cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 59 results. Next

A188674 Stack polyominoes with square core.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 3, 4, 5, 7, 9, 13, 17, 24, 31, 42, 54, 71, 90, 117, 147, 188, 236, 298, 371, 466, 576, 716, 882, 1088, 1331, 1633, 1987, 2422, 2935, 3557, 4290, 5177, 6216, 7465, 8932, 10682, 12731, 15169, 18016, 21387, 25321, 29955, 35353, 41696, 49063, 57689, 67698, 79375, 92896, 108633, 126817, 147922, 172272
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Comments

a(n) is the number of stack polyominoes of area n with square core.
The core of stack is the set of all maximal columns.
The core is a square when the number of columns is equal to their height.
Equivalently, a(n) is the number of unimodal compositions of n, where the number of the parts of maximum value equal the maximum value itself. For instance, for n = 10, we have the following stacks:
(1,3,3,3), (3,3,3,1), (1,1,1,1,1,1,2,2), (1,1,1,1,1,2,2,1), (1,1,1,1,2,2,1,1), (1,1,1,2,2,1,1,1), (1,1,2,2,1,1,1,1), (1,2,2,1,1,1,1,1), (2,2,1,1,1,1,1,1).
From Gus Wiseman, Apr 06 2019 and May 21 2022: (Start)
Also the number of integer partitions of n with final part in their inner lining partition equal to 1, where the k-th part of the inner lining partition of a partition is the number of squares in its Young diagram that are k diagonal steps from the lower-right boundary. For example, the a(4) = 1 through a(10) = 9 partitions are:
(22) (32) (42) (52) (62) (72) (82)
(221) (321) (421) (521) (333) (433)
(2211) (3211) (4211) (621) (721)
(22111) (32111) (5211) (3331)
(221111) (42111) (6211)
(321111) (52111)
(2211111) (421111)
(3211111)
(22111111)
Also partitions that have a fixed point and a conjugate fixed point, ranked by A353317. The strict case is A352829. For example, the a(0) = 0 through a(9) = 7 partitions are:
() . . (21) (31) (41) (51) (61) (71)
(211) (311) (411) (511) (332)
(2111) (3111) (4111) (611)
(21111) (31111) (5111)
(211111) (41111)
(311111)
(2111111)
Also partitions of n + 1 without a fixed point or conjugate fixed point.
(End)

Crossrefs

Cf. A001523 (stacks).
Positive crank: A001522, ranked by A352874.
Zero crank: A064410, ranked by A342192.
Nonnegative crank: A064428, ranked by A352873.
Fixed point but no conjugate fixed point: A118199, ranked by A353316.
A000041 counts partitions, strict A000009.
A002467 counts permutations with a fixed point, complement A000166.
A115720/A115994 count partitions by Durfee square, rank statistic A257990.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A238394 counts reversed partitions without a fixed point, ranked by A352830.
A238395 counts reversed partitions with a fixed point, ranked by A352872.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    a[n_]:=CoefficientList[Series[1+Sum[x^((k+1)^2)/Product[(1-x^i)^2,{i,1,k}],{k,0,n}],{x,0,n}],x]
    (* second program *)
    pml[ptn_]:=If[ptn=={},{},FixedPointList[If[#=={},{},DeleteCases[Rest[#]-1,0]]&,ptn][[-3]]];
    Table[Length[Select[IntegerPartitions[n],pml[#]=={1}&]],{n,0,30}] (* Gus Wiseman, Apr 06 2019 *)

Formula

G.f.: 1 + sum(k>=0, x^((k+1)^2)/((1-x)^2*(1-x^2)^2*...*(1-x^k)^2)).

A342528 Number of compositions with alternating parts weakly decreasing (or weakly increasing).

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 20, 32, 51, 79, 121, 182, 272, 399, 582, 839, 1200, 1700, 2394, 3342, 4640, 6397, 8771, 11955, 16217, 21878, 29386, 39285, 52301, 69334, 91570, 120465, 157929, 206313, 268644, 348674, 451185, 582074, 748830, 960676, 1229208, 1568716, 1997064
Offset: 0

Views

Author

Gus Wiseman, Mar 24 2021

Keywords

Comments

These are finite sequences q of positive integers summing to n such that q(i) >= q(i+2) for all possible i.
The strict case (alternating parts are strictly decreasing) is A000041. Is there a bijective proof?
Yes. Construct a Ferrers diagram by placing odd parts horizontally and even parts vertically in a fishbone pattern. The resulting Ferrers diagram will be for an ordinary partition and the process is reversible. It does not appear that this method can be applied to give a formula for this sequence. - Andrew Howroyd, Mar 25 2021

Examples

			The a(1) = 1 through a(6) = 20 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)
       (11)  (12)   (13)    (14)     (15)
             (21)   (22)    (23)     (24)
             (111)  (31)    (32)     (33)
                    (121)   (41)     (42)
                    (211)   (131)    (51)
                    (1111)  (212)    (141)
                            (221)    (222)
                            (311)    (231)
                            (1211)   (312)
                            (2111)   (321)
                            (11111)  (411)
                                     (1212)
                                     (1311)
                                     (2121)
                                     (2211)
                                     (3111)
                                     (12111)
                                     (21111)
                                     (111111)
		

Crossrefs

The even-length case is A114921.
The version with alternating parts unequal is A224958 (unordered: A000726).
The version with alternating parts equal is A342527.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A000203 adds up divisors.
A002843 counts compositions with all adjacent parts x <= 2y.
A003242 counts anti-run compositions.
A069916/A342492 = decreasing/increasing first quotients.
A070211/A325546 = weakly decreasing/increasing differences.
A175342/A325545 = constant/distinct differences.
A342495 = constant first quotients (unordered: A342496, strict: A342515, ranking: A342522).

Programs

  • Maple
    b:= proc(n, i, j) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, j)+b(n-i, min(n-i, j), min(n-i, i))))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..42);  # Alois P. Heinz, Jan 16 2025
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],GreaterEqual@@Plus@@@Reverse/@Partition[#,2,1]&]],{n,0,15}]
  • PARI
    seq(n)={my(p=1/prod(k=1, n, 1-y*x^k + O(x*x^n))); Vec(1+sum(k=1, n, polcoef(p,k,y)*(polcoef(p,k-1,y) + polcoef(p,k,y))))} \\ Andrew Howroyd, Mar 24 2021

Formula

G.f.: Sum_{k>=0} ([y^k] P(x,y))*([y^k] (1 + y)*P(x,y)), where P(x,y) = Product_{k>=1} 1/(1 - y*x^k). - Andrew Howroyd, Jan 16 2025

Extensions

Terms a(21) and beyond from Andrew Howroyd, Mar 24 2021

A352826 Heinz numbers of integer partitions y without a fixed point y(i) = i. Such a fixed point is unique if it exists.

Original entry on oeis.org

1, 3, 5, 6, 7, 10, 11, 12, 13, 14, 17, 19, 20, 22, 23, 24, 25, 26, 28, 29, 31, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 65, 67, 68, 70, 71, 73, 74, 75, 76, 77, 79, 80, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 96, 97
Offset: 1

Views

Author

Gus Wiseman, Apr 06 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
      1: ()          24: (2,1,1,1)     47: (15)
      3: (2)         25: (3,3)         48: (2,1,1,1,1)
      5: (3)         26: (6,1)         49: (4,4)
      6: (2,1)       28: (4,1,1)       50: (3,3,1)
      7: (4)         29: (10)          52: (6,1,1)
     10: (3,1)       31: (11)          53: (16)
     11: (5)         34: (7,1)         55: (5,3)
     12: (2,1,1)     35: (4,3)         56: (4,1,1,1)
     13: (6)         37: (12)          58: (10,1)
     14: (4,1)       38: (8,1)         59: (17)
     17: (7)         40: (3,1,1,1)     61: (18)
     19: (8)         41: (13)          62: (11,1)
     20: (3,1,1)     43: (14)          65: (6,3)
     22: (5,1)       44: (5,1,1)       67: (19)
     23: (9)         46: (9,1)         68: (7,1,1)
		

Crossrefs

* = unproved
*These partitions are counted by A064428, strict A352828.
The complement is A352827.
The reverse version is A352830, counted by A238394.
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
*A001522 counts partitions with a fixed point.
A008290 counts permutations by fixed points, nonfixed A098825.
A056239 adds up prime indices, row sums of A112798 and A296150.
A115720 and A115994 count partitions by their Durfee square.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A238395 counts reversed partitions with a fixed point, ranked by A352872.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Select[Range[100],pq[Reverse[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]==0&]

A342192 Heinz numbers of partitions of crank 0.

Original entry on oeis.org

6, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 100, 106, 118, 122, 134, 140, 142, 146, 158, 166, 178, 194, 196, 202, 206, 214, 218, 220, 226, 254, 260, 262, 274, 278, 298, 300, 302, 308, 314, 326, 334, 340, 346, 358, 362, 364, 380, 382, 386, 394, 398
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
See A257989 or the program for a definition of crank of a partition.

Examples

			The sequence of terms together with their prime indices begins:
      6: {1,2}        106: {1,16}       218: {1,29}
     10: {1,3}        118: {1,17}       220: {1,1,3,5}
     14: {1,4}        122: {1,18}       226: {1,30}
     22: {1,5}        134: {1,19}       254: {1,31}
     26: {1,6}        140: {1,1,3,4}    260: {1,1,3,6}
     34: {1,7}        142: {1,20}       262: {1,32}
     38: {1,8}        146: {1,21}       274: {1,33}
     46: {1,9}        158: {1,22}       278: {1,34}
     58: {1,10}       166: {1,23}       298: {1,35}
     62: {1,11}       178: {1,24}       300: {1,1,2,3,3}
     74: {1,12}       194: {1,25}       302: {1,36}
     82: {1,13}       196: {1,1,4,4}    308: {1,1,4,5}
     86: {1,14}       202: {1,26}       314: {1,37}
     94: {1,15}       206: {1,27}       326: {1,38}
    100: {1,1,3,3}    214: {1,28}       334: {1,39}
		

Crossrefs

Indices of zeros in A257989.
A000005 counts constant partitions.
A000041 counts partitions (strict: A000009).
A001522 counts partitions of positive crank.
A003242 counts anti-run compositions.
A064391 counts partitions by crank.
A064428 counts partitions of nonnegative crank.
A224958 counts compositions with alternating parts unequal.
A257989 gives the crank of the partition with Heinz number n.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ck[y_]:=With[{w=Count[y,1]},If[w==0,Max@@y,Count[y,_?(#>w&)]-w]];
    Select[Range[100],ck[primeMS[#]]==0&]

A352830 Numbers whose weakly increasing prime indices y have no fixed points y(i) = i.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, 119, 121, 123, 127, 129, 131, 133, 137, 139, 141
Offset: 1

Views

Author

Gus Wiseman, Apr 06 2022

Keywords

Comments

First differs from A325128 in lacking 75.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
All terms are odd.

Examples

			The terms together with their prime indices begin:
      1: {}        35: {3,4}     69: {2,9}     105: {2,3,4}
      3: {2}       37: {12}      71: {20}      107: {28}
      5: {3}       39: {2,6}     73: {21}      109: {29}
      7: {4}       41: {13}      77: {4,5}     111: {2,12}
     11: {5}       43: {14}      79: {22}      113: {30}
     13: {6}       47: {15}      83: {23}      115: {3,9}
     15: {2,3}     49: {4,4}     85: {3,7}     119: {4,7}
     17: {7}       51: {2,7}     87: {2,10}    121: {5,5}
     19: {8}       53: {16}      89: {24}      123: {2,13}
     21: {2,4}     55: {3,5}     91: {4,6}     127: {31}
     23: {9}       57: {2,8}     93: {2,11}    129: {2,14}
     25: {3,3}     59: {17}      95: {3,8}     131: {32}
     29: {10}      61: {18}      97: {25}      133: {4,8}
     31: {11}      65: {3,6}    101: {26}      137: {33}
     33: {2,5}     67: {19}     103: {27}      139: {34}
		

Crossrefs

* = unproved
These partitions are counted by A238394, strict A025147.
These are the zeros of A352822.
*The reverse version is A352826, counted by A064428 (strict A352828).
*The complement reverse version is A352827, counted by A001522.
The complement is A352872, counted by A238395.
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
A008290 counts permutations by fixed points, nonfixed A098825.
A056239 adds up prime indices, row sums of A112798 and A296150.
A114088 counts partitions by excedances.
A115720 and A115994 count partitions by their Durfee square.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914, conjugate rank A238745.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Select[Range[100],pq[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]==0&]

A352872 Numbers whose weakly increasing prime indices y have a fixed point y(i) = i.

Original entry on oeis.org

2, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 27, 28, 30, 32, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 102, 104, 106, 108, 110, 112, 114
Offset: 1

Views

Author

Gus Wiseman, Apr 06 2022

Keywords

Comments

First differs from A118672 in having 75.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
      2: {1}           28: {1,1,4}         56: {1,1,1,4}
      4: {1,1}         30: {1,2,3}         58: {1,10}
      6: {1,2}         32: {1,1,1,1,1}     60: {1,1,2,3}
      8: {1,1,1}       34: {1,7}           62: {1,11}
      9: {2,2}         36: {1,1,2,2}       63: {2,2,4}
     10: {1,3}         38: {1,8}           64: {1,1,1,1,1,1}
     12: {1,1,2}       40: {1,1,1,3}       66: {1,2,5}
     14: {1,4}         42: {1,2,4}         68: {1,1,7}
     16: {1,1,1,1}     44: {1,1,5}         70: {1,3,4}
     18: {1,2,2}       45: {2,2,3}         72: {1,1,1,2,2}
     20: {1,1,3}       46: {1,9}           74: {1,12}
     22: {1,5}         48: {1,1,1,1,2}     75: {2,3,3}
     24: {1,1,1,2}     50: {1,3,3}         76: {1,1,8}
     26: {1,6}         52: {1,1,6}         78: {1,2,6}
     27: {2,2,2}       54: {1,2,2,2}       80: {1,1,1,1,3}
For example, the multiset {2,3,3} with Heinz number 75 has a fixed point at position 3, so 75 is in the sequence.
		

Crossrefs

* = unproved
These partitions are counted by A238395, strict A096765.
These are the nonzero positions in A352822.
*The complement reverse version is A352826, counted by A064428.
*The reverse version is A352827, counted by A001522 (strict A352829).
The complement is A352830, counted by A238394 (strict A025147).
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
A008290 counts permutations by fixed points, nonfixed A098825.
A056239 adds up prime indices, row sums of A112798 and A296150.
A114088 counts partitions by excedances.
A115720 and A115994 count partitions by their Durfee square.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914, conjugate rank A238745.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Select[Range[100],pq[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]>0&]

A182616 Number of partitions of 2n that contain odd parts.

Original entry on oeis.org

0, 1, 3, 8, 17, 35, 66, 120, 209, 355, 585, 946, 1498, 2335, 3583, 5428, 8118, 12013, 17592, 25525, 36711, 52382, 74173, 104303, 145698, 202268, 279153, 383145, 523105, 710655, 960863, 1293314, 1733281, 2313377, 3075425, 4073085, 5374806, 7067863, 9263076
Offset: 0

Views

Author

Omar E. Pol, Dec 03 2010

Keywords

Comments

Bisection (even part) of A086543.

Examples

			For n=3 the partitions of 2n are
6 ....................... does not contains odd parts
3 + 3 ................... contains odd parts ........... *
4 + 2 ................... does not contains odd parts
2 + 2 + 2 ............... does not contains odd parts
5 + 1 ................... contains odd parts ........... *
3 + 2 + 1 ............... contains odd parts ........... *
4 + 1 + 1 ............... contains odd parts ........... *
2 + 2 + 1 + 1 ........... contains odd parts ........... *
3 + 1 + 1 + 1 ........... contains odd parts ........... *
2 + 1 + 1 + 1 + 1 ....... contains odd parts ........... *
1 + 1 + 1 + 1 + 1 + 1 ... contains odd parts ........... *
There are 8 partitions of 2n that contain odd parts.
Also p(2n)-p(n) = p(6)-p(3) = 11-3 = 8, where p(n) is the number of partitions of n, so a(3)=8.
From _Gus Wiseman_, Oct 18 2023: (Start)
For n > 0, also the number of integer partitions of 2n that do not contain n, ranked by A366321. For example, the a(1) = 1 through a(4) = 17 partitions are:
  (2)  (4)     (6)       (8)
       (31)    (42)      (53)
       (1111)  (51)      (62)
               (222)     (71)
               (411)     (332)
               (2211)    (521)
               (21111)   (611)
               (111111)  (2222)
                         (3221)
                         (3311)
                         (5111)
                         (22211)
                         (32111)
                         (221111)
                         (311111)
                         (2111111)
                         (11111111)
(End)
		

Crossrefs

Cf. A304710.
Bisection of A086543, with ranks A366322.
The case of all odd parts is A035294, bisection of A000009.
The strict case is A365828.
These partitions have ranks A366530.
A000041 counts integer partitions, strict A000009.
A006477 counts partitions with at least one odd and even part, ranks A366532.
A047967 counts partitions with at least one even part, ranks A324929.
A086543 counts partitions of n not containing n/2, ranks A366319.
A366527 counts partitions of 2n with an even part, ranks A366529.

Programs

  • Maple
    with(combinat): a:= n-> numbpart(2*n) -numbpart(n): seq(a(n), n=0..35);
  • Mathematica
    Table[Length[Select[IntegerPartitions[2n],n>0&&FreeQ[#,n]&]],{n,0,15}] (* Gus Wiseman, Oct 11 2023 *)
    Table[Length[Select[IntegerPartitions[2n],Or@@OddQ/@#&]],{n,0,15}] (* Gus Wiseman, Oct 11 2023 *)

Formula

a(n) = A000041(2*n) - A000041(n).

Extensions

Edited by Alois P. Heinz, Dec 03 2010

A342527 Number of compositions of n with alternating parts equal.

Original entry on oeis.org

1, 1, 2, 4, 6, 8, 11, 12, 16, 17, 21, 20, 29, 24, 31, 32, 38, 32, 46, 36, 51, 46, 51, 44, 69, 51, 61, 60, 73, 56, 87, 60, 84, 74, 81, 76, 110, 72, 91, 88, 115, 80, 123, 84, 117, 112, 111, 92, 153, 101, 132, 116, 139, 104, 159, 120, 161, 130, 141, 116, 205, 120, 151, 156, 178, 142, 195, 132, 183, 158
Offset: 0

Views

Author

Gus Wiseman, Mar 24 2021

Keywords

Comments

These are finite sequences q of positive integers summing to n such that q(i) = q(i+2) for all possible i.

Examples

			The a(1) = 1 through a(8) = 16 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (12)   (13)    (14)     (15)      (16)       (17)
             (21)   (22)    (23)     (24)      (25)       (26)
             (111)  (31)    (32)     (33)      (34)       (35)
                    (121)   (41)     (42)      (43)       (44)
                    (1111)  (131)    (51)      (52)       (53)
                            (212)    (141)     (61)       (62)
                            (11111)  (222)     (151)      (71)
                                     (1212)    (232)      (161)
                                     (2121)    (313)      (242)
                                     (111111)  (12121)    (323)
                                               (1111111)  (1313)
                                                          (2222)
                                                          (3131)
                                                          (21212)
                                                          (11111111)
		

Crossrefs

The odd-length case is A062968.
The even-length case is A065608.
The version with alternating parts unequal is A224958 (unordered: A000726).
The version with alternating parts weakly decreasing is A342528.
A000005 counts constant compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A000203 adds up divisors.
A002843 counts compositions with all adjacent parts x <= 2y.
A003242 counts anti-run compositions.
A175342 counts compositions with constant differences.
A342495 counts compositions with constant first quotients.
A342496 counts partitions with constant first quotients (strict: A342515, ranking: A342522).

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@Plus@@@Reverse/@Partition[#,2,1]&]],{n,0,15}]

Formula

a(n) = 1 + n + A000203(n) - 2*A000005(n).
a(n) = A065608(n) + A062968(n).

A352828 Number of strict integer partitions y of n with no fixed points y(i) = i.

Original entry on oeis.org

1, 0, 1, 2, 2, 2, 2, 3, 4, 6, 8, 10, 12, 14, 16, 19, 22, 26, 32, 38, 46, 56, 66, 78, 92, 106, 123, 142, 162, 186, 214, 244, 280, 322, 368, 422, 484, 552, 630, 718, 815, 924, 1046, 1180, 1330, 1498, 1682, 1888, 2118, 2372, 2656, 2972, 3322, 3712, 4146, 4626
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(0) = 1 through a(12) = 12 partitions (A-C = 10..12; empty column indicated by dot; 0 is the empty partition):
   0  .  2  3    4    5    6    7    8     9     A      B      C
            21   31   41   51   43   53    54    64     65     75
                                61   71    63    73     74     84
                                     431   81    91     83     93
                                           432   532    A1     B1
                                           531   541    542    642
                                                 631    632    651
                                                 4321   641    732
                                                        731    741
                                                        5321   831
                                                               5421
                                                               6321
		

Crossrefs

The version for permutations is A000166, complement A002467.
The reverse version is A025147, complement A238395, non-strict A238394.
The non-strict version is A064428 (unproved, ranked by A352826 or A352873).
The version for compositions is A238351, complement A352875.
The complement is A352829, non-strict A001522 (unproved, ranked by A352827 or A352874).
A000041 counts partitions, strict A000009.
A000700 counts self-conjugate partitions, ranked by A088902.
A008290 counts permutations by fixed points, unfixed A098825.
A115720 and A115994 count partitions by their Durfee square.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&pq[#]==0&]],{n,0,30}]

Formula

G.f.: Sum_{n>=0} q^(n*(3*n+1)/2)*Product_{k=1..n} (1+q^k)/(1-q^k). - Jeremy Lovejoy, Sep 26 2022

A352833 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k fixed points, k = 0, 1.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 1, 3, 2, 4, 3, 6, 5, 8, 7, 12, 10, 16, 14, 23, 19, 30, 26, 42, 35, 54, 47, 73, 62, 94, 82, 124, 107, 158, 139, 206, 179, 260, 230, 334, 293, 420, 372, 532, 470, 664, 591, 835, 740, 1034, 924, 1288, 1148, 1588, 1422, 1962, 1756, 2404, 2161
Offset: 0

Views

Author

Gus Wiseman, Apr 08 2022

Keywords

Comments

A fixed point of a sequence y is an index y(i) = i. A fixed point of a partition is unique if it exists, so all columns k > 1 are zeros.
Conjecture:
(1) This is A064428 interleaved with A001522.
(2) Reversing rows gives A300788, the strict version of A300787.

Examples

			Triangle begins:
  0: {1,0}
  1: {0,1}
  2: {1,1}
  3: {2,1}
  4: {3,2}
  5: {4,3}
  6: {6,5}
  7: {8,7}
  8: {12,10}
  9: {16,14}
For example, row n = 7 counts the following partitions:
  (7)       (52)
  (61)      (421)
  (511)     (322)
  (43)      (3211)
  (4111)    (2221)
  (331)     (22111)
  (31111)   (1111111)
  (211111)
		

Crossrefs

Row sums are A000041.
The version for permutations is A008290, for nonfixed points A098825.
The columns appear to be A064428 and A001522.
The version counting strong nonexcedances is A114088.
The version for compositions is A238349, rank statistic A352512.
The version for reversed partitions is A238352.
Reversing rows appears to give A300788, the strict case of A300787.
A000700 counts self-conjugate partitions, ranked by A088902.
A115720 and A115994 count partitions by their Durfee square.
A330644 counts non-self-conjugate partitions, ranked by A352486.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Table[Length[Select[IntegerPartitions[n],pq[#]==k&]],{n,0,15},{k,0,1}]
Previous Showing 11-20 of 59 results. Next