cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 117 results. Next

A062924 Probably an incomplete version of A001235.

Original entry on oeis.org

1729, 4104, 148941, 160284, 171288, 1331064
Offset: 0

Views

Author

Keywords

A273186 Taxi-cab numbers (A001235) n such that n+1 is the sum of two positive cubes (A003325).

Original entry on oeis.org

18426689288, 20689194392, 166940780112, 3956149616328, 53611112714103, 562576374032408, 11110701930362937, 17146742033697471, 24658089729767487, 45512714439607464
Offset: 1

Views

Author

Zak Seidov and Giovanni Resta, May 27 2016

Keywords

Comments

Numbers n such that n+1 and n can be written, respectively, in at least one and two ways as the sum of two positive cubes.

Examples

			a(1) = 2514^3 + 1364^3 = 2498^3 + 1416^3, a(1)+1 = 2641^3 + 182^3.
a(2) = 2492^3 + 1734^3 = 2726^3 + 756^3,  a(2)+1 = 2282^3 + 2065^3.
		

Crossrefs

A274245 Numbers n such that n*(n+1)/2 is a Taxi-cab number (A001235).

Original entry on oeis.org

349999, 591408, 405332018, 525796270
Offset: 1

Views

Author

Altug Alkan, Jul 02 2016

Keywords

Comments

In other words, numbers n such that 0 + 1 + 2 + ... + n = a^3 + b^3 = c^3 + d^3 where (a, b) and (c, d) are distinct pairs and a, b, c, d > 0 is soluble.
It is known that there is no triangular number that is also a cube except 0 and 1. So if the sum of k positive cubes is a triangular number that is bigger than 1, then the minimum value of k is 2. At this point sequence focuses on that question: What are the triangular numbers that are the sum of two positive cubes in more than one way?
A000217(349999) = 61249825000 is the least triangular number that is also a Taxi-cab number.
a(5) > 10^9. - Giovanni Resta, Jul 04 2016

Examples

			349999 is a term because 349999*(349999+1) / 2 = 61249825000 = 820^3 + 3930^3 = 3018^3 + 3232^3.
591408 is a term because 591408*(591408+1) / 2 = 174882006936 = 2070^3 + 5496^3 = 3238^3 + 5204^3.
		

Crossrefs

Extensions

a(3)-a(4) from Giovanni Resta, Jul 04 2016

A274367 Taxi-cab numbers (A001235) that are of the form x^2 + y^4 in more than one way (x, y > 0).

Original entry on oeis.org

27445392, 1644443281, 2367885312, 5687433577, 112416325632, 208265121792, 900069054976, 1976398601697, 6735639678976, 9698858237952, 9911785815477, 14585606569872, 15283760730112, 18156501172017, 23295727931392, 29871321586561, 33510832422912, 67250060669952
Offset: 1

Views

Author

Altug Alkan, Jun 19 2016

Keywords

Comments

A272701(3) = 27445392 is the least number with the property that sequence focuses on.
If n = a^3 + b^3 = c^3 + d^3 = x^2 + y^4 = z^2 + t^4, then n*k^12 = (a*k^4)^3 + (b*k^4)^3 = (c*k^4)^3 + (d*k^4)^3 = (x*k^6)^2 + (y*k^3)^4 = (z*k^6)^2 + (t*k^3)^4. So if n is this sequence, then n*k^12 is also in this sequence for all k > 1.

Examples

			27445392 is a term because 27445392 = 141^3 + 291^3 = 198^3 + 270^3 = 756^2 + 72^4 = 5076^2 + 36^4.
112416325632 is a term because 112416325632 = 27445392*2^12.
		

Crossrefs

Extensions

a(2)-a(18) from Giovanni Resta, Jun 19 2016

A003325 Numbers that are the sum of 2 positive cubes.

Original entry on oeis.org

2, 9, 16, 28, 35, 54, 65, 72, 91, 126, 128, 133, 152, 189, 217, 224, 243, 250, 280, 341, 344, 351, 370, 407, 432, 468, 513, 520, 539, 559, 576, 637, 686, 728, 730, 737, 756, 793, 854, 855, 945, 1001, 1008, 1024, 1027, 1064, 1072, 1125, 1216, 1241, 1332, 1339, 1343
Offset: 1

Views

Author

Keywords

Comments

It is conjectured that this sequence and A052276 have infinitely many numbers in common, although only one example (128) is known. [Any further examples are greater than 5 million. - Charles R Greathouse IV, Apr 12 2020] [Any further example is greater than 10^12. - M. F. Hasler, Jan 10 2021]
A113958 is a subsequence; if m is a term then m+k^3 is a term of A003072 for all k > 0. - Reinhard Zumkeller, Jun 03 2006
From James R. Buddenhagen, Oct 16 2008: (Start)
(i) N and N+1 are both the sum of two positive cubes if N=2*(2*n^2 + 4*n + 1)*(4*n^4 + 16*n^3 + 23*n^2 + 14*n + 4), n=1,2,....
(ii) For n >= 2, let N = 16*n^6 - 12*n^4 + 6*n^2 - 2, so N+1 = 16*n^6 - 12*n^4 + 6*n^2 - 1.
Then the identities 16*n^6 - 12*n^4 + 6*n^2 - 2 = (2*n^2 - n - 1)^3 + (2*n^2 + n - 1)^3 16*n^6 - 12*n^4 + 6*n^2 - 1 = (2*n^2)^3 + (2*n^2 - 1)^3 show that N, N+1 are in the sequence. (End)
If n is a term then n*m^3 (m >= 2) is also a term, e.g., 2m^3, 9m^3, 28m^3, and 35m^3 are all terms of the sequence. "Primitive" terms (not of the form n*m^3 with n = some previous term of the sequence and m >= 2) are 2, 9, 28, 35, 65, 91, 126, etc. - Zak Seidov, Oct 12 2011
This is an infinite sequence in which the first term is prime but thereafter all terms are composite. - Ant King, May 09 2013
By Fermat's Last Theorem (the special case for exponent 3, proved by Euler, is sufficient), this sequence contains no cubes. - Charles R Greathouse IV, Apr 03 2021

References

  • C. G. J. Jacobi, Gesammelte Werke, vol. 6, 1969, Chelsea, NY, p. 354.

Crossrefs

Subsequence of A004999 and hence of A045980; supersequence of A202679.
Cf. A024670 (2 distinct cubes), A003072, A001235, A011541, A003826, A010057, A000578, A027750, A010052, A085323 (n such that a(n+1)=a(n)+1).

Programs

  • Haskell
    a003325 n = a003325_list !! (n-1)
    a003325_list = filter c2 [1..] where
       c2 x = any (== 1) $ map (a010057 . fromInteger) $
                           takeWhile (> 0) $ map (x -) $ tail a000578_list
    -- Reinhard Zumkeller, Mar 24 2012
    
  • Mathematica
    nn = 2*20^3; Union[Flatten[Table[x^3 + y^3, {x, nn^(1/3)}, {y, x, (nn - x^3)^(1/3)}]]] (* T. D. Noe, Oct 12 2011 *)
    With[{upto=2000},Select[Total/@Tuples[Range[Ceiling[Surd[upto,3]]]^3,2],#<=upto&]]//Union (* Harvey P. Dale, Jun 11 2016 *)
  • PARI
    cubes=sum(n=1, 11, x^(n^3), O(x^1400)); v = select(x->x, Vec(cubes^2), 1); vector(#v, k, v[k]+1) \\ edited by Michel Marcus, May 08 2017
    
  • PARI
    isA003325(n) = for(k=1,sqrtnint(n\2,3), ispower(n-k^3,3) && return(1)) \\ M. F. Hasler, Oct 17 2008, improved upon suggestion of Altug Alkan and Michel Marcus, Feb 16 2016
    
  • PARI
    T=thueinit('z^3+1); is(n)=#select(v->min(v[1],v[2])>0, thue(T,n))>0 \\ Charles R Greathouse IV, Nov 29 2014
    
  • PARI
    list(lim)=my(v=List()); lim\=1; for(x=1,sqrtnint(lim-1,3), my(x3=x^3); for(y=1,min(sqrtnint(lim-x3,3),x), listput(v, x3+y^3))); Set(v) \\ Charles R Greathouse IV, Jan 11 2022
    
  • Python
    from sympy import integer_nthroot
    def aupto(lim):
      cubes = [i*i*i for i in range(1, integer_nthroot(lim-1, 3)[0] + 1)]
      sum_cubes = sorted([a+b for i, a in enumerate(cubes) for b in cubes[i:]])
      return [s for s in sum_cubes if s <= lim]
    print(aupto(1343)) # Michael S. Branicky, Feb 09 2021

Extensions

Error in formula line corrected by Zak Seidov, Jul 23 2009

A011541 Taxicab, taxi-cab or Hardy-Ramanujan numbers: the smallest number that is the sum of 2 positive integral cubes in n ways.

Original entry on oeis.org

2, 1729, 87539319, 6963472309248, 48988659276962496, 24153319581254312065344
Offset: 1

Views

Author

Keywords

Comments

The sequence is infinite: Fermat proved that numbers expressible as a sum of two positive integral cubes in n different ways exist for any n. Hardy and Wright give a proof in Theorem 412 of An Introduction of Theory of Numbers, pp. 333-334 (fifth edition), pp. 442-443 (sixth edition).
A001235 gives another definition of "taxicab numbers".
David W. Wilson reports a(6) <= 8230545258248091551205888. [But see next line!]
Randall L Rathbun has shown that a(6) <= 24153319581254312065344.
C. S. Calude, E. Calude and M. J. Dinneen, What is the value of Taxicab(6)?, 2003, show that with high probability, a(6) = 24153319581254312065344.
When negative cubes are allowed, such terms are called "Cabtaxi" numbers, cf. Boyer's web page, Wikipedia or MathWorld. - M. F. Hasler, Feb 05 2013
a(7) <= 24885189317885898975235988544. - Robert G. Wilson v, Nov 18 2012
a(8) <= 50974398750539071400590819921724352 = 58360453256^3 + 370298338396^3 = 7467391974^3 + 370779904362^3 = 39304147071^3 + 370633638081^3 = 109276817387^3 + 367589585749^3 = 208029158236^3 + 347524579016^3 = 224376246192^3 + 341075727804^3 = 234604829494^3 + 336379942682^3 = 288873662876^3 + 299512063576^3. - PoChi Su, May 16 2013
a(9) <= 136897813798023990395783317207361432493888. - PoChi Su, May 17 2013
From PoChi Su, Oct 09 2014: (Start)
The preceding bounds are not the best that are presently known.
An upper bound for a(22) was given by C. Boyer (see the C. Boyer link), namely
BTa(22)= 2^12 *3^9 * 5^9 *7^4 *11^3 *13^6 *17^3 *19^3 *31^4 *37^4 *43 *61^3 *73 *79^3 *97^3 *103^3 *109^3 *127^3 *139^3 *157 *181^3 *197^3 *397^3 *457^3 *503^3 *521^3 *607^3 *4261^3.
We also know that (97*491)^3*BTa(22) is an upper bound on a(23), corresponding to the sum x^3+y^3 with
x=2^5 *3^4 *5^3 *7 *11 *13^2 *17 *19^2 *31 *37 *61 *79 *103 *109 *127 *139 *181 *197 *397 *457 *503 *521 *607 *4261 *11836681,
y=2^4 *3^3 *5^3 *7 *11 *13^2 *17 *19 *31 *37 *61 *79 *89 *103 *109 *127 *139 *181 *197 *397 * 457 *503 * 521 *607 *4261 *81929041.
(End)
Conjecture: the number of distinct prime factors of a(n) is strictly increasing as n grows (this is not true if a(7) is equal to the upper bound given above), but never exceeds 2*n. - Sergey Pavlov, Mar 01 2017

Examples

			From _Zak Seidov_, Mar 22 2013: (Start)
Values of {b,c}, a(n) = b^3 + c^3:
n = 1: {1,1}
n = 2: {1, 12}, {9, 10}
n = 3: {167, 436}, {228, 423}, {255, 414}
n = 4: {2421, 19083}, {5436, 18948}, {10200, 18072}, {13322, 16630}
n = 5: {38787, 365757}, {107839, 362753}, {205292, 342952}, {221424, 336588}, {231518, 331954}
n = 6: {582162, 28906206}, {3064173, 28894803}, {8519281, 28657487}, {16218068, 27093208}, {17492496, 26590452}, {18289922, 26224366}. (End)
		

References

  • C. Boyer, "Les nombres Taxicabs", in Dossier Pour La Science, pp. 26-28, Volume 59 (Jeux math') April/June 2008 Paris.
  • R. K. Guy, Unsolved Problems in Number Theory, D1.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, pp. 333-334 (fifth edition), pp. 442-443 (sixth edition), see Theorem 412.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 165 and 189.

Crossrefs

Cf. A001235, A003826, A023050, A047696, A080642 (cubefree taxicab numbers).

Formula

a(n) <= A080642(n) for n > 0, with equality for n = 1, 2 (only?). - Jonathan Sondow, Oct 25 2013
a(n) > 113*n^3 for n > 1 (a trivial bound based on the number of available cubes; 113 < (1 - 2^(-1/3))^(-3)). - Charles R Greathouse IV, Jun 18 2024

Extensions

Added a(6), confirmed by Uwe Hollerbach, communicated by Christian Schroeder, Mar 09 2008

A324316 Primary Carmichael numbers.

Original entry on oeis.org

1729, 2821, 29341, 46657, 252601, 294409, 399001, 488881, 512461, 1152271, 1193221, 1857241, 3828001, 4335241, 5968873, 6189121, 6733693, 6868261, 7519441, 10024561, 10267951, 10606681, 14469841, 14676481, 15247621, 15829633, 17098369, 17236801, 17316001, 19384289, 23382529, 29111881, 31405501, 34657141, 35703361, 37964809
Offset: 1

Views

Author

Keywords

Comments

Squarefree integers m > 1 such that if prime p divides m, then the sum of the base-p digits of m equals p. It follows that m is then a Carmichael number (A002997).
Dickson's conjecture implies that the sequence is infinite, see Kellner 2019.
If m is a term and p is a prime factor of m, then p <= a*sqrt(m) with a = sqrt(66337/132673) = 0.7071..., where the bound is sharp.
The distribution of primary Carmichael numbers is A324317.
See Kellner and Sondow 2019 and Kellner 2019.
Primary Carmichael numbers are special polygonal numbers A324973. The rank of the n-th primary Carmichael number is A324976(n). See Kellner and Sondow 2019. - Jonathan Sondow, Mar 26 2019
The first term is the Hardy-Ramanujan number. - Omar E. Pol, Jan 09 2020

Examples

			1729 = 7 * 13 * 19 is squarefree, and 1729 in base 7 is 5020_7 = 5 * 7^3 + 0 * 7^2 + 2 * 7 + 0 with 5+0+2+0 = 7, and 1729 in base 13 is a30_13 with a+3+0 = 10+3+0 = 13, and 1729 in base 19 is 4f0_19 with 4+f+0 = 4+15+0 = 19, so 1729 is a member.
		

Crossrefs

Subsequence of A002997, A324315.
Least primary Carmichael number with n prime factors is A306657.

Programs

  • Mathematica
    SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]];
    LP[n_] := Transpose[FactorInteger[n]][[1]];
    TestCP[n_] := (n > 1) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] == # &];
    Select[Range[1, 10^7, 2], TestCP[#] &]
  • Perl
    use ntheory ":all"; my $m; forsquarefree { $m=$; say if @ > 2 && is_carmichael($m) && vecall { $ == vecsum(todigits($m,$)) } @; } 1e7; # _Dana Jacobsen, Mar 28 2019
    
  • Python
    from sympy import factorint
    from sympy.ntheory import digits
    def ok(n):
        pf = factorint(n)
        if n < 2 or max(pf.values()) > 1: return False
        return all(sum(digits(n, p)[1:]) == p for p in pf)
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 03 2022

Formula

a_1 + a_2 + ... + a_k = p if p is prime and m = a_1 * p + a_2 * p^2 + ... + a_k * p^k with 0 <= a_i <= p-1 for i = 1, 2, ..., k (note that a_0 = 0).

A050791 Consider the Diophantine equation x^3 + y^3 = z^3 + 1 (1 < x < y < z) or 'Fermat near misses'. Sequence gives values of z in monotonic increasing order.

Original entry on oeis.org

12, 103, 150, 249, 495, 738, 1544, 1852, 1988, 2316, 4184, 5262, 5640, 8657, 9791, 9953, 11682, 14258, 21279, 21630, 31615, 36620, 36888, 38599, 38823, 40362, 41485, 47584, 57978, 59076, 63086, 73967, 79273, 83711, 83802, 86166, 90030
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Comments

Numbers n such that n^3+1 is expressible as the sum of two nonzero cubes (both greater than 1).
Values of z associated with A050794.
Sequence is infinite. One subsequence is (from x = 1 + 9 m^3, y = 9 m^4, z = 3*m*(3*m^3 + 1), x^3 + y^3 = z^3 + 1): z(m) = 3*m*(3*m^3 + 1) = {12, 150, 738, 2316, 5640, 11682, 21630, 36888, 59076, 90030, ...} = a (1, 3, 6, 10, 13, 17, 20, 23, 30, 37, ...). - Zak Seidov, Sep 16 2013
Numbers n such that n^3+1 is a member of A001235. - Altug Alkan, May 09 2016

Examples

			12 is a term because 10^3 + 9^3 = 12^3 + 1 (= 1729).
2316 is in the sequence because 577^3 + 2304^3 = 2316^3 + 1.
		

References

  • Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.

Crossrefs

Programs

  • Mathematica
    r[z_] := Reduce[ 1 < x < y < z && x^3 + y^3 == z^3 + 1, {x, y}, Integers]; z = 4; A050791 = {}; While[z < 10^4, If[r[z] =!= False, Print[z]; AppendTo[A050791, z]]; z++]; A050791 (* Jean-François Alcover, Dec 27 2011 *)
  • PARI
    is(n)=if(n<2,return(0));my(c3=n^3);for(a=2,sqrtnint(c3-5,3),if(ispower(c3-1-a^3,3),return(1)));0 \\ Charles R Greathouse IV, Oct 26 2014
    
  • PARI
    T=thueinit('x^3+1); is(n)=n>8&&#select(v->min(v[1], v[2])>1, thue(T, n^3+1))>0 \\ Charles R Greathouse IV, Oct 26 2014

Extensions

More terms from Michel ten Voorde
Extended through 47584 by Jud McCranie, Dec 25 2000
More terms from Don Reble, Nov 29 2001
Edited by N. J. A. Sloane, May 08 2007

A272885 Cubefree taxi-cab numbers.

Original entry on oeis.org

1729, 20683, 40033, 149389, 195841, 327763, 443889, 684019, 704977, 1845649, 2048391, 2418271, 2691451, 3242197, 3375001, 4342914, 4931101, 5318677, 5772403, 5799339, 6058747, 7620661, 8872487, 9443761, 10702783, 10765603, 13623913, 16387189, 16776487, 16983854, 17045567, 18406603
Offset: 1

Views

Author

Altug Alkan, May 08 2016

Keywords

Comments

Taxi-cab numbers (A001235) that are not divisible by any cube > 1.
A080642 belongs to another version that A011541 focuses on.
Cubeful taxi-cab numbers are 4104, 13832, 32832, 39312, 46683, 64232, 65728, 110656, 110808, 134379, 165464, 171288, ...

Examples

			195841 is a term because 195841 is a member of A001235 and 195841 = 37*67*79.
		

Crossrefs

A160414 Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton (same as A160410, but a(1) = 1, not 4).

Original entry on oeis.org

0, 1, 9, 21, 49, 61, 97, 133, 225, 237, 273, 309, 417, 453, 561, 669, 961, 973, 1009, 1045, 1153, 1189, 1297, 1405, 1729, 1765, 1873, 1981, 2305, 2413, 2737, 3061, 3969, 3981, 4017, 4053, 4161, 4197, 4305, 4413, 4737, 4773, 4881, 4989, 5313, 5421, 5745
Offset: 0

Views

Author

Omar E. Pol, May 20 2009

Keywords

Comments

The structure has a fractal behavior similar to the toothpick sequence A139250.
First differences: A161415, where there is an explicit formula for the n-th term.
For the illustration of a(24) = 1729 (the Hardy-Ramanujan number) see the Links section.

Examples

			From _Omar E. Pol_, Sep 24 2015: (Start)
With the positive terms written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins:
1;
9;
21,    49;
61,    97,  133,  225;
237,  273,  309,  417,  453, 561,  669,  961;
...
Right border gives A060867.
This triangle T(n,k) shares with the triangle A256530 the terms of the column k, if k is a power of 2, for example both triangles share the following terms: 1, 9, 21, 49, 61, 97, 225, 237, 273, 417, 961, etc.
.
Illustration of initial terms, for n = 1..10:
.       _ _ _ _                       _ _ _ _
.      |  _ _  |                     |  _ _  |
.      | |  _|_|_ _ _ _ _ _ _ _ _ _ _|_|_  | |
.      | |_|  _ _     _ _   _ _     _ _  |_| |
.      |_ _| |  _|_ _|_  | |  _|_ _|_  | |_ _|
.          | |_|  _ _  |_| |_|  _ _  |_| |
.          |   | |  _|_|_ _ _|_|_  | |   |
.          |  _| |_|  _ _   _ _  |_| |_  |
.          | | |_ _| |  _|_|_  | |_ _| | |
.          | |_ _| | |_|  _  |_| | |_ _| |
.          |  _ _  |  _| |_| |_  |  _ _  |
.          | |  _|_| | |_ _ _| | |_|_  | |
.          | |_|  _| |_ _| |_ _| |_  |_| |
.          |   | | |_ _ _ _ _ _ _| | |   |
.          |  _| |_ _| |_   _| |_ _| |_  |
.       _ _| | |_ _ _ _| | | |_ _ _ _| | |_ _
.      |  _| |_ _|   |_ _| |_ _|   |_ _| |_  |
.      | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
.      | |_ _| |                     | |_ _| |
.      |_ _ _ _|                     |_ _ _ _|
.
After 10 generations there are 273 ON cells, so a(10) = 273.
(End)
		

Crossrefs

Programs

  • Maple
    read("transforms") ; isA000079 := proc(n) if type(n,'even') then nops(numtheory[factorset](n)) = 1 ; else false ; fi ; end proc:
    A048883 := proc(n) 3^wt(n) ; end proc:
    A161415 := proc(n) if n = 1 then 1; elif isA000079(n) then 4*A048883(n-1)-2*n ; else 4*A048883(n-1) ; end if; end proc:
    A160414 := proc(n) add( A161415(k),k=1..n) ; end proc: seq(A160414(n),n=0..90) ; # R. J. Mathar, Oct 16 2010
  • Mathematica
    A160414list[nmax_]:=Accumulate[Table[If[n<2,n,4*3^DigitCount[n-1,2,1]-If[IntegerQ[Log2[n]],2n,0]],{n,0,nmax}]];A160414list[100] (* Paolo Xausa, Sep 01 2023, after R. J. Mathar *)
  • PARI
    my(s=-1, t(n)=3^norml2(binary(n-1))-if(n==(1<Altug Alkan, Sep 25 2015

Formula

a(n) = 1 + 4*A219954(n), n >= 1. - M. F. Hasler, Dec 02 2012
a(2^k) = (2^(k+1) - 1)^2. - Omar E. Pol, Jan 05 2013

Extensions

Edited by N. J. A. Sloane, Jun 15 2009 and Jul 13 2009
More terms from R. J. Mathar, Oct 16 2010
Previous Showing 11-20 of 117 results. Next