A061548
Numerator of probability that there is no error when average of n numbers is computed, assuming errors of +1, -1 are possible and they each occur with p = 1/4.
Original entry on oeis.org
1, 3, 35, 231, 6435, 46189, 676039, 5014575, 300540195, 2268783825, 34461632205, 263012370465, 8061900920775, 61989816618513, 956086325095055, 7391536347803839, 916312070471295267, 7113260368810144185, 110628135069209194801, 861577581086657669325, 26876802183334044115405
Offset: 0
Leah Schmelzer (leah2002(AT)mit.edu), May 16 2001
For n=1, the binomial(2*n-1/2, -1/2) yields the term 3/8. The numerator of this term is 3, which is the second term of the sequence.
-
A061548:= func< n | Numerator(Binomial(4*n,2*n)/4^n) >;
[A061548(n): n in [0..25]]; // G. C. Greubel, Oct 19 2024
-
seq(numer(binomial(2*n-1/2, -1/2)), n=0..20);
-
Table[Numerator[(4*n) !/(2^(4*n)*(2*n) !^2) ], {n, 0, 20}] (* Indranil Ghosh, Mar 11 2017 *)
Table[Numerator[SeriesCoefficient[Series[(Sqrt[1 + Sqrt[1 - x]]/Sqrt[2 - 2* x]), {x, 0, n}], n]], {n, 0, 20}] (* Karol A. Penson, Apr 16 2018 *)
-
for(n=0, 20, print1(numerator((4*n)!/(2^(4*n)*(2*n)!^2)),", ")) \\ Indranil Ghosh, Mar 11 2017
-
import math
f = math.factorial
def A061548(n): return f(4*n) // math.gcd(f(4*n), (2**(4*n)*f(2*n)**2)) # Indranil Ghosh, Mar 11 2017
-
def A061548(n): return binomial(4*n,2*n)/2^sum(n.digits(2))
[A061548(n) for n in (0..20)] # Peter Luschny, Mar 23 2014
A352373
a(n) = [x^n] ( 1/((1 - x)^2*(1 - x^2)) )^n for n >= 1.
Original entry on oeis.org
2, 12, 74, 484, 3252, 22260, 154352, 1080612, 7621526, 54071512, 385454940, 2758690636, 19810063392, 142662737376, 1029931873824, 7451492628260, 54013574117106, 392188079586468, 2851934621212598, 20766924805302984, 151403389181347160, 1105047483656041080
Offset: 1
n = 2: 12 distributions of 2 identical objects in 4 white and 2 black baskets
White Black
1) (0) (0) (0) (0) [2] [0]
2) (0) (0) (0) (0) [0] [2]
3) (2) (0) (0) (0) [0] [0]
4) (0) (2) (0) (0) [0] [0]
5) (0) (0) (2) (0) [0] [0]
6) (0) (0) (0) (2) [0] [0]
7) (1) (1) (0) (0) [0] [0]
8) (1) (0) (1) (0) [0] [0]
9) (1) (0) (0) (1) [0] [0]
10) (0) (1) (1) (0) [0] [0]
11) (0) (1) (0) (1) [0] [0]
12) (0) (0) (1) (1) [0] [0]
Examples of supercongruences:
a(7) - a(1) = 154352 - 2 = 2*(3^2)*(5^2)*(7^3) == 0 (mod 7^3);
a(2*11) - a(2) = 1105047483656041080 - 12 = (2^2)*3*(11^3)*13*101*103*2441* 209581 == 0 (mod 11^3).
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
Cf.
A000984,
A001448,
A001700,
A002003,
A091527,
A119259,
A156894,
A165817,
A211419,
A211421,
A234839,
A262733,
A276098,
A348410,
A351856,
A351857.
-
seq(add( binomial(3*n-2*k-1,n-2*k)*binomial(n+k-1,k), k = 0..floor(n/2)), n = 1..25);
-
nterms=25;Table[Sum[Binomial[3n-2k-1,n-2k]Binomial[n+k-1,k],{k,0,Floor[n/2]}],{n,nterms}] (* Paolo Xausa, Apr 10 2022 *)
A036910
a(n) = (binomial(4*n, 2*n) + binomial(2*n, n)^2)/2.
Original entry on oeis.org
1, 5, 53, 662, 8885, 124130, 1778966, 25947612, 383358645, 5719519850, 85990654178, 1300866635172, 19780031677718, 302045506654052, 4629016098160220, 71163013287905912, 1096960888092571317, 16949379732631632570, 262435310495071434602, 4070954160892425897300
Offset: 0
- The right-hand side of a binomial coefficient identity in H. W. Gould, Combinatorial Identities, Morgantown, 1972, Eq 3.68, page 30.
-
[(Binomial(4*n, 2*n) + Binomial(2*n, n)^2)/2: n in [0..40]]; // G. C. Greubel, Dec 09 2021
-
B[n_] := Binomial[2*n, n]/2; Table[B[2*n] + 2*B[n]^2, {n, 0, 40}] (* G. C. Greubel, Dec 09 2021 *)
-
a(n) = (binomial(4*n,2*n)+binomial(2*n,n)^2)/2; \\ Michel Marcus, Dec 09 2021
-
[(binomial(4*n, 2*n) + binomial(2*n, n)^2)/2 for n in (0..40)] # G. C. Greubel, Dec 09 2021
A129369
Expansion of 1/sqrt(1-4*x) - x/sqrt(1-4*x^2).
Original entry on oeis.org
1, 1, 6, 18, 70, 246, 924, 3412, 12870, 48550, 184756, 705180, 2704156, 10399676, 40116600, 155114088, 601080390, 2333593350, 9075135300, 35345215180, 137846528820, 538257689684, 2104098963720, 8233430022168, 32247603683100
Offset: 0
-
B:=Binomial; [B(2*n,n) - (n mod 2)*B(n-1, Floor((n-1)/2)): n in [0..60]]; // G. C. Greubel, Jan 31 2024
-
CoefficientList[Series[1/Sqrt[1-4x]-x/Sqrt[1-4x^2],{x,0,30}],x] (* Harvey P. Dale, Feb 02 2012 *)
-
[binomial(2*n,n) - (n%2)*binomial(n-1, (n-1)//2) for n in range(61)] # G. C. Greubel, Jan 31 2024
A037964
a(n) = (1/2)*(binomial(4*n, 2*n) - (-1)^n*binomial(2*n,n)).
Original entry on oeis.org
0, 4, 32, 472, 6400, 92504, 1351616, 20060016, 300533760, 4537591960, 68923172032, 1052049834576, 16123800489472, 247959271674352, 3824345280321920, 59132290859989472, 916312070170755072
Offset: 0
- The right-hand side of a binomial coefficient identity in H. W. Gould, Combinatorial Identities, Morgantown, 1972; Formula (3.74), page 31.
-
[(1/2)*((2*n+1)*Catalan(2*n) -(-1)^n*(n+1)*Catalan(n)): n in [0..30]]; // G. C. Greubel, Jun 20 2022
-
A037964 := proc(n)
binomial(4*n,2*n)/2-(-1)^n*binomial(2*n,n)/2 ;
end proc: # R. J. Mathar, Feb 20 2015
-
With[{C= CatalanNumber}, Table[(1/2)*((2*n+1)*C[2*n] -(-1)^n*(n+1)*C[n]), {n, 0, 30}]] (* G. C. Greubel, Jun 20 2022 *)
-
[sum(binomial(2*n, 2*k+1)^2 for k in (0..n-1)) for n in (0..30)] # G. C. Greubel, Jun 20 2022
A275653
a(n) = binomial(4*n,2*n)*binomial(3*n,2*n).
Original entry on oeis.org
1, 18, 1050, 77616, 6370650, 554822268, 50199951984, 4664758248000, 442077195513690, 42533571002422500, 4141601026094832300, 407220411993767798400, 40363606408574136870000, 4028061310168832261158176, 404311537318239680601595200, 40785601782042745410592271616
Offset: 0
-
seq((4*n)!*(3*n)!/(n!*(2*n)!^3), n = 0..20);
-
Table[Binomial[4 n, 2 n] Binomial[3 n, 2 n], {n, 0, 15}] (* Michael De Vlieger, Aug 07 2016 *)
A330843
Square array T(n,k) = [x^n] ((1+x)^(k+1) / (1-x)^(k-1))^n, n>=0, k>=0, read by descending antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 2, -2, 1, 4, 6, 0, 1, 6, 30, 20, 6, 1, 8, 70, 256, 70, 0, 1, 10, 126, 924, 2310, 252, -20, 1, 12, 198, 2240, 12870, 21504, 924, 0, 1, 14, 286, 4420, 41990, 184756, 204204, 3432, 70, 1, 16, 390, 7680, 104006, 811008, 2704156, 1966080, 12870, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, ...
-2, 6, 30, 70, 126, 198, ...
0, 20, 256, 924, 2240, 4420, ...
6, 70, 2310, 12870, 41990, 104006, ...
0, 252, 21504, 184756, 811008, 2521260, ...
-
T[n_, k_] := Sum[Binomial[(k + 1)*n, j] * Binomial[k*n - j - 1, n - j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 05 2021 *)
A357508
a(n) = binomial(4*n,2*n) - 2*binomial(4*n,n).
Original entry on oeis.org
-1, -2, 14, 484, 9230, 153748, 2434964, 37748520, 580043790, 8886848740, 136151207764, 2088760285456, 32108266614164, 494648505828904, 7637081136832840, 118158193386475984, 1831647087068431374, 28444051172077725444, 442429676097305612324
Offset: 0
A024491
a(n) = (1/(4n-1))*C(4n,2n).
Original entry on oeis.org
-1, 2, 10, 84, 858, 9724, 117572, 1485800, 19389690, 259289580, 3534526380, 48932534040, 686119227300, 9723892802904, 139067101832008, 2004484433302736, 29089272078453818, 424672260824486220, 6232570989814602524, 91901608649243484728, 1360850743459951600780
Offset: 0
sqrt(1/2*(1+sqrt(1-x))) = 1 - 1/8*x - 5/128*x^2 - 21/1024*x^3 - ...
-
[(1/(4*n-1))*Binomial(4*n,2*n) : n in [0..20]]; // Wesley Ivan Hurt, Jan 06 2024
-
Table[1/(4n-1) Binomial[4n,2n],{n,0,20}] (* or *) With[{c=4Sqrt[x]}, CoefficientList[ Series[(-Sqrt[1-c]-Sqrt[1+c])/2,{x,0,30}],x]] (* Harvey P. Dale, Mar 10 2013 *)
Original entry on oeis.org
2, 20, 252, 3432, 48620, 705432, 10400600, 155117520, 2333606220, 35345263800, 538257874440, 8233430727600, 126410606437752, 1946939425648112, 30067266499541040, 465428353255261088, 7219428434016265740
Offset: 0
-
[Binomial(4*n+2, 2*n+1): n in [0..20]]; // Vincenzo Librandi, May 22 2011
-
seq(binomial(4*n+2,2*n+1),n=0..20); # Emeric Deutsch, Dec 20 2004
-
Array[Binomial[4*# + 2, 2*# + 1] &, 20, 0] (* Paolo Xausa, Jul 11 2024 *)
Comments