cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 100 results. Next

A357824 Total number A(n,k) of k-tuples of semi-Dyck paths from (0,0) to (n,n-2*j) for j=0..floor(n/2); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 3, 1, 1, 2, 5, 6, 3, 1, 1, 2, 9, 14, 10, 4, 1, 1, 2, 17, 36, 42, 20, 4, 1, 1, 2, 33, 98, 190, 132, 35, 5, 1, 1, 2, 65, 276, 882, 980, 429, 70, 5, 1, 1, 2, 129, 794, 4150, 7812, 5705, 1430, 126, 6, 1, 1, 2, 257, 2316, 19722, 65300, 78129, 33040, 4862, 252, 6
Offset: 0

Views

Author

Alois P. Heinz, Oct 14 2022

Keywords

Examples

			Square array A(n,k) begins:
  1,  1,   1,    1,     1,       1,        1,         1, ...
  1,  1,   1,    1,     1,       1,        1,         1, ...
  2,  2,   2,    2,     2,       2,        2,         2, ...
  2,  3,   5,    9,    17,      33,       65,       129, ...
  3,  6,  14,   36,    98,     276,      794,      2316, ...
  3, 10,  42,  190,   882,    4150,    19722,     94510, ...
  4, 20, 132,  980,  7812,   65300,   562692,   4939220, ...
  4, 35, 429, 5705, 78129, 1083425, 15105729, 211106945, ...
		

Crossrefs

Rows n=1-5 give: A000012, A007395, A000051, A001550, A074511.
Main diagonal gives A357825.

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
        end:
    A:= (n, k)-> add(b(n, n-2*j)^k, j=0..n/2):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[x_, y_] := b[x, y] = If[y < 0 || y > x, 0, If[x == 0, 1, Sum[b[x - 1, y + j], {j, {-1, 1}}]]];
    A[n_, k_] := Sum[b[n, n - 2*j]^k, { j, 0, n/2}];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Oct 18 2022, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=0..floor(n/2)} A008315(n,j)^k.
A(n,k) = Sum_{j=0..n} A120730(n,j)^k for k>=1, A(n,0) = A008619(n).

A074507 a(n) = 1^n + 3^n + 5^n.

Original entry on oeis.org

3, 9, 35, 153, 707, 3369, 16355, 80313, 397187, 1972809, 9824675, 49005273, 244672067, 1222297449, 6108298595, 30531927033, 152630937347, 763068593289, 3815084686115, 19074648589593, 95370918425027, 476847618556329
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[1^n + 3^n + 5^n, {n, 0, 22}]
    LinearRecurrence[{9,-23,15},{3,9,35},30] (* Harvey P. Dale, Mar 02 2022 *)
  • PARI
    a(n) = 1 + 3^n + 5^n; \\ Michel Marcus, Aug 07 2017

Formula

a(n) = 8*a(n-1) - 15*a(n-2) + 8.
G.f.: 1/(1-x)+1/(1-3*x)+1/(1-5*x). E.g.f.: e^x+e^(3*x)+e^(5*x). [Mohammad K. Azarian, Dec 26 2008]

A074528 a(n) = 2^n + 3^n + 6^n.

Original entry on oeis.org

3, 11, 49, 251, 1393, 8051, 47449, 282251, 1686433, 10097891, 60526249, 362976251, 2177317873, 13062296531, 78368963449, 470199366251, 2821153019713, 16926788715971, 101560344351049, 609360902796251
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Comments

From Álvar Ibeas, Mar 24 2015: (Start)
Number of isomorphism classes of 3-fold coverings of a connected graph with circuit rank n+1 [Kwak and Lee].
Number of orbits of the conjugacy action of Sym(3) on Sym(3)^(n+1) [Kwak and Lee, 2001].
(End)

References

  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. [Added by N. J. A. Sloane, Nov 12 2009]

Crossrefs

A246985 is essentially identical.
Third row of A160449, shifted.

Programs

Formula

From Mohammad K. Azarian, Dec 26 2008: (Start)
G.f.: 1/(1-2*x)+1/(1-3*x)+1/(1-6*x).
E.g.f.: exp(2*x) + exp(3*x) + exp(6*x). (End)
a(n) = 11*a(n-1) - 36*a(n-2) + 36*a(n-3). - Wesley Ivan Hurt, Aug 21 2020

A341409 a(n) = (Sum_{k=1..3} k^n) mod n.

Original entry on oeis.org

0, 0, 0, 2, 1, 2, 6, 2, 0, 4, 6, 2, 6, 0, 6, 2, 6, 2, 6, 18, 15, 14, 6, 2, 1, 14, 0, 14, 6, 14, 6, 2, 3, 14, 31, 2, 6, 14, 36, 18, 6, 38, 6, 10, 36, 14, 6, 2, 13, 24, 36, 46, 6, 2, 1, 42, 36, 14, 6, 38, 6, 14, 36, 2, 16, 2, 6, 30, 36, 14, 6, 2, 6, 14, 51, 22, 17, 14, 6, 18, 0, 14, 6, 38, 21
Offset: 1

Views

Author

Seiichi Manyama, Feb 11 2021

Keywords

Crossrefs

(Sum_{k=1..m} k^n) mod n: A096196 (m=2), this sequence (m=3), A341410 (m=4), A341411 (m=5), A341412 (m=6), A341413 (m=7).

Programs

  • Maple
    a:= n-> add(i&^n, i=1..3) mod n:
    seq(a(n), n=1..100);  # Alois P. Heinz, Feb 11 2021
  • Mathematica
    a[n_] := Mod[Sum[k^n, {k, 1, 3}], n]; Array[a, 100] (* Amiram Eldar, Feb 11 2021 *)
  • PARI
    a(n) = sum(k=1, 3, k^n)%n;

Formula

a(n) = A001550(n) mod n.
a(A056645(n)) = 0.

A074506 a(n) = 1^n + 3^n + 4^n.

Original entry on oeis.org

3, 8, 26, 92, 338, 1268, 4826, 18572, 72098, 281828, 1107626, 4371452, 17308658, 68703188, 273218426, 1088090732, 4338014018, 17309009348, 69106897226, 276040168412, 1102998412178, 4408506864308, 17623567104026
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[1^n + 3^n + 4^n, {n, 0, 22}]
    LinearRecurrence[{8,-19,12},{3,8,26},30] (* Harvey P. Dale, May 12 2025 *)

Formula

a(n) = 7*a(n-1) - 12*a(n-2) + 6 with a(0)=3, a(1)=8. - Vincenzo Librandi, Jul 19 2010
a(n) = 8*a(n-1) - 19*a(n-2) + 12*a(n-3). - R. J. Mathar, Jul 18 2010
From Mohammad K. Azarian, Dec 26 2008: (Start)
G.f.: 1/(1-x) + 1/(1-3*x) + 1/(1-4*x).
E.g.f.: e^x + e^(3*x) + e^(4*x). (End)

A074526 a(n) = 2^n + 3^n + 4^n.

Original entry on oeis.org

3, 9, 29, 99, 353, 1299, 4889, 18699, 72353, 282339, 1108649, 4373499, 17312753, 68711379, 273234809, 1088123499, 4338079553, 17309140419, 69107159369, 276040692699, 1102999460753, 4408508961459, 17623571298329
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

  • Magma
    [2^n + 3^n + 4^n: n in [0..25]]; // Vincenzo Librandi, Jun 11 2011
  • Mathematica
    Table[2^n + 3^n + 4^n, {n, 0, 23}]
    LinearRecurrence[{9,-26,24},{3,9,29},30] (* Harvey P. Dale, Jun 14 2022 *)

Formula

From Mohammad K. Azarian, Dec 26 2008: (Start)
G.f.: 1/(1-2*x)+1/(1-3*x)+1/(1-4*x).
E.g.f.: exp(2*x)+exp(3*x)+exp(4*x). (End)

A191488 A companion to Gould’s sequence A001316.

Original entry on oeis.org

4, 6, 8, 10, 8, 12, 16, 18, 8, 12, 16, 20, 16, 24, 32, 34, 8, 12, 16, 20, 16, 24, 32, 36, 16, 24, 32, 40, 32, 48, 64, 66, 8, 12, 16, 20, 16, 24, 32, 36, 16, 24, 32, 40, 32, 48, 64, 68, 16, 24, 32, 40, 32, 48, 64, 72, 32, 48, 64, 80, 64, 96, 128
Offset: 0

Views

Author

Johannes W. Meijer, Jun 05 2011

Keywords

Comments

The row sums of the Sierpinski-Stern triangle A191372 are given by sequence A191487.
The differences diff1(n) = A191487(2*n+3) - A191487(2*n+1) lead to a peculiar number triangle, see the examples. The leading terms of the rows of the diff1(n) triangle clearly stand out from the rest of the terms and are given by A001550(p+1), p>=1; for p=0 this term is 7.
If we ignore the first term of the diff1(n) rows and reverse the order of the remaining terms we get sequence A191488, see the examples; more terms require a higher row number.
Both the diff1(n) and the diff2(n) sequences are related to Gould’s sequence A001316. We ignore the first term and reverse the order of the rest of the terms. The diff2(n) sequence leads directly to A001316, see A191487, while the diff1(n) sequence leads to A001316 in a slightly more complex way. We observe that for Gould’s sequence equation A001316((2*n+1)*2^p-1) = C(p)*A001316(n) with C(p) = 2^p holds, while for its companion A191488 equation A191488((2*n+1)*2^p-1) = C(p)*A001316(n) with C(p) = 2^(p+1)+2 holds; see the Maple program. Furthermore for both sequences a(2^p - 1) = C(p).

Examples

			The first few rows of diff1(n) as a triangle, row lengths A000079(p) with p>=0, are:
[7]
[14, 4]
[36, 8, 6, 4]
[98, 16, 12, 8, 10, 8, 6, 4]
[276, 32, 24, 16, 20, 16, 12, 8, 18, 16, 12, 8, 10, 8, 6, 4]
[794, 64, 48, 32, 40, 32, 24, 16, 36, 32, 24, 16, 20, 16, 12, 8, 34, 32, 24, 16, 20, 16, 12, 8, 18, 16, 12, 8, 10, 8, 6, 4]
The first few rows of diff1(n) reversed minus the first term are:
[4]
[4, 6, 8]
[4, 6, 8, 10, 8, 12, 16]
[4, 6, 8, 10, 8, 12, 16, 18, 8, 12, 16, 20, 16, 24, 32]
[4, 6, 8, 10, 8, 12, 16, 18, 8, 12, 16, 20, 16, 24, 32, 34, 8, 12, 16, 20, 16, 24, 32, 36, 16, 24, 32, 40, 32, 48, 64]
		

Crossrefs

Programs

  • Maple
    nmax:=2^6; pmax:=ceil(log(nmax)/log(2)); A001316 := n -> if n<=-1 then 0 else 2^add(i, i=convert(n, base, 2)) fi: C := proc(p): C(p) := 2^(p+1)+2 end: for p from 0 to pmax do for n from 0 to nmax do a((2*n+1)*2^p-1):= C(p)*A001316(n) od: od: seq(a(n), n=0..nmax-2);

Formula

a((2*n+1)*2^p - 1) = C(p) * A001316(n) with C(p) = (2^(p+1)+2), p>=0.
a(2^p - 1) = 2^(p+1)+2 = A052548(p+1), p>=0.

A366298 Expansion of e.g.f. 1 / (-2 + Sum_{k=1..3} exp(-k*x)).

Original entry on oeis.org

1, 6, 58, 828, 15766, 375276, 10719118, 357202068, 13603819126, 582854637276, 27747071520478, 1453003753611108, 83005119616449286, 5136947527401250476, 342365553703113120238, 24447711909762202272948, 1862151878019906517540246, 150702660087903415402794876, 12913688931657425188926182398
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 18; CoefficientList[Series[1/(-2 + Sum[Exp[-k x], {k, 1, 3}]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k] (1 + 2^k + 3^k) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1) * binomial(n,k) * (1 + 2^k + 3^k) * a(n-k).

A191487 The row sums of the Sierpinski-Stern triangle A191372.

Original entry on oeis.org

0, 1, 3, 8, 9, 22, 24, 26, 27, 62, 66, 70, 72, 76, 78, 80, 81, 178, 186, 194, 198, 206, 210, 214, 216, 224, 228, 232, 234, 238, 240, 242, 243, 518, 534, 550, 558, 574, 582, 590, 594, 610, 618, 626, 630, 638, 642, 646
Offset: 0

Views

Author

Johannes W. Meijer, Jun 05 2011

Keywords

Comments

The row sums a(n) of the Sierpinski-Stern triangle A191372 equal this sequence.
The differences diff1(n) = a(2*n+3) - a(2*n+1) and diff2(n) = (a(2*n+2) - a(2*n))/3, give rise to patterns that lead to Gould’s sequence A001316, see the examples.
The diff1(n) sequence as a triangle leads to Gould’s sequence in a peculiar way, see A191488. The leading terms of the diff1(n) rows are given by A001550(p+1), p>=1; for p=0 the leading term is 7. The rows sums of diff1(n) as a triangle equal A025192(p+2), p>=1; for p = 0 the row sum is 7. The row sums of diff1(n) as a triangle minus the first term equal 2*A053152(p+1).
The diff2(n) sequence as a triangle leads to Gould’s sequence A001316 in a simple way; just delete the first term and reverse the order of the rest of the terms; more terms require a higher row number. The leading terms of the diff2(n) rows are given by A085281(p), p>=0. The row sums of diff2(n) as a triangle equal A025192(p) and the row sums minus the first term equal A001047(p-1), p>=1; for p=0 the row sum minus the first term is 0.

Examples

			The first few rows of diff1(n) as a triangle, row lengths A000079(p) with p>=0, are:
[7]
[14, 4]
[36, 8, 6, 4]
[98, 16, 12, 8, 10, 8, 6, 4]
[276, 32, 24, 16, 20, 16, 12, 8, 18, 16, 12, 8, 10, 8, 6, 4]
[794, 64, 48, 32, 40, 32, 24, 16, 36, 32, 24, 16, 20, 16, 12, 8, 34, 32, 24, 16, 20, 16, 12, 8, 18, 16, 12, 8, 10, 8, 6, 4]
The first few rows of diff2(n) as a triangle, row lengths A011782(p) with p>=0, are:
[1]
[2]
[5, 1]
[13, 2, 2, 1]
[35, 4, 4, 2, 4, 2, 2, 1]
[97, 8, 8, 4, 8, 4, 4, 2, 8, 4, 4, 2, 4, 2, 2, 1]
[275, 16, 16, 8, 16, 8, 8, 4, 16, 8, 8, 4, 8, 4, 4, 2, 16, 8, 8, 4, 8, 4, 4, 2, 8, 4, 4, 2, 4, 2, 2, 1]
		

Crossrefs

Programs

  • Maple
    Add the following lines to the Maple program of A191372.
    A191487(0):=0: for d from 1 to 2^pmax do A191487(d):= 0: for Tx from 0 to 2^ceil(log(d)/ log(2))-1 do A191487(d):=A191487(d)+S2(Tx,d) od: od: seq(A191487(d),d=0..2^pmax);

Formula

a(2*n) = 3*a(n)
diff(n) = a(n+1) - a(n), diff1(n) = a(2*n+3) - a(2*n+1), diff2(n) = (a(2*n+2) - a(2*n))/3
a(2^n+1) - a(2^n) = A085281(n+1) = A007689(n) for n>=0
a(2^(n+1)+1) - a(2^(n+1)-1) = A001550(n+1) for n>=1.

A074502 a(n) = 1^n + 2^n + 6^n.

Original entry on oeis.org

3, 9, 41, 225, 1313, 7809, 46721, 280065, 1679873, 10078209, 60467201, 362799105, 2176786433, 13060702209, 78364180481, 470185017345, 2821109972993, 16926659575809, 101559956930561, 609359740534785, 3656158441111553
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Comments

From Jonathan Vos Post, Apr 16 2005: (Start)
Primes in this sequence include: a(2) = 41, a(10) = 60467201, a(18) = 101559956930561, a(34) = 286511799958070449017978881, a(58) = 1357602166130257152481187563448636039086735361.
Semiprimes in this sequence include: a(1) = 9 = 3^2, a(4) = 1313 = 13 * 101, a(6) = 46721 = 19 * 2459, a(8) = 1679873 = 13 * 129221, a(12) = 2176786433 = 19 * 114567707, a(13) = 13060702209 = 3 * 4353567403, a(28) = 6140942214465083932673 = 13 * 472380170343467994821, a(29) = 36845653286789429854209 = 3 * 12281884428929809951403, a(72) = 106387358923716524807713475752456398462534338499504504833 = 59670762632990981 * 1782905969847563299479030657520813855693. (End)

Crossrefs

Programs

  • Mathematica
    Table[1^n + 2^n + 6^n, {n, 0, 20}]
    LinearRecurrence[{9,-20,12},{3,9,41},30] (* Harvey P. Dale, Aug 15 2017 *)

Formula

G.f.: 1/(1-x)+1/(1-2*x)+1/(1-6*x). E.g.f.: e^x+e^(2*x)+e^(6*x). [Mohammad K. Azarian, Dec 26 2008]
a(n) = 8*a(n-1) - 12*a(n-2) + 5, n> 1. [Gary Detlefs, Jun 21 2010]
Previous Showing 11-20 of 100 results. Next