231667123699322514272668, 5789604461865809771178549250434395393752402807429031284280914691514037561273
Offset: 0
The a(0) = 1 through a(2) = 7 set-systems:
{} {} {}
{{1}} {{1}}
{{2}}
{{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
Covering sets of subsets are
A000371.
The BII-numbers of connected set-systems are
A326749.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Length[csm[#]]<=1&]],{n,0,4}]
A327072
Triangle read by rows where T(n,k) is the number of labeled simple connected graphs with n vertices and exactly k bridges.
Original entry on oeis.org
1, 1, 0, 0, 1, 0, 1, 0, 3, 0, 10, 12, 0, 16, 0, 253, 200, 150, 0, 125, 0, 11968, 7680, 3600, 2160, 0, 1296, 0, 1047613, 506856, 190365, 68600, 36015, 0, 16807, 0, 169181040, 58934848, 16353792, 4695040, 1433600, 688128, 0, 262144, 0, 51017714393, 12205506096, 2397804444, 500828832, 121706550, 33067440, 14880348, 0, 4782969, 0
Offset: 0
Triangle begins:
1
1 0
0 1 0
1 0 3 0
10 12 0 16 0
253 200 150 0 125 0
Row sums without the first column are
A327071.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[If[n<=1&&k==0,1,Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]==1&&Count[Table[Length[Union@@Delete[#,i]]1,{i,Length[#]}],True]==k&]]],{n,0,4},{k,0,n}]
-
\\ p is e.g.f. of A053549.
T(n)={my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))), v=Vec(1+serreverse(serreverse(log(x/serreverse(x*exp(p))))/exp(x*y+O(x^n))))); vector(#v, k, max(0,k-2)!*Vecrev(v[k], k)) }
{ my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Dec 28 2020
Comments