A062924 Probably an incomplete version of A001235.
1729, 4104, 148941, 160284, 171288, 1331064
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(1) = 2514^3 + 1364^3 = 2498^3 + 1416^3, a(1)+1 = 2641^3 + 182^3. a(2) = 2492^3 + 1734^3 = 2726^3 + 756^3, a(2)+1 = 2282^3 + 2065^3.
349999 is a term because 349999*(349999+1) / 2 = 61249825000 = 820^3 + 3930^3 = 3018^3 + 3232^3. 591408 is a term because 591408*(591408+1) / 2 = 174882006936 = 2070^3 + 5496^3 = 3238^3 + 5204^3.
27445392 is a term because 27445392 = 141^3 + 291^3 = 198^3 + 270^3 = 756^2 + 72^4 = 5076^2 + 36^4. 112416325632 is a term because 112416325632 = 27445392*2^12.
a003325 n = a003325_list !! (n-1) a003325_list = filter c2 [1..] where c2 x = any (== 1) $ map (a010057 . fromInteger) $ takeWhile (> 0) $ map (x -) $ tail a000578_list -- Reinhard Zumkeller, Mar 24 2012
nn = 2*20^3; Union[Flatten[Table[x^3 + y^3, {x, nn^(1/3)}, {y, x, (nn - x^3)^(1/3)}]]] (* T. D. Noe, Oct 12 2011 *) With[{upto=2000},Select[Total/@Tuples[Range[Ceiling[Surd[upto,3]]]^3,2],#<=upto&]]//Union (* Harvey P. Dale, Jun 11 2016 *)
cubes=sum(n=1, 11, x^(n^3), O(x^1400)); v = select(x->x, Vec(cubes^2), 1); vector(#v, k, v[k]+1) \\ edited by Michel Marcus, May 08 2017
isA003325(n) = for(k=1,sqrtnint(n\2,3), ispower(n-k^3,3) && return(1)) \\ M. F. Hasler, Oct 17 2008, improved upon suggestion of Altug Alkan and Michel Marcus, Feb 16 2016
T=thueinit('z^3+1); is(n)=#select(v->min(v[1],v[2])>0, thue(T,n))>0 \\ Charles R Greathouse IV, Nov 29 2014
list(lim)=my(v=List()); lim\=1; for(x=1,sqrtnint(lim-1,3), my(x3=x^3); for(y=1,min(sqrtnint(lim-x3,3),x), listput(v, x3+y^3))); Set(v) \\ Charles R Greathouse IV, Jan 11 2022
from sympy import integer_nthroot def aupto(lim): cubes = [i*i*i for i in range(1, integer_nthroot(lim-1, 3)[0] + 1)] sum_cubes = sorted([a+b for i, a in enumerate(cubes) for b in cubes[i:]]) return [s for s in sum_cubes if s <= lim] print(aupto(1343)) # Michael S. Branicky, Feb 09 2021
From _Zak Seidov_, Mar 22 2013: (Start) Values of {b,c}, a(n) = b^3 + c^3: n = 1: {1,1} n = 2: {1, 12}, {9, 10} n = 3: {167, 436}, {228, 423}, {255, 414} n = 4: {2421, 19083}, {5436, 18948}, {10200, 18072}, {13322, 16630} n = 5: {38787, 365757}, {107839, 362753}, {205292, 342952}, {221424, 336588}, {231518, 331954} n = 6: {582162, 28906206}, {3064173, 28894803}, {8519281, 28657487}, {16218068, 27093208}, {17492496, 26590452}, {18289922, 26224366}. (End)
1729 = 7 * 13 * 19 is squarefree, and 1729 in base 7 is 5020_7 = 5 * 7^3 + 0 * 7^2 + 2 * 7 + 0 with 5+0+2+0 = 7, and 1729 in base 13 is a30_13 with a+3+0 = 10+3+0 = 13, and 1729 in base 19 is 4f0_19 with 4+f+0 = 4+15+0 = 19, so 1729 is a member.
SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]]; LP[n_] := Transpose[FactorInteger[n]][[1]]; TestCP[n_] := (n > 1) && SquareFreeQ[n] && VectorQ[LP[n], SD[n, #] == # &]; Select[Range[1, 10^7, 2], TestCP[#] &]
use ntheory ":all"; my $m; forsquarefree { $m=$; say if @ > 2 && is_carmichael($m) && vecall { $ == vecsum(todigits($m,$)) } @; } 1e7; # _Dana Jacobsen, Mar 28 2019
from sympy import factorint from sympy.ntheory import digits def ok(n): pf = factorint(n) if n < 2 or max(pf.values()) > 1: return False return all(sum(digits(n, p)[1:]) == p for p in pf) print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 03 2022
12 is a term because 10^3 + 9^3 = 12^3 + 1 (= 1729). 2316 is in the sequence because 577^3 + 2304^3 = 2316^3 + 1.
r[z_] := Reduce[ 1 < x < y < z && x^3 + y^3 == z^3 + 1, {x, y}, Integers]; z = 4; A050791 = {}; While[z < 10^4, If[r[z] =!= False, Print[z]; AppendTo[A050791, z]]; z++]; A050791 (* Jean-François Alcover, Dec 27 2011 *)
is(n)=if(n<2,return(0));my(c3=n^3);for(a=2,sqrtnint(c3-5,3),if(ispower(c3-1-a^3,3),return(1)));0 \\ Charles R Greathouse IV, Oct 26 2014
T=thueinit('x^3+1); is(n)=n>8&select(v->min(v[1], v[2])>1, thue(T, n^3+1))>0 \\ Charles R Greathouse IV, Oct 26 2014
195841 is a term because 195841 is a member of A001235 and 195841 = 37*67*79.
From _Omar E. Pol_, Sep 24 2015: (Start) With the positive terms written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins: 1; 9; 21, 49; 61, 97, 133, 225; 237, 273, 309, 417, 453, 561, 669, 961; ... Right border gives A060867. This triangle T(n,k) shares with the triangle A256530 the terms of the column k, if k is a power of 2, for example both triangles share the following terms: 1, 9, 21, 49, 61, 97, 225, 237, 273, 417, 961, etc. . Illustration of initial terms, for n = 1..10: . _ _ _ _ _ _ _ _ . | _ _ | | _ _ | . | | _|_|_ _ _ _ _ _ _ _ _ _ _|_|_ | | . | |_| _ _ _ _ _ _ _ _ |_| | . |_ _| | _|_ _|_ | | _|_ _|_ | |_ _| . | |_| _ _ |_| |_| _ _ |_| | . | | | _|_|_ _ _|_|_ | | | . | _| |_| _ _ _ _ |_| |_ | . | | |_ _| | _|_|_ | |_ _| | | . | |_ _| | |_| _ |_| | |_ _| | . | _ _ | _| |_| |_ | _ _ | . | | _|_| | |_ _ _| | |_|_ | | . | |_| _| |_ _| |_ _| |_ |_| | . | | | |_ _ _ _ _ _ _| | | | . | _| |_ _| |_ _| |_ _| |_ | . _ _| | |_ _ _ _| | | |_ _ _ _| | |_ _ . | _| |_ _| |_ _| |_ _| |_ _| |_ | . | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | . | |_ _| | | |_ _| | . |_ _ _ _| |_ _ _ _| . After 10 generations there are 273 ON cells, so a(10) = 273. (End)
read("transforms") ; isA000079 := proc(n) if type(n,'even') then nops(numtheory[factorset](n)) = 1 ; else false ; fi ; end proc: A048883 := proc(n) 3^wt(n) ; end proc: A161415 := proc(n) if n = 1 then 1; elif isA000079(n) then 4*A048883(n-1)-2*n ; else 4*A048883(n-1) ; end if; end proc: A160414 := proc(n) add( A161415(k),k=1..n) ; end proc: seq(A160414(n),n=0..90) ; # R. J. Mathar, Oct 16 2010
A160414list[nmax_]:=Accumulate[Table[If[n<2,n,4*3^DigitCount[n-1,2,1]-If[IntegerQ[Log2[n]],2n,0]],{n,0,nmax}]];A160414list[100] (* Paolo Xausa, Sep 01 2023, after R. J. Mathar *)
my(s=-1, t(n)=3^norml2(binary(n-1))-if(n==(1<Altug Alkan, Sep 25 2015
Comments