cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A001514 Bessel polynomial {y_n}'(1).

Original entry on oeis.org

0, 1, 9, 81, 835, 9990, 137466, 2148139, 37662381, 733015845, 15693217705, 366695853876, 9289111077324, 253623142901401, 7425873460633005, 232122372003909045, 7715943399320562331, 271796943164015920914, 10114041937573463433966
Offset: 0

Views

Author

Keywords

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    (As in A001497 define:) f := proc(n) option remember; if n <=1 then (1+x)^n else expand((2*n-1)*x*f(n-1)+f(n-2)); fi; end;
    [seq( subs(x=1,diff(f(n),x)),n=0..60)];
    f2:=proc(n) local k; add((n+k+2)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f2(n),n=0..60)]; # uses a different offset
  • Mathematica
    Table[Sum[(n+k+1)!/((n-k-1)!*k!*2^(k+1)), {k,0,n-1}], {n,0,20}] (* Vaclav Kotesovec, Jul 22 2015 *)
    Join[{0}, Table[n*Pochhammer[1/2, n]*2^n* Hypergeometric1F1[1 - n, -2*n, 2], {n,1,50}]] (* G. C. Greubel, Aug 14 2017 *)
  • PARI
    for(n=0,50, print1(sum(k=0,n-1, (n+k+1)!/((n-k-1)!*k!*2^(k+1))), ", ")) \\ G. C. Greubel, Aug 14 2017

Formula

a(n) = (1/2) * Sum_{k=0..n} (n+k+2)!/((n-k)!*k!*2^k) (with a different offset).
D-finite with recurrence: (n-1)^2 * a(n) = (2*n-1)*(n^2 - n + 1)*a(n-1) + n^2*a(n-2). - Vaclav Kotesovec, Jul 22 2015
a(n) ~ 2^(n+1/2) * n^(n+1) / exp(n-1). - Vaclav Kotesovec, Jul 22 2015
a(n) = n*2^n*(1/2){n}*hypergeometric1f1(1-n, -2*n, 2), where (a){n} is the Pochhammer symbol. - G. C. Greubel, Aug 14 2017
From G. C. Greubel, Aug 16 2017: (Start)
G.f.: (1/(1-t))*hypergeometric2f0(2, 3/2; -; 2*t/(1-t)^2).
E.g.f.: (1 - 2*x)^(-3/2)*((1 - x)*sqrt(1 - 2*x) + (3*x - 1))*exp((1 - sqrt(1 - 2*x))). (End)

A011801 Triangle read by rows, the inverse Bell transform of n!*binomial(4,n) (without column 0).

Original entry on oeis.org

1, 4, 1, 36, 12, 1, 504, 192, 24, 1, 9576, 3960, 600, 40, 1, 229824, 100656, 17160, 1440, 60, 1, 6664896, 3048192, 563976, 54600, 2940, 84, 1, 226606464, 107255232, 21095424, 2256576, 142800, 5376, 112, 1, 8837652096, 4302305280, 887785920, 102332160, 7254576, 325584, 9072, 144, 1
Offset: 1

Views

Author

Keywords

Comments

Previous name was: Triangle of numbers related to triangle A049223; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497.
T(n, m) = S2p(-4; n,m), a member of a sequence of triangles including S2p(-1; n,m) = A001497(n-1,m-1) (Bessel triangle) and ((-1)^(n-m))*S2p(1; n,m) = A008277(n,m) (Stirling 2nd kind). T(n, 1) = A008546(n-1).
For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016

Examples

			Triangle starts:
          1;
          4,         1;
         36,        12,        1;
        504,       192,       24,       1;
       9576,      3960,      600,      40,      1;
     229824,    100656,    17160,    1440,     60,     1;
    6664896,   3048192,   563976,   54600,   2940,    84,    1;
  226606464, 107255232, 21095424, 2256576, 142800,  5376,  112,   1;
		

Crossrefs

Cf. A028575 (row sums).
Triangles with the recurrence T(n,k) = (m*(n-1)-k)*T(n-1,k) + T(n-1,k-1): A010054 (m=1), A001497 (m=2), A004747 (m=3), A000369 (m=4), this sequence (m=5), A013988 (m=6).

Programs

  • Magma
    function T(n,k) // T = A011801
      if k eq 0 then return 0;
      elif k eq n then return 1;
      else return (5*(n-1)-k)*T(n-1,k) + T(n-1,k-1);
      end if;
    end function;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
  • Mathematica
    (* First program *)
    T[n_, m_] /; n>=m>=1:= T[n, m]= (5*(n-1)-m)*T[n-1, m] + T[n-1, m-1]; T[n_, m_] /; nJean-François Alcover, Jun 20 2018 *)
    (* Second program *)
    rows = 10;
    b[n_, m_]:= BellY[n, m, Table[k! Binomial[4, k], {k, 0, rows}]];
    T= Table[b[n, m], {n,rows}, {m,rows}]//Inverse//Abs;
    A011801= Table[T[[n, m]], {n,rows}, {m,n}]//Flatten (* Jean-François Alcover, Jun 22 2018 *)
  • Sage
    # uses[inverse_bell_matrix from A264428]
    # Adds 1,0,0,0, ... as column 0 at the left side of the triangle.
    inverse_bell_matrix(lambda n: factorial(n)*binomial(4, n), 8) # Peter Luschny, Jan 16 2016
    

Formula

T(n, m) = n!*A049223(n, m)/(m!*5^(n-m)).
T(n+1, m) = (5*n-m)*T(n, m) + T(n, m-1), for n >= m >= 1, with T(n, m) = 0, for n < m, and T(n, 0) = 0, T(1, 1) = 1.
E.g.f. of n-th column: (1/n!)*( 1 - (1-5*x)^(1/5) )^n.
Sum_{k=1..n} T(n, k) = A028575(n).

Extensions

New name from Peter Luschny, Jan 16 2016

A001880 Coefficients of Bessel polynomials y_n (x).

Original entry on oeis.org

1, 15, 210, 3150, 51975, 945945, 18918900, 413513100, 9820936125, 252070693875, 6957151150950, 205552193096250, 6474894082531875, 216659917377028125, 7675951358500425000, 287080580807915895000, 11303797869311688365625, 467445288360359818884375
Offset: 4

Views

Author

Keywords

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A001518.
Column 4 of triangle A001497.
Equals the second right hand column of the triangles A094665 and A083061.
Other right hand columns are A001147, A160470, A160471 and A160472.

Programs

  • Mathematica
    nn = 25; t = Range[0, nn]! CoefficientList[Series[x (1 + x/2)/(1 - 2 x)^(7/2), {x, 0, nn}], x]; Drop[t, 1] (* T. D. Noe, Aug 10 2012 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(x*(1 + x/2)/(1 - 2*x)^(7/2))) \\ G. C. Greubel, Aug 13 2017

Formula

E.g.f.: x*(1 + x/2)/(1 - 2*x)^(7/2); or, if shifted, (1+ 6x+ 3x^2/2!) / (1-2x)^(9/2).
a(n) = (2*n-4)!/(4!*(n-4)!*2^(n-4)).
(n-4)*a(n) = (n-2)*(2*n-5)*a(n-1) for n = 5, 6, .. , with a(4) = 1. - Johannes W. Meijer, May 24 2009
G.f.: x^4*2F0(5/2,3;;2x). - R. J. Mathar, Aug 08 2015

A001516 Bessel polynomial {y_n}''(1).

Original entry on oeis.org

0, 0, 6, 120, 1980, 32970, 584430, 11204676, 233098740, 5254404210, 127921380840, 3350718545460, 94062457204716, 2819367702529560, 89912640142178490, 3040986592542420060, 108752084073199561140, 4101112025363285051526
Offset: 0

Views

Author

Keywords

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    (As in A001497 define:) f := proc(n) option remember; if n <=1 then (1+x)^n else expand((2*n-1)*x*f(n-1)+f(n-2)); fi; end;
    [seq( subs(x=1,diff(f(n),x$2)),n=0..60)];
  • Mathematica
    Table[Sum[(n+k+2)!/(2^(k+2)*(n-k-2)!*k!), {k,0,n-2}], {n,0,20}] (* Vaclav Kotesovec, Jul 22 2015 *)
    Join[{0, 0}, Table[n*(n - 1)*Pochhammer[1/2, n]*2^n* Hypergeometric1F1[2 - n, -2*n, 2], {n,2,50}]] (* G. C. Greubel, Aug 14 2017 *)
  • PARI
    for(n=0,20, print1(sum(k=0,n-2, (n+k+2)!/(2^(k+2)*(n-k-2)!*k!)), ", ")) \\ G. C. Greubel, Aug 14 2017

Formula

G.f.: 6*x^2*(1-x)^(-5)*hypergeom([5/2,3],[],2*x/(x-1)^2). - Mark van Hoeij, Nov 07 2011
D-finite with recurrence: (n-2)*(n-1)*a(n) = (2*n - 1)*(n^2 - n + 2)*a(n-1) + n*(n+1)*a(n-2). - Vaclav Kotesovec, Jul 22 2015
a(n) ~ 2^(n+1/2) * n^(n+2) / exp(n-1). - Vaclav Kotesovec, Jul 22 2015
a(n) = n*(n - 1)*(1/2){n}*2^n* hypergeometric1F1(2 - n, -2*n, 2), where (a){n} is the Pochhammer symbol. - G. C. Greubel, Aug 14 2017
E.g.f.: (-1)*(1 - 2*x)^(-5/2)*((4 - 14*x + 9*x^2)*sqrt(1 - 2*x) + (2*x^3 - 24*x^2 + 18*x - 4))*exp((1 - sqrt(1 - 2*x))). - G. C. Greubel, Aug 16 2017

A013988 Triangle read by rows, the inverse Bell transform of n!*binomial(5,n) (without column 0).

Original entry on oeis.org

1, 5, 1, 55, 15, 1, 935, 295, 30, 1, 21505, 7425, 925, 50, 1, 623645, 229405, 32400, 2225, 75, 1, 21827575, 8423415, 1298605, 103600, 4550, 105, 1, 894930575, 358764175, 59069010, 5235405, 271950, 8330, 140, 1, 42061737025, 17398082625, 3016869625, 289426830, 16929255, 621810, 14070, 180, 1
Offset: 1

Views

Author

Keywords

Comments

Previous name was: Triangle of numbers related to triangle A049224; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497.
T(n, m) = S2p(-5; n,m), a member of a sequence of triangles including S2p(-1; n,m) = A001497(n-1,m-1) (Bessel triangle) and ((-1)^(n-m))*S2p(1; n,m) = A008277(n,m) (Stirling 2nd kind). T(n, 1) = A008543(n-1).
For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016

Examples

			Triangle begins as:
          1;
          5,         1;
         55,        15,        1;
        935,       295,       30,       1;
      21505,      7425,      925,      50,      1;
     623645,    229405,    32400,    2225,     75,     1;
   21827575,   8423415,  1298605,  103600,   4550,   105,    1;
  894930575, 358764175, 59069010, 5235405, 271950,  8330,  140,   1;
		

Crossrefs

Cf. A028844 (row sums).
Triangles with the recurrence T(n,k) = (m*(n-1)-k)*T(n-1,k) + T(n-1,k-1): A010054 (m=1), A001497 (m=2), A004747 (m=3), A000369 (m=4), A011801 (m=5), this sequence (m=6).

Programs

  • Magma
    function T(n,k) // T = A013988
      if k eq 0 then return 0;
      elif k eq n then return 1;
      else return (6*(n-1)-k)*T(n-1,k) + T(n-1,k-1);
      end if;
    end function;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
  • Mathematica
    (* First program *)
    rows = 10;
    b[n_, m_] := BellY[n, m, Table[k! Binomial[5, k], {k, 0, rows}]];
    A = Table[b[n, m], {n, 1, rows}, {m, 1, rows}] // Inverse // Abs;
    A013988 = Table[A[[n, m]], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k==0, 0, If[k==n, 1, (6*(n-1) -k)*T[n-1,k] +T[n-1, k-1]]];
    Table[T[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Oct 03 2023 *)
  • Sage
    # uses[inverse_bell_matrix from A264428]
    # Adds 1,0,0,0, ... as column 0 at the left side of the triangle.
    inverse_bell_matrix(lambda n: factorial(n)*binomial(5, n), 8) # Peter Luschny, Jan 16 2016
    

Formula

T(n, m) = n!*A049224(n, m)/(m!*6^(n-m));
T(n+1, m) = (6*n-m)*T(n, m) + T(n, m-1), for n >= m >= 1, with T(n, m) = 0, n
E.g.f. of m-th column: ((1 - (1-6*x)^(1/6))^m)/m!.
Sum_{k=1..n} T(n, k) = A028844(n).

Extensions

New name from Peter Luschny, Jan 16 2016

A049403 A triangle of numbers related to triangle A030528; array a(n,m), read by rows (1 <= m <= n).

Original entry on oeis.org

1, 1, 1, 0, 3, 1, 0, 3, 6, 1, 0, 0, 15, 10, 1, 0, 0, 15, 45, 15, 1, 0, 0, 0, 105, 105, 21, 1, 0, 0, 0, 105, 420, 210, 28, 1, 0, 0, 0, 0, 945, 1260, 378, 36, 1, 0, 0, 0, 0, 945, 4725, 3150, 630, 45, 1, 0, 0, 0, 0, 0, 10395, 17325, 6930, 990, 55, 1, 0, 0, 0, 0, 0, 10395, 62370
Offset: 1

Keywords

Comments

a(n,1) = A019590(n) = A008279(1,n). a(n,m) =: S1(-1; n,m), a member of a sequence of lower triangular Jabotinsky matrices, including S1(1; n,m) = A008275 (signed Stirling first kind), S1(2; n,m) = A008297(n,m) (signed Lah numbers). a(n,m) matrix is inverse to signed matrix ((-1)^(n-m))*A001497(n-1,m-1) (signed Bessel triangle). The monic row polynomials E(n,x) := Sum_{m=1..n} a(n,m)*x^m, E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
Exponential Riordan array [1+x, x(1+x/2)]. T(n,k) = A001498(k+1, n-k). - Paul Barry, Jan 15 2009

Examples

			Triangle a(n,m) (with rows n >= 1 and columns m >= 1) begins as follows:
  1;                 with row polynomial E(1,x) = x;
  1, 1;              with row polynomial E(2,x) = x^2 + x;
  0, 3,  1;          with row polynomial E(3,x) = 3*x^2 + x^3;
  0, 3,  6,   1;     with row polynomial E(4,x) = 3*x^2 + 6*x^3 + x^4;
  0, 0, 15,  10,   1;
  0, 0, 15,  45,  15,   1;
  0, 0,  0, 105, 105,  21,  1;
  0, 0,  0, 105, 420, 210, 28, 1;
  ...
		

Crossrefs

Variations of this array: A096713, A104556, A122848, A130757.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> `if`(n<2,1,0), 9); # Peter Luschny, Jan 28 2016
  • Mathematica
    t[n_, k_] := k!*Binomial[n, k]/((2 k - n)!*2^(n - k)); Table[ t[n, k], {n, 11}, {k, n}] // Flatten
    (* Second program: *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
    rows = 13;
    M = BellMatrix[If[#<2, 1, 0]&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)

Formula

a(n, m) = n!*A030528(n, m)/(m!*2^(n-m)) for n >= m >= 1.
a(n, m) = (2*m-n+1)*a(n-1, m) + a(n-1, m-1) for n >= m >= 1 with a(n, m) = 0 for n < m, a(n, 0) := 0, and a(1, 1) = 1. [The 0th column does not appear in this array. - Petros Hadjicostas, Oct 28 2019]
E.g.f. for the m-th column: (x*(1 + x/2))^m/m!.
a(n,m) = A122848(n,m). - R. J. Mathar, Jan 14 2011

A144299 Triangle of Bessel numbers read by rows. Row n gives T(n,n), T(n,n-1), T(n,n-2), ..., T(n,0) for n >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 0, 0, 1, 6, 3, 0, 0, 1, 10, 15, 0, 0, 0, 1, 15, 45, 15, 0, 0, 0, 1, 21, 105, 105, 0, 0, 0, 0, 1, 28, 210, 420, 105, 0, 0, 0, 0, 1, 36, 378, 1260, 945, 0, 0, 0, 0, 0, 1, 45, 630, 3150, 4725, 945, 0, 0, 0, 0, 0, 1, 55, 990, 6930, 17325, 10395, 0, 0, 0, 0, 0, 0
Offset: 0

Author

David Applegate and N. J. A. Sloane, Dec 06 2008

Keywords

Comments

T(n,k) is the number of partitions of an n-set into k nonempty subsets, each of size at most 2.
The Grosswald and Choi-Smith references give many further properties and formulas.
Considered as an infinite lower triangular matrix T, lim_{n->infinity} T^n = A118930: (1, 1, 2, 4, 13, 41, 166, 652, ...) as a vector. - Gary W. Adamson, Dec 08 2008

Examples

			Triangle begins:
  n:
  0: 1
  1: 1  0
  2: 1  1   0
  3: 1  3   0    0
  4: 1  6   3    0   0
  5: 1 10  15    0   0  0
  6: 1 15  45   15   0  0  0
  7: 1 21 105  105   0  0  0  0
  8: 1 28 210  420 105  0  0  0  0
  9: 1 36 378 1260 945  0  0  0  0  0
  ...
The row sums give A000085.
For some purposes it is convenient to rotate the triangle by 45 degrees:
  1 0 0 0 0  0  0   0   0    0    0     0 ...
    1 1 0 0  0  0   0   0    0    0     0 ...
      1 3 3  0  0   0   0    0    0     0 ...
        1 6 15 15   0   0    0    0     0 ...
          1 10 45 105 105    0    0     0 ...
             1 15 105 420  945  945     0 ...
                1  21 210 1260 4725 10395 ...
                    1  28  378 3150 17325 ...
                        1   36  630  6930 ...
                             1   45   990 ...
  ...
The latter triangle is important enough that it has its own entry, A144331. Here the column sums give A000085 and the rows sums give A001515.
If the entries in the rotated triangle are denoted by b1(n,k), n >= 0, k <= 2n, then we have the recurrence b1(n, k) = b1(n - 1, k - 1) + (k - 1)*b1(n - 1, k - 2).
Then b1(n,k) is the number of partitions of [1, 2, ..., k] into exactly n blocks, each of size 1 or 2.
		

References

  • E. Grosswald, Bessel Polynomials, Lecture Notes Math., Vol. 698, 1978.

Crossrefs

Other versions of this same triangle are given in A111924 (which omits the first row), A001498 (which left-adjusts the rows in the bottom view), A001497 and A100861. Row sums give A000085.

Programs

  • Haskell
    a144299 n k = a144299_tabl !! n !! k
    a144299_row n = a144299_tabl !! n
    a144299_tabl = [1] : [1, 0] : f 1 [1] [1, 0] where
       f i us vs = ws : f (i + 1) vs ws where
                   ws = (zipWith (+) (0 : map (i *) us) vs) ++ [0]
    -- Reinhard Zumkeller, Jan 01 2014
    
  • Magma
    A144299:= func< n,k | k le Floor(n/2) select Factorial(n)/(Factorial(n-2*k)*Factorial(k)*2^k) else 0 >;
    [A144299(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 29 2023
    
  • Maple
    Maple code producing the rotated version:
    b1 := proc(n, k)
    option remember;
    if n = k then 1;
    elif k < n then 0;
    elif n < 1 then 0;
    else b1(n - 1, k - 1) + (k - 1)*b1(n - 1, k - 2);
    end if;
    end proc;
    for n from 0 to 12 do lprint([seq(b1(n,k),k=0..2*n)]); od:
  • Mathematica
    T[n_,0]=0; T[1,1]=1; T[2,1]=1; T[n_, k_]:= T[n-1,k-1] + (n-1)T[n-2,k-1];
    Table[T[n,k], {n,12}, {k,n,1,-1}]//Flatten (* Robert G. Wilson v *)
    Table[If[k<=Floor[n/2],n!/((n-2 k)! k! 2^k),0], {n, 0, 12},{k,0,n}]//Flatten (* Stefano Spezia, Jun 15 2023 *)
  • SageMath
    def A144299(n,k): return factorial(n)/(factorial(n-2*k)*factorial(k)*2^k) if k <= (n//2) else 0
    flatten([[A144299(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 29 2023

Formula

T(n, k) = T(n-1, k-1) + (n-1)*T(n-2, k-1).
E.g.f.: Sum_{k >= 0} Sum_{n = 0..2k} T(n,k) y^k x^n/n! = exp(y(x+x^2/2)). (The coefficient of y^k is the e.g.f. for the k-th row of the rotated triangle shown below.)
T(n, k) = n!/((n - 2*k)!*k!*2^k) for 0 <= k <= floor(n/2) and 0 otherwise. - Stefano Spezia, Jun 15 2023
From G. C. Greubel, Sep 29 2023: (Start)
T(n, 1) = A000217(n-1).
Sum_{k=0..n} T(n,k) = A000085(n).
Sum_{k=0..n} (-1)^k*T(n,k) = A001464(n). (End)

Extensions

Offset fixed by Reinhard Zumkeller, Jan 01 2014

A157401 A partition product of Stirling_2 type [parameter k = 1] with biggest-part statistic (triangle read by rows).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 1, 9, 12, 15, 1, 25, 60, 75, 105, 1, 75, 330, 450, 630, 945, 1, 231, 1680, 3675, 4410, 6615, 10395, 1, 763, 9408, 30975, 41160, 52920, 83160, 135135, 1, 2619, 56952, 233415, 489510, 555660, 748440, 1216215
Offset: 1

Author

Peter Luschny, Mar 09 2009, Mar 14 2009

Keywords

Comments

Partition product of prod_{j=0..n-1}((k + 1)*j - 1) and n! at k = 1,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A143171.
Same partition product with length statistic is A001497.
Diagonal a(A000217) = A001147.
Row sum is A001515.

Formula

T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(2*j - 1).

A001881 Coefficients of Bessel polynomials y_n (x).

Original entry on oeis.org

1, 21, 378, 6930, 135135, 2837835, 64324260, 1571349780, 41247931725, 1159525191825, 34785755754750, 1109981842719750, 37554385678684875, 1343291487737574375, 50661278966102805000, 2009564065655411265000, 83648104232906493905625, 3646073249210806587298125
Offset: 5

Keywords

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A001518.
(1/4) the coefficient of x^2 of polynomials in A098503.
Column 5 of triangle A001497.
Third column (m=2) of Laguerre-Sonin a=1/2 triangle A130757.

Programs

  • Magma
    [Factorial(2*n-5)/(120*Factorial(n-5)*2^(n-5) ): n in [5..30]]; // Vincenzo Librandi, Aug 14 2017
  • Mathematica
    With[{nn = 50}, CoefficientList[Series[x*(1 + 3*x/2)/(1 - 2*x)^(9/2), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 13 2017 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(x*(1 + 3*x/2)/(1 - 2*x)^(9/2))) \\ G. C. Greubel, Aug 13 2017
    

Formula

a(n) = (2n-5)!/( 5!*(n-5)!*2^(n-5) ).
a(n) = binomial(n-3,2)*(2*n-5)!!/5!!, n >= 5, with (2*n-5)!! = A001147(n-2).
E.g.f.: x*(1 + 3*x/2)/(1 - 2*x)^(9/2), with offset 1. - G. C. Greubel, Aug 13 2017
G.f.: t^5 * hypergeometric2F0(3, 7/2; -; 2*t) = t^5 + 21*t^6 + .... - G. C. Greubel, Aug 16 2017

A144331 Triangle b(n,k) for n >= 0, 0 <= k <= 2n, read by rows. See A144299 for definition and properties.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 3, 3, 0, 0, 0, 1, 6, 15, 15, 0, 0, 0, 0, 1, 10, 45, 105, 105, 0, 0, 0, 0, 0, 1, 15, 105, 420, 945, 945, 0, 0, 0, 0, 0, 0, 1, 21, 210, 1260, 4725, 10395, 10395, 0, 0, 0, 0, 0, 0, 0, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 0, 0, 0, 0, 0, 0
Offset: 0

Author

David Applegate and N. J. A. Sloane, Dec 07 2008

Keywords

Comments

Although this entry is the last of the versions of the underlying triangle to be added to the OEIS, for some applications it is the most important.
Row n has 2n+1 entries.
A001498 has a b-file.

Examples

			Triangle begins:
  1
  0 1 1
  0 0 1 3 3
  0 0 0 1 6 15 15
  0 0 0 0 1 10 45 105 105
  0 0 0 0 0  1 15 105 420  945  945
  0 0 0 0 0  0  1  21 210 1260 4725 10395 10395
  ...
		

Crossrefs

Row sums give A001515, column sums A000085.
Other versions of this triangle are given in A001497, A001498, A111924 and A100861.
See A144385 for a generalization.

Programs

  • Haskell
    a144331 n k = a144331_tabf !! n !! k
    a144331_row n = a144331_tabf !! n
    a144331_tabf = iterate (\xs ->
      zipWith (+) ([0] ++ xs ++ [0]) $ zipWith (*) (0:[0..]) ([0,0] ++ xs)) [1]
    -- Reinhard Zumkeller, Nov 24 2014
    
  • Magma
    A144331:= func< n,k | k le n-1 select 0 else Factorial(k)/(2^(k-n)*Factorial(k-n)*Factorial(2*n-k)) >;
    [A144331(n,k): k in [0..2*n], n in [0..12]]; // G. C. Greubel, Oct 04 2023
    
  • Mathematica
    Flatten[Table[PadLeft[Table[(n+k)!/(2^k*k!*(n-k)!), {k,0,n}], 2*n+1, 0], {n,0,12}]] (* Jean-François Alcover, Oct 14 2011 *)
  • SageMath
    def A144331(n, k): return 0 if kA144331(n,k) for k in range(2*n+1)] for n in range(13)]) # G. C. Greubel, Oct 04 2023

Formula

E.g.f.: Sum_{n >= 0} Sum_{k = 0..2n} b(n,k) y^n * x^k/k! = exp(x*y*(1 + x/2)).
b(n, k) = 2^(n-k)*k!/((2*n-k)!*(k-n)!).
Sum_{k=0..2*n} b(n, k) = A001515(n).
Sum_{n >= 0} b(n, k) = A000085(k).
From G. C. Greubel, Oct 04 2023: (Start)
T(n, k) = 0 for 0 <= k <= n-1, otherwise T(n, k) = k!/(2^(k-n)*(k-n)!*(2*n-k)!) for n <= k <= 2*n.
Sum_{k=0..2*n} (-1)^k * T(n, k) = A278990(n). (End)
Previous Showing 21-30 of 43 results. Next