cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 134 results. Next

A317718 Number of uniform relatively prime rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 27, 55, 125, 278, 650, 1510, 3624, 8655, 21017, 51212, 125857, 310581, 770767, 1920226
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

An unlabeled rooted tree is uniform and relatively prime iff either it is a single node or a single node with a single uniform relatively prime branch, or the branches of the root have empty intersection (relatively prime) and equal multiplicities (uniform) and are themselves uniform relatively prime trees.

Examples

			The a(6) = 13 uniform relatively prime rooted trees:
  (((((o)))))
  ((((oo))))
  (((o(o))))
  (((ooo)))
  ((o((o))))
  ((o(oo)))
  ((oooo))
  (o(((o))))
  (o((oo)))
  (o(o(o)))
  (o(ooo))
  ((o)((o)))
  (ooooo)
		

Crossrefs

Programs

  • Mathematica
    purt[n_]:=purt[n]=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[purt/@ptn]],Or[Length[#]==1,And[SameQ@@Length/@Split[#],Intersection@@#=={}]]&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[purt[n]],{n,20}]

A319541 Triangle read by rows: T(n,k) is the number of binary rooted trees with n leaves of exactly k colors and all non-leaf nodes having out-degree 2.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 2, 14, 27, 15, 3, 48, 180, 240, 105, 6, 171, 1089, 2604, 2625, 945, 11, 614, 6333, 24180, 42075, 34020, 10395, 23, 2270, 36309, 207732, 554820, 755370, 509355, 135135, 46, 8518, 207255, 1710108, 6578550, 13408740, 14963130, 8648640, 2027025
Offset: 1

Views

Author

Andrew Howroyd, Sep 22 2018

Keywords

Comments

See table 2.2 in the Johnson reference.

Examples

			Triangle begins:
   1;
   1,    1;
   1,    4,     3;
   2,   14,    27,     15;
   3,   48,   180,    240,    105;
   6,  171,  1089,   2604,   2625,    945;
  11,  614,  6333,  24180,  42075,  34020,  10395;
  23, 2270, 36309, 207732, 554820, 755370, 509355, 135135;
  ...
		

Crossrefs

Columns 1..5 are A001190, A220819, A220820, A220821, A220822.
Main diagonal is A001147.
Row sums give A319590.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n<2, k*n, `if`(n::odd, 0,
          (t-> t*(1-t)/2)(A(n/2, k)))+add(A(i, k)*A(n-i, k), i=1..n/2))
        end:
    T:= (n, k)-> add((-1)^i*binomial(k, i)*A(n, k-i), i=0..k):
    seq(seq(T(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Sep 23 2018
  • Mathematica
    A[n_, k_] := A[n, k] = If[n<2, k n, If[OddQ[n], 0, (#(1-#)/2)&[A[n/2, k]]] + Sum[A[i, k] A[n - i, k], {i, 1, n/2}]];
    T[n_, k_] := Sum[(-1)^i Binomial[k, i] A[n, k - i], {i, 0, k}];
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 02 2019, after Alois P. Heinz *)
  • PARI
    \\ here R(n,k) is k-th column of A319539 as a vector.
    R(n,k)={my(v=vector(n)); v[1]=k; for(n=2, n, v[n]=sum(j=1, (n-1)\2, v[j]*v[n-j]) + if(n%2, 0, binomial(v[n/2]+1, 2))); v}
    M(n)={my(v=vector(n, k, R(n,k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k,i)*v[i])))}
    {my(T=M(10)); for(n=1, #T~, print(T[n, ][1..n]))}

Formula

T(n,k) = Sum_{i=1..k} (-1)^(k-i)*binomial(k,i)*A319539(n,i).

A000672 Number of 3-valent trees (= boron trees or binary trees) with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 6, 11, 18, 37, 66, 135, 265, 552, 1132, 2410, 5098, 11020, 23846, 52233, 114796, 254371, 565734, 1265579, 2841632, 6408674, 14502229, 32935002, 75021750, 171404424, 392658842, 901842517, 2076217086, 4790669518, 11077270335
Offset: 0

Views

Author

Keywords

Comments

This can be described in 2 ways: (a) Trees with n nodes of valency <= 3, for n = 0,1,2,3,... (b) Trees with t = 2n+2 nodes of valency either 1 or 3 (implying that there are n nodes of valency 3 - the boron atoms - and n+2 nodes of valency 1 - the hydrogen atoms), for t = 2,4,6,8,...
Essentially the same sequences arises from studying the number of unrooted, unlabeled binary tree topologies with n leaves (see A129860). - Steven Kelk, Jul 22 2016

Examples

			The 4 trees with 6 nodes are:
._._._._._. . ._._._._. . ._._._._. . ._._._.
. . . . . . . . | . . . . . . | . . . . | |
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 6*x^7 + 11*x^8 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 307.
  • P. J. Cameron, Oligomorphic Permutation Groups, Cambridge; see Fig. 2 p. 35.
  • A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 451).
  • Joseph Felsenstein, Inferring Phylogenies. Sinauer Associates, Inc., 2004, page 33. Note that at least the first two editions give an incorrect version of this sequence.
  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k = 3 of A144528.
Cf. A001190(n+1) (rooted trees).

Programs

  • Mathematica
    (* c = A001190 *) c[n_?OddQ] := c[n] = Sum[c[k]*c[n-k], {k, 1, (n-1)/2}]; c[n_?EvenQ] := c[n] = (1/2)*c[n/2]*(c[n/2] + 1) + Sum[c[k]*c[n-k], {k, 1, n/2-1}]; c[0] = 0; c[1] = 1; b[x_] := If[IntegerQ[x], c[x+1], 0]; a[0] = a[1] = a[2] = 1; a[n_] := b[n/2] - (1/3)*(b[(n-1)/3]-1)*b[(n-1)/3]*(b[(n-1)/3] + 1) + 2*b[n] - b[n+1] - Sum[(1/2)*(b[i]-1)*b[i]*b[-2*i + n - 1], {i, 1, (n-2)/2}] + Sum[b[i]*Sum[b[j]*b[n-i-j-1], {j, i, (1/2)*(n-i-1)}], {i, 1, (n-1)/3}]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 19 2015 *)
    n = 50; (* algorithm from Rains and Sloane *)
    S2[f_,h_,x_] := f[h,x]^2/2 + f[h,x^2]/2;
    S3[f_,h_,x_] := f[h,x]^3/6 + f[h,x] f[h,x^2]/2 + f[h,x^3]/3;
    T[-1,z_] := 1;  T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S2[T,h-1,z]z, z], n+1];
    Sum[Take[CoefficientList[z^(n+1) + S3[T,h-1,z]z - S3[T,h-2,z]z - (T[h-1,z] - T[h-2,z]) (T[h-1,z]-1),z], n+1], {h,1,n/2}] + PadRight[{1,1}, n+1] + Sum[Take[CoefficientList[z^(n+1) + (T[h,z] - T[h-1,z])^2/2 + (T[h,z^2] - T[h-1,z^2])/2, z],n+1], {h,0,n/2}] (* Robert A. Russell, Sep 15 2018 *)
    n = 60; c[n_?OddQ] := c[n] = Sum[c[k]*c[n-k], {k,1,(n-1)/2}];
    c[n_?EvenQ] := c[n] = (1/2)*c[n/2]*(c[n/2] + 1) + Sum[c[k]*c[n-k],
      {k,1,n/2-1}]; c[0] = 0; c[1] = 1; (* as in program 1 above *)
    gf[x_] := Sum[c[i+1] x^i, {i,0,n}]; (* g.f. for A001190(n+1) *)
    ci[x_] := SymmetricGroupIndex[3, x] /. x[i_] -> gf[x^i];
    CoefficientList[Normal[Series[gf[x] - (gf[x]^2 - gf[x^2])/2 +
    x ci[x], {x,0,n}]], x] (* Robert A. Russell, Jan 17 2023 *)

Formula

Rains and Sloane give a g.f.
a(0)=a(1)=a(2)=1, a(n) = 2*b(n+1) - b(n+2) + b((n+1)/2) - 2*C(1+b(n/3), 3) - Sum_{i=1..[(n-1)/2]} C(b(i), 2)*b(n-2*i) + Sum_{i=1..[n/3]} b(i) Sum_{j=i..[(n-i)/2]} b(j)*b(n-i-j), where b(x) = A001190(x+1) if x is an integer, otherwise 0 (Cyvin et al.) [Index of A001190 shifted by R. J. Mathar, Mar 08 2010]
a(n) = A000673(n) + A000675(n).
a(n) ~ c * d^n / n^(5/2), where d = A086317 = 2.4832535361726368585622885181... and c = 1.2551088797592580080398489829149157375... . - Vaclav Kotesovec, Apr 19 2016
G.f.: B(x) - cycle_index(S2,-B(x)) + x * cycle_index(S3,B(x)) = B(x) - (B(x)^2 - B(x^2)) / 2 + x * (B(x)^3 + 3*B(x) B(x^2) + 2*B(x^3)) / 6, where B(x) = 1 + x * cycle_index(S2,B(x)) = 1 + x * (B(x)^2 + B(x^2)) / 2 is the generating function for A001190(n+1). - Robert A. Russell, Jan 17 2023

A086317 Decimal expansion of asymptotic constant xi for counts of weakly binary trees.

Original entry on oeis.org

2, 4, 8, 3, 2, 5, 3, 5, 3, 6, 1, 7, 2, 6, 3, 6, 8, 5, 8, 5, 6, 2, 2, 8, 8, 5, 1, 8, 1, 7, 8, 2, 2, 1, 2, 8, 9, 1, 8, 8, 6, 9, 7, 3, 4, 0, 8, 1, 4, 3, 6, 4, 5, 8, 5, 9, 2, 0, 2, 5, 9, 6, 9, 7, 3, 0, 6, 7, 4, 2, 5, 4, 0, 8, 8, 5, 8, 0, 9, 8, 3, 9, 0, 6, 4, 7, 6, 4, 0, 1, 6, 9, 1, 6, 7, 2, 1, 8, 2, 7, 4, 7
Offset: 1

Views

Author

Eric W. Weisstein, Jul 15 2003

Keywords

Examples

			2.48325353617263685856228851817822128918869734...
		

Crossrefs

Programs

  • Mathematica
    digits = 102; c[0] = 2; c[n_] := c[n] = c[n - 1]^2 + 2; xi[n_Integer] := xi[n] = c[n]^(2^-n); xi[5]; xi[n = 10]; While[RealDigits[xi[n], 10, digits] != RealDigits[xi[n - 5], 10, digits], n = n + 5]; RealDigits[xi[n], 10, digits] // First (* Jean-François Alcover, May 27 2014 *)

Formula

Equals 1/A240943.
Equals lim_{n->infinity} A001190(n)^(1/n). - Vaclav Kotesovec, Jul 28 2014

Extensions

Typos corrected by Jean-François Alcover, May 27 2014

A295461 Number of unlabeled rooted trees with 2n + 1 nodes in which all outdegrees are even.

Original entry on oeis.org

1, 1, 2, 5, 12, 33, 91, 264, 780, 2365, 7274, 22727, 71784, 229094, 737215, 2390072, 7798020, 25587218, 84377881, 279499063, 929556155, 3102767833, 10390936382, 34903331506, 117564309276, 396994228503, 1343716120550, 4557952756658, 15491856887741
Offset: 0

Views

Author

Gus Wiseman, Jan 13 2018

Keywords

Examples

			The a(3) = 5 trees: (o(o(oo))), (o(oooo)), ((oo)(oo)), (ooo(oo)), (oooooo).
		

Crossrefs

Programs

  • Mathematica
    erut[n_]:=erut[n]=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[erut/@c]]]/@Select[IntegerPartitions[n-1],EvenQ[Length[#]]&]];
    Table[Length[erut[n]],{n,1,30,2}]

A300442 Number of binary strict trees of weight n.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 10, 23, 46, 108, 231, 561, 1285, 3139, 7348, 18265, 43907, 109887, 267582, 675866, 1669909, 4238462, 10555192, 26955062, 67706032, 173591181, 438555624, 1129088048, 2869732770, 7410059898, 18911818801, 48986728672, 125562853003, 326011708368
Offset: 0

Views

Author

Gus Wiseman, Mar 05 2018

Keywords

Comments

A binary strict tree of weight n > 0 is either a single node of weight n, or an ordered pair of binary strict trees with strictly decreasing weights summing to n.

Examples

			The a(5) = 6 binary strict trees: 5, (41), (32), ((31)1), ((21)2), (((21)1)1).
The a(6) = 10 binary strict trees:
  6,
  (51), (42),
  ((41)1), ((32)1), ((31)2),
  (((31)1)1), (((21)2)1), (((21)1)2),
  ((((21)1)1)1).
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          1+add(a(j)*a(n-j), j=1..(n-1)/2)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Mar 06 2018
  • Mathematica
    k[n_]:=k[n]=1+Sum[Times@@k/@y,{y,Select[IntegerPartitions[n],Length[#]===2&&UnsameQ@@#&]}];
    Array[k,40]
    (* Second program: *)
    a[n_] := a[n] = 1 + Sum[a[j]*a[n - j], {j, 1, (n - 1)/2}];
    a /@ Range[0, 40] (* Jean-François Alcover, May 13 2021, after Alois P. Heinz *)
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sum(k=1, (n-1)\2, v[k]*v[n-k])); concat([1], v)} \\ Andrew Howroyd, Aug 25 2018

Formula

a(n) = 1 + Sum_{x + y = n, 0 < x < y < n} a(x) * a(y).

A301368 Regular triangle where T(n,k) is the number of binary enriched p-trees of weight n with k leaves.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 2, 4, 5, 3, 1, 3, 7, 12, 12, 6, 1, 3, 9, 19, 28, 25, 11, 1, 4, 14, 36, 65, 81, 63, 24, 1, 4, 16, 48, 107, 172, 193, 136, 47, 1, 5, 22, 75, 192, 369, 522, 522, 331, 103, 1, 5, 25, 96, 284, 643, 1108, 1420, 1292, 750, 214, 1, 6
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2018

Keywords

Comments

A binary enriched p-tree of weight n is either a single node of weight n, or an ordered pair of binary enriched p-trees with weakly decreasing weights summing to n.

Examples

			Triangle begins:
  1
  1   1
  1   1   1
  1   2   3   2
  1   2   4   5   3
  1   3   7  12  12   6
  1   3   9  19  28  25  11
  1   4  14  36  65  81  63  24
  1   4  16  48 107 172 193 136  47
  1   5  22  75 192 369 522 522 331 103
  ...
The T(6,3) = 7 binary enriched p-trees: ((41)1), ((32)1), (4(11)), ((31)2), ((22)2), (3(21)), ((21)3).
		

Crossrefs

Programs

  • Mathematica
    bintrees[n_]:=Prepend[Join@@Table[Tuples[bintrees/@ptn],{ptn,Select[IntegerPartitions[n],Length[#]===2&]}],n];
    Table[Length[Select[bintrees[n],Count[#,_Integer,{-1}]===k&]],{n,13},{k,n}]
  • PARI
    A(n)={my(v=vector(n)); for(n=1, n, v[n] = y + sum(k=1, n\2, v[k]*v[n-k])); apply(p->Vecrev(p/y), v)}
    { my(T=A(10)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Aug 26 2018

A036770 Number of labeled rooted trees with a degree constraint: (2*n)!/(2^n) * C(2*n+1, n).

Original entry on oeis.org

1, 3, 60, 3150, 317520, 52390800, 12843230400, 4382752374000, 1986847742880000, 1155153277710432000, 838011196011749760000, 742058914068404412480000, 787724078011075453248000000, 987468397792455300321600000000, 1443283810213452666950050560000000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of rooted labeled strictly binary trees (each vertex has exactly two children or none) on 2*n + 1 vertices. - Geoffrey Critzer, Nov 13 2011

Crossrefs

Programs

  • Magma
    [Factorial(2*n)/(2^n) * Binomial(2*n+1, n): n in [0..15]]; // Vincenzo Librandi, Jan 29 2020
  • Maple
    spec := [S,{S=Union(Z,Prod(Z,Set(S,card=2)))},labeled]: seq(combstruct[count](spec,size=n)
  • Mathematica
    Range[0, 19]! CoefficientList[Series[(1 - (1 - 2 x^2)^(1/2))/x, {x, 0, 20}], x] (* Geoffrey Critzer, Nov 13 2011 *)

Formula

Recurrence (with interpolated zeros): Define (b(n): n >= 0) by b(2*m+1) = a(m) and b(2*m) = 0 for m >= 0. Then the sequence (b(n): n >= 0) satisfies the recurrence (-2*n^3 - 6*n^2 - 4*n)*b(n) + (n + 3)*b(n+2) = 0 for n >= 0 with b(0) = 0 and b(1) = 1. [Corrected by Petros Hadjicostas, Jun 07 2019]
E.g.f. with interpolated zeros: G(x) = Sum_{n >= 0} b(n)*x^n/n! = Sum_{m >= 0} a(m)*x^(2*m + 1)/(2*m + 1)! = 1/x * (1 - (1 - 2*x^2)^(1/2)) for 0 < |x| < 1/sqrt(2). [Edited by Petros Hadjicostas, Jun 07 2019]
E.g.f. with interpolated zeros satisfies G(x)= x*(1 + G(x)^2/2). - Geoffrey Critzer, Nov 13 2011
D-finite with recurrence (with no interpolated zeros): -2*a(n)*(n + 1)*(2*n + 1)*(2*n + 3) + (n + 2)*a(n+1) = 0 with a(0) = 1. - Petros Hadjicostas, Jun 08 2019
G.f.: 4F1(1,1,1/2,3/2;2;8*x). - R. J. Mathar, Jan 28 2020

A300866 Signed recurrence over binary strict trees: a(n) = 1 - Sum_{x + y = n, 0 < x < y < n} a(x) * a(y).

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, -1, 1, 1, -2, 3, -1, -3, 8, -8, 1, 14, -26, 22, 10, -59, 90, -52, -74, 238, -291, 80, 417, -930, 915, 124, -1991, 3483, -2533, -2148, 9011, -12596, 5754, 14350, -37975, 42735, -4046, -77924, 154374, -133903, -56529, 376844, -591197, 355941, 522978, -1706239
Offset: 0

Views

Author

Gus Wiseman, Mar 13 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=1-Sum[a[k]*a[n-k],{k,1,(n-1)/2}];
    Array[a,40]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 - sum(k=1, (n-1)\2, v[k]*v[n-k])); concat([1], v)} \\ Andrew Howroyd, Aug 27 2018

A301344 Regular triangle where T(n,k) is the number of semi-binary rooted trees with n nodes and k leaves.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 4, 1, 0, 0, 1, 6, 4, 0, 0, 0, 1, 9, 11, 2, 0, 0, 0, 1, 12, 24, 9, 0, 0, 0, 0, 1, 16, 46, 32, 3, 0, 0, 0, 0, 1, 20, 80, 86, 20, 0, 0, 0, 0, 0, 1, 25, 130, 203, 86, 6, 0, 0, 0, 0, 0, 1, 30, 200, 423, 283, 46, 0, 0, 0, 0, 0, 0, 1, 36, 295, 816, 786, 234, 11, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2018

Keywords

Comments

A rooted tree is semi-binary if all outdegrees are <= 2. The number of semi-binary trees with n nodes is equal to the number of binary trees with n+1 leaves; see A001190.

Examples

			Triangle begins:
1
1   0
1   1   0
1   2   0   0
1   4   1   0   0
1   6   4   0   0   0
1   9  11   2   0   0   0
1  12  24   9   0   0   0   0
1  16  46  32   3   0   0   0   0
1  20  80  86  20   0   0   0   0   0
1  25 130 203  86   6   0   0   0   0   0
The T(6,3) = 4 semi-binary rooted trees: ((o(oo))), (o((oo))), (o(o(o))), ((o)(oo)).
		

Crossrefs

Programs

  • Mathematica
    rbt[n_]:=rbt[n]=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[rbt/@c]]]/@Select[IntegerPartitions[n-1],Length[#]<=2&]];
    Table[Length[Select[rbt[n],Count[#,{},{-2}]===k&]],{n,15},{k,n}]
Previous Showing 41-50 of 134 results. Next