cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 114 results. Next

A188674 Stack polyominoes with square core.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 3, 4, 5, 7, 9, 13, 17, 24, 31, 42, 54, 71, 90, 117, 147, 188, 236, 298, 371, 466, 576, 716, 882, 1088, 1331, 1633, 1987, 2422, 2935, 3557, 4290, 5177, 6216, 7465, 8932, 10682, 12731, 15169, 18016, 21387, 25321, 29955, 35353, 41696, 49063, 57689, 67698, 79375, 92896, 108633, 126817, 147922, 172272
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Comments

a(n) is the number of stack polyominoes of area n with square core.
The core of stack is the set of all maximal columns.
The core is a square when the number of columns is equal to their height.
Equivalently, a(n) is the number of unimodal compositions of n, where the number of the parts of maximum value equal the maximum value itself. For instance, for n = 10, we have the following stacks:
(1,3,3,3), (3,3,3,1), (1,1,1,1,1,1,2,2), (1,1,1,1,1,2,2,1), (1,1,1,1,2,2,1,1), (1,1,1,2,2,1,1,1), (1,1,2,2,1,1,1,1), (1,2,2,1,1,1,1,1), (2,2,1,1,1,1,1,1).
From Gus Wiseman, Apr 06 2019 and May 21 2022: (Start)
Also the number of integer partitions of n with final part in their inner lining partition equal to 1, where the k-th part of the inner lining partition of a partition is the number of squares in its Young diagram that are k diagonal steps from the lower-right boundary. For example, the a(4) = 1 through a(10) = 9 partitions are:
(22) (32) (42) (52) (62) (72) (82)
(221) (321) (421) (521) (333) (433)
(2211) (3211) (4211) (621) (721)
(22111) (32111) (5211) (3331)
(221111) (42111) (6211)
(321111) (52111)
(2211111) (421111)
(3211111)
(22111111)
Also partitions that have a fixed point and a conjugate fixed point, ranked by A353317. The strict case is A352829. For example, the a(0) = 0 through a(9) = 7 partitions are:
() . . (21) (31) (41) (51) (61) (71)
(211) (311) (411) (511) (332)
(2111) (3111) (4111) (611)
(21111) (31111) (5111)
(211111) (41111)
(311111)
(2111111)
Also partitions of n + 1 without a fixed point or conjugate fixed point.
(End)

Crossrefs

Cf. A001523 (stacks).
Positive crank: A001522, ranked by A352874.
Zero crank: A064410, ranked by A342192.
Nonnegative crank: A064428, ranked by A352873.
Fixed point but no conjugate fixed point: A118199, ranked by A353316.
A000041 counts partitions, strict A000009.
A002467 counts permutations with a fixed point, complement A000166.
A115720/A115994 count partitions by Durfee square, rank statistic A257990.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A238394 counts reversed partitions without a fixed point, ranked by A352830.
A238395 counts reversed partitions with a fixed point, ranked by A352872.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    a[n_]:=CoefficientList[Series[1+Sum[x^((k+1)^2)/Product[(1-x^i)^2,{i,1,k}],{k,0,n}],{x,0,n}],x]
    (* second program *)
    pml[ptn_]:=If[ptn=={},{},FixedPointList[If[#=={},{},DeleteCases[Rest[#]-1,0]]&,ptn][[-3]]];
    Table[Length[Select[IntegerPartitions[n],pml[#]=={1}&]],{n,0,30}] (* Gus Wiseman, Apr 06 2019 *)

Formula

G.f.: 1 + sum(k>=0, x^((k+1)^2)/((1-x)^2*(1-x^2)^2*...*(1-x^k)^2)).

A332833 Number of compositions of n whose run-lengths are neither weakly increasing nor weakly decreasing.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 3, 8, 27, 75, 185, 441, 1025, 2276, 4985, 10753, 22863, 48142, 100583, 208663, 430563, 884407, 1809546, 3690632, 7506774, 15233198, 30851271, 62377004, 125934437, 253936064, 511491634, 1029318958, 2069728850, 4158873540, 8351730223, 16762945432
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(6) = 3 and a(7) = 8 compositions:
  (1221)   (2113)
  (2112)   (3112)
  (11211)  (11311)
           (12112)
           (21112)
           (21121)
           (111211)
           (112111)
		

Crossrefs

The case of partitions is A332641.
The version for unsorted prime signature is A332831.
The version for the compositions themselves (not run-lengths) is A332834.
The complement is counted by A332835.
Unimodal compositions are A001523.
Partitions with weakly increasing run-lengths are A100883.
Compositions that are not unimodal are A115981.
Compositions with equal run-lengths are A329738.
Compositions whose run-lengths are unimodal are A332726.
Compositions whose run-lengths are not unimodal are A332727.
Partitions with weakly increasing or weakly decreasing run-lengths: A332745.
Compositions with weakly increasing run-lengths are A332836.
Compositions that are neither unimodal nor is their negation are A332870.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!Or[LessEqual@@Length/@Split[#],GreaterEqual@@Length/@Split[#]]&]],{n,0,10}]

Formula

a(n) = 2^(n - 1) - 2 * A332836(n) + A329738(n).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 30 2020

A332835 Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 29, 56, 101, 181, 327, 583, 1023, 1820, 3207, 5631, 9905, 17394, 30489, 53481, 93725, 164169, 287606, 503672, 881834, 1544018, 2703161, 4731860, 8283291, 14499392, 25379278, 44422866, 77754798, 136093756, 238204369, 416923752, 729728031
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(6) = 29 compositions:
  (6)    (141)  (213)   (1113)  (21111)
  (51)   (114)  (132)   (222)   (12111)
  (15)   (33)   (123)   (2211)  (11121)
  (42)   (321)  (3111)  (2121)  (11112)
  (24)   (312)  (1311)  (1212)  (111111)
  (411)  (231)  (1131)  (1122)
Missing are: (2112), (1221), (11211).
		

Crossrefs

The version for the compositions themselves (not run-lengths) is A329398.
Compositions with equal run-lengths are A329738.
The case of partitions is A332745.
The version for unsorted prime signature is the complement of A332831.
The complement is counted by A332833.
Unimodal compositions are A001523.
Partitions with weakly decreasing run-lengths are A100882.
Partitions with weakly increasing run-lengths are A100883.
Compositions that are not unimodal are A115981.
Compositions whose negation is unimodal are A332578.
Compositions whose run-lengths are unimodal are A332726.
Neither weakly increasing nor weakly decreasing compositions are A332834.
Compositions with weakly increasing run-lengths are A332836.
Compositions that are neither unimodal nor is their negation are A332870.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Or[LessEqual@@Length/@Split[#],GreaterEqual@@Length/@Split[#]]&]],{n,0,20}]

Formula

a(n) = 2 * A332836(n) - A329738(n).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 30 2020

A070211 Number of compositions (ordered partitions) of n that are concave-down sequences.

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 14, 18, 24, 34, 42, 52, 68, 82, 101, 126, 147, 175, 213, 246, 289, 344, 392, 453, 530, 598, 687, 791, 885, 1007, 1151, 1276, 1438, 1629, 1806, 2018, 2262, 2490, 2775, 3091, 3387, 3754, 4165, 4542, 5011, 5527, 6012, 6600, 7245, 7864, 8614
Offset: 0

Views

Author

Pontus von Brömssen, May 07 2002

Keywords

Comments

Here, a finite sequence is concave if each term (other than the first or last) is at least the average of the two adjacent terms. - Eric M. Schmidt, Sep 29 2013
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (3,1,2) are (-2,1). Then a(n) is the number of compositions of n with weakly decreasing differences. - Gus Wiseman, May 15 2019

Examples

			Out of the 8 ordered partitions of 4, only 2+1+1 and 1+1+2 are not concave, so a(4)=6.
From _Gus Wiseman_, May 15 2019: (Start)
The a(1) = 1 through a(6) = 14 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)
       (11)  (12)   (13)    (14)     (15)
             (21)   (22)    (23)     (24)
             (111)  (31)    (32)     (33)
                    (121)   (41)     (42)
                    (1111)  (122)    (51)
                            (131)    (123)
                            (221)    (132)
                            (11111)  (141)
                                     (222)
                                     (231)
                                     (321)
                                     (1221)
                                     (111111)
(End)
		

Crossrefs

Cf. A000079, A001523 (weakly unimodal compositions), A069916, A175342, A320466, A325361 (concave-down partitions), A325545, A325546 (concave-up compositions), A325547, A325548, A325557.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],GreaterEqual@@Differences[#]&]],{n,0,15}] (* Gus Wiseman, May 15 2019 *)
  • Sage
    def A070211(n) : return sum(all(2*p[i] >= p[i-1] + p[i+1] for i in range(1, len(p)-1)) for p in Compositions(n)) # Eric M. Schmidt, Sep 29 2013

Extensions

Name edited by Gus Wiseman, May 15 2019

A156040 Number of compositions (ordered partitions) of n into 3 parts (some of which may be zero), where the first is at least as great as each of the others.

Original entry on oeis.org

1, 1, 3, 4, 6, 8, 11, 13, 17, 20, 24, 28, 33, 37, 43, 48, 54, 60, 67, 73, 81, 88, 96, 104, 113, 121, 131, 140, 150, 160, 171, 181, 193, 204, 216, 228, 241, 253, 267, 280, 294, 308, 323, 337, 353, 368, 384, 400, 417, 433, 451, 468, 486, 504, 523, 541, 561, 580, 600
Offset: 0

Views

Author

Jack W Grahl, Feb 02 2009, Feb 11 2009

Keywords

Comments

For n = 1, 2 these are just the triangular numbers. a(n) is always at least 1/3 of the corresponding triangular number, since each partition of this type gives up to three ordered partitions with the same cyclical order.
An alternative definition, which avoids using parts of size 0: a(n) is the third diagonal of A184957. - N. J. A. Sloane, Feb 27 2011
Diagonal sums of the triangle formed by rows T(2, k) k = 0, 1, ..., 2m of ascending m-nomial triangles (see A004737):
1
1 2 1
1 2 3 2 1
1 2 3 4 3 2 1
1 2 3 4 5 4 3 2 1
1 2 3 4 5 6 5 4 3 2 1
- Bob Selcoe, Feb 07 2014
Arrange A004396 in rows successively shifted to the right two spaces and sum the columns:
1 1 2 3 3 4 5 5 6 ...
1 1 2 3 3 4 5 ...
1 1 2 3 3 ...
1 1 2 ...
1 ...
------------------------------
1 1 3 4 6 8 11 13 17 ... - L. Edson Jeffery, Jul 30 2014
a(n) is the dimension of three-dimensional (2n + 2)-homogeneous polynomial vector fields with full tetrahedral symmetry (for a given orthogonal representation), and which are solenoidal. - Giedrius Alkauskas, Sep 30 2017
Also the number of compositions of n + 3 into three parts, the first at least as great as each of the other two. Also the number of compositions of n + 4 into three parts, the first strictly greater than each of the other two. - Gus Wiseman, Oct 09 2020

Examples

			G.f. = 1 + x + 3*x^2 + 4*x^3 + 6*x^4 + 8*x^5 + 11*x^6 + 13*x^7 + 17*x^8 + 20*x^9 + ...
The a(4) = 6 compositions of 4 are: (4 0 0), (3 1 0), (3 0 1), (2 2 0), (2 1 1), (2 0 2).
From _Gus Wiseman_, Oct 05 2020: (Start)
The a(0) = 1 through a(7) = 13 triples of nonnegative integers summing to n where the first is at least as great as each of the other two are:
  (000)  (100)  (101)  (111)  (202)  (212)  (222)  (313)
                (110)  (201)  (211)  (221)  (303)  (322)
                (200)  (210)  (220)  (302)  (312)  (331)
                       (300)  (301)  (311)  (321)  (403)
                              (310)  (320)  (330)  (412)
                              (400)  (401)  (402)  (421)
                                     (410)  (411)  (430)
                                     (500)  (420)  (502)
                                            (501)  (511)
                                            (510)  (520)
                                            (600)  (601)
                                                   (610)
                                                   (700)
(End)
		

Crossrefs

For compositions into 4 summands see A156039; also see A156041 and A156042.
Cf. A184957, A071619 (bisection).
A001399(n-2)*2 is the strict case.
A001840(n-2) is the version with opposite relations.
A001840(n-1) is the version with strict opposite relations.
A069905 is the case with strict relations.
A014311 ranks 3-part compositions, with strict case A337453.
A014612 ranks 3-part partitions, with strict case A007304.

Programs

  • Maple
    a:= proc(n) local m, r; m := iquo(n, 6, 'r'); (4 +6*m +2*r) *m + [1, 1, 3, 4, 6, 8][r+1] end: seq(a(n), n=0..60); # Alois P. Heinz, Jun 14 2009
  • Mathematica
    nn = 58; CoefficientList[Series[x^3/(1 - x^2)^2/(1 - x^3) + 1/(1 - x^2)^2/(1 - x), {x, 0, nn}], x] (* Geoffrey Critzer, Jul 14 2013 *)
    CoefficientList[Series[(1 + x^2)/((1 + x) * (1 + x + x^2) * (1 - x)^3), {x, 0, 58}], x] (* L. Edson Jeffery, Jul 29 2014 *)
    LinearRecurrence[{1, 1, 0, -1, -1, 1}, {1, 1, 3, 4, 6, 8}, 60] (* Harvey P. Dale, May 28 2015 *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n+3,{3}],#[[1]]>=#[[2]]&&#[[1]]>=#[[3]]&]],{n,0,15}] (* Gus Wiseman, Oct 05 2020*)
  • PARI
    {a(n) = n*(n+4)\6 + 1}; /* Michael Somos, Mar 26 2017 */

Formula

G.f.: (x^2+1) / (1-x-x^2+x^4+x^5-x^6). - Alois P. Heinz, Jun 14 2009
Slightly nicer g.f.: (1+x^2)/((1-x)*(1-x^2)*(1-x^3)). - N. J. A. Sloane, Apr 29 2011
a(n) = A007590(n+2) - A000212(n+2). - Richard R. Forberg, Dec 08 2013
a(2*n) = A071619(n+1). - L. Edson Jeffery, Jul 29 2014
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6), with a(0) = 1, a(1) = 1, a(2) = 3, a(3) = 4, a(4) = 6, a(5) = 8. - Harvey P. Dale, May 28 2015
a(n) = (n^2 + 4*n + 3)/6 + IF(MOD(n, 2) = 0, 1/2) + IF(MOD(n, 3) = 1, -1/3). - Heinrich Ludwig, Mar 21 2017
a(n) = 1 + floor((n^2 + 4*n)/6). - Giovanni Resta, Mar 21 2017
Euler transform of length 4 sequence [1, 2, 1, -1]. - Michael Somos, Mar 26 2017
a(n) = a(-4 - n) for all n in Z. - Michael Somos, Mar 26 2017
0 = a(n)*(-1 + a(n) - 2*a(n+1) - 2*a(n+2) + 2*a(n+3)) + a(n+1)*(+1 + a(n+1) + 2*a(n+2) - 2*a(n+3)) + a(n+2)*(+1 + a(n+2) - 2*a(n+3)) + a(n+3)*(-1 + a(n+3)) for all n in Z. - Michael Somos, Mar 26 2017
a(n) = round((n+1)*(n+3)/6). - Bill McEachen, Feb 16 2021
Sum_{n>=0} 1/a(n) = 3/2 + Pi^2/36 + (tan(c1)-1)*c1 + 3*c2*sinh(c2)/(1+2*cosh(c2)), where c1 = Pi/(2*sqrt(3)) and c2 = Pi*sqrt(2)/3. - Amiram Eldar, Dec 10 2022
E.g.f.: ((16 + 15*x + 3*x^2)*cosh(x) + 2*exp(-x/2)*(cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2)) + (7 + 15*x + 3*x^2)*sinh(x))/18. - Stefano Spezia, Apr 05 2023

Extensions

More terms from Alois P. Heinz, Jun 14 2009

A332577 Number of integer partitions of n covering an initial interval of positive integers with unimodal run-lengths.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 14, 16, 19, 23, 25, 30, 36, 40, 45, 54, 59, 68, 79, 86, 96, 112, 121, 135, 155, 168, 188, 214, 230, 253, 284, 308, 337, 380, 407, 445, 497, 533, 580, 645, 689, 748, 828, 885, 956, 1053, 1124, 1212, 1330, 1415, 1519, 1665, 1771
Offset: 0

Views

Author

Gus Wiseman, Feb 24 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(1) = 1 through a(9) = 8 partitions:
  1  11  21   211   221    321     2221     3221      3321
         111  1111  2111   2211    3211     22211     22221
                    11111  21111   22111    32111     32211
                           111111  211111   221111    222111
                                   1111111  2111111   321111
                                            11111111  2211111
                                                      21111111
                                                      111111111
		

Crossrefs

Not requiring unimodality gives A000009.
A version for compositions is A227038.
Not requiring the partition to cover an initial interval gives A332280.
The complement is counted by A332579.
Unimodal compositions are A001523.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&unimodQ[Length/@Split[#]]&]],{n,0,30}]

A332745 Number of integer partitions of n whose run-lengths are either weakly increasing or weakly decreasing.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 21, 29, 39, 51, 68, 87, 113, 143, 183, 228, 289, 354, 443, 544, 672, 812, 1001, 1202, 1466, 1758, 2123, 2525, 3046, 3606, 4308, 5089, 6054, 7102, 8430, 9855, 11621, 13571, 15915, 18500, 21673, 25103, 29245, 33835, 39296, 45277, 52470
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

Also partitions whose run-lengths and negated run-lengths are both unimodal.

Examples

			The a(8) = 21 partitions are:
  (8)     (44)     (2222)
  (53)    (332)    (22211)
  (62)    (422)    (32111)
  (71)    (431)    (221111)
  (521)   (3311)   (311111)
  (611)   (4211)   (2111111)
  (5111)  (41111)  (11111111)
Missing from this list is only (3221).
		

Crossrefs

The complement is counted by A332641.
The Heinz numbers of partitions not in this class are A332831.
The case of run-lengths of compositions is A332835.
Only weakly decreasing is A100882.
Only weakly increasing is A100883.
Unimodal compositions are A001523.
Non-unimodal compositions are A115981.
Partitions with unimodal run-lengths are A332280.
Partitions whose negated run-lengths are unimodal are A332638.
Compositions with unimodal run-lengths are A332726.
Compositions that are neither weakly increasing nor decreasing are A332834.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Or[LessEqual@@Length/@Split[#],GreaterEqual@@Length/@Split[#]]&]],{n,0,30}]

A332726 Number of compositions of n whose run-lengths are unimodal.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 31, 61, 120, 228, 438, 836, 1580, 2976, 5596, 10440, 19444, 36099, 66784, 123215, 226846, 416502, 763255, 1395952, 2548444, 4644578, 8452200, 15358445, 27871024, 50514295, 91446810, 165365589, 298730375, 539127705, 972099072, 1751284617, 3152475368
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The only composition of 6 whose run-lengths are not unimodal is (1,1,2,1,1).
		

Crossrefs

Looking at the composition itself (not run-lengths) gives A001523.
The case of partitions is A332280, with complement counted by A332281.
The complement is counted by A332727.
Unimodal compositions are A001523.
Unimodal normal sequences appear to be A007052.
Non-unimodal compositions are A115981.
Compositions with normal run-lengths are A329766.
Numbers whose prime signature is not unimodal are A332282.
Partitions whose 0-appended first differences are unimodal are A332283, with complement A332284, with Heinz numbers A332287.
Compositions whose negated run-lengths are unimodal are A332578.
Compositions whose negated run-lengths are not unimodal are A332669.
Compositions whose run-lengths are weakly increasing are A332836.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],unimodQ[Length/@Split[#]]&]],{n,0,10}]
  • PARI
    step(M, m)={my(n=matsize(M)[1]); for(p=m+1, n, my(v=vector((p-1)\m, i, M[p-i*m,i]), s=vecsum(v)); M[p,]+=vector(#M,i,s-if(i<=#v, v[i]))); M}
    desc(M, m)={my(n=matsize(M)[1]); while(m>1, m--; M=step(M,m)); vector(n, i, vecsum(M[i,]))/(#M-1)}
    seq(n)={my(M=matrix(n+1, n+1, i, j, i==1), S=M[,1]~); for(m=1, n, my(D=M); M=step(M, m); D=(M-D)[m+1..n+1,1..n-m+2]; S+=concat(vector(m), desc(D,m))); S} \\ Andrew Howroyd, Dec 31 2020

Formula

a(n) + A332727(n) = 2^(n - 1).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 31 2020

A332287 Heinz numbers of integer partitions whose first differences (assuming the last part is zero) are not unimodal.

Original entry on oeis.org

36, 50, 70, 72, 98, 100, 108, 140, 144, 154, 180, 182, 196, 200, 216, 225, 242, 250, 252, 280, 286, 288, 294, 300, 308, 324, 338, 350, 360, 363, 364, 374, 392, 396, 400, 418, 429, 432, 441, 442, 450, 462, 468, 484, 490, 494, 500, 504, 507, 540, 550, 560, 561
Offset: 1

Views

Author

Gus Wiseman, Feb 21 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), which gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
   36: {1,1,2,2}
   50: {1,3,3}
   70: {1,3,4}
   72: {1,1,1,2,2}
   98: {1,4,4}
  100: {1,1,3,3}
  108: {1,1,2,2,2}
  140: {1,1,3,4}
  144: {1,1,1,1,2,2}
  154: {1,4,5}
  180: {1,1,2,2,3}
  182: {1,4,6}
  196: {1,1,4,4}
  200: {1,1,1,3,3}
  216: {1,1,1,2,2,2}
  225: {2,2,3,3}
  242: {1,5,5}
  250: {1,3,3,3}
  252: {1,1,2,2,4}
  280: {1,1,1,3,4}
For example, the prime indices of 70 with 0 appended are (4,3,1,0), with differences (-1,-2,-1), which is not unimodal, so 70 belongs to the sequence.
		

Crossrefs

The enumeration of these partitions by sum is A332284.
Not assuming the last part is zero gives A332725.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Partitions with non-unimodal run-lengths are A332281.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Select[Range[1000],!unimodQ[Differences[Append[Reverse[primeMS[#]],0]]]&]

A332288 Number of unimodal permutations of the multiset of prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 4, 1, 1, 2, 2, 2, 3, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, 1, 2, 2, 3, 1, 2, 2, 4, 2, 2, 1, 6, 1, 2, 3, 1, 2, 4, 1, 3, 2, 4, 1, 4, 1, 2, 2, 3, 2, 4, 1, 5, 1, 2, 1, 6, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Feb 22 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
Also permutations of the multiset of prime indices of n avoiding the patterns (2,1,2), (2,1,3), and (3,1,2).

Examples

			The a(n) permutations for n = 2, 6, 12, 24, 48, 60, 120, 180:
  (1)  (12)  (112)  (1112)  (11112)  (1123)  (11123)  (11223)
       (21)  (121)  (1121)  (11121)  (1132)  (11132)  (11232)
             (211)  (1211)  (11211)  (1231)  (11231)  (11322)
                    (2111)  (12111)  (1321)  (11321)  (12231)
                            (21111)  (2311)  (12311)  (12321)
                                     (3211)  (13211)  (13221)
                                             (23111)  (22311)
                                             (32111)  (23211)
                                                      (32211)
		

Crossrefs

Dominated by A008480.
A more interesting version is A332294.
The complement is counted by A332671.
Unimodal compositions are A001523.
Unimodal normal sequences appear to be A007052.
Unimodal permutations are A011782.
Non-unimodal permutations are A059204.
Numbers with non-unimodal unsorted prime signature are A332282.
Partitions with unimodal 0-appended first differences are A332283.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Permutations[primeMS[n]],unimodQ]],{n,30}]
Previous Showing 31-40 of 114 results. Next