cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 40 results. Next

A145277 a(n) = A145234(n+1)/A145234(n).

Original entry on oeis.org

598364773, 27692759465311176949233529747775189817301578781117871380248013
Offset: 1

Views

Author

Artur Jasinski, Oct 06 2008

Keywords

Comments

A member of the family of sequences of type:
(G^(k^(n + 1)) - (1 - G)^(k^(n + 1)))/(G^(k^n) - (1 - G)^(k^n)) where G = (1 + sqrt(5))/2
For k=2 see A001566.
For k=3 see A002814(n+2).
For k=4 see A145274.
For k=5 see A145275.
For k=6 see A145276.
For k=7 see this sequence.

Crossrefs

Programs

  • Mathematica
    G = (1 + Sqrt[5])/2; Table[Expand[(G^(7^(n + 1)) - (1 - G)^(7^(n + 1)))/Sqrt[5]]/Expand[(G^(7^n) - (1 - G)^(7^n))/Sqrt[5]], {n, 1, 5}]

Formula

a(n) = (G^(7^(n + 1)) - (1 - G)^(7^(n + 1)))/(G^(7^n) - (1 - G)^(7^n)) where G = (1 + sqrt(5))/2.

A219162 Recurrence equation a(n+1) = a(n)^4 - 4*a(n)^2 + 2 with a(0) = 3.

Original entry on oeis.org

3, 47, 4870847, 562882766124611619513723647
Offset: 0

Views

Author

Peter Bala, Nov 13 2012

Keywords

Comments

Bisection of A001566. Compare the following remarks with A001999.
The present sequence is the case x = 3 of the following general remarks. For other cases see A219163 (x = 4), A219164 (x = 5) and A219165 (x = 6).
Let x > 2 and let alpha := {x + sqrt(x^2 - 4)}/2. Define a sequence a(n) (which depends on x) by setting a(n) = alpha^(4^n) + (1/alpha)^(4^n). Then it is easy to verify that the sequence a(n) satisfies the recurrence equation a(n+1) = a(n)^4 + 4*a(n)^2 - 2 with the initial condition a(0) = x.
We have the product expansion sqrt((x + 2)/(x - 2)) = Product_{n >= 0} ((1 + 2/a(n))/(1 - 2/a(n)^2)).

Crossrefs

Programs

  • PARI
    a(n)={if(n==0,3,a(n-1)^4-4*a(n-1)^2+2)} \\ Edward Jiang, Sep 11 2014

Formula

Let alpha = 1/2*(3 + sqrt(5)) then a(n) = (alpha)^(4^n) + (1/alpha)^(4^n).
a(n) = A001566(2*n) = A000032(2*4^n).
Product {n >= 0} ((1 + 2/a(n))/(1 - 2/a(n)^2)) = sqrt(5).
From Peter Bala, Dec 06 2022: (Start)
a(n) = 2*T(4^n,3/2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind.
Let b(n) = a(n) - 3. The sequence {b(n)} appears to be a strong divisibility sequence, that is, gcd(b(n),b(m)) = b(gcd(n,m)) for n, m >= 1. (End)

A072191 a(n) = a(n-1)^2 + 2.

Original entry on oeis.org

0, 2, 6, 38, 1446, 2090918, 4371938082726, 19113842599189892819591078, 365338978906606237729724396156395693696687137202086, 133472569508521677503139972517335009022889462418844369330479463819154657319297609174034202576402751398
Offset: 0

Views

Author

Miklos Kristof, Jul 02 2002

Keywords

Comments

This shows that in the Mandelbrot set (with z^2 + c), the point c = 2 escapes to infinity. - Alonso del Arte, Apr 08 2016

Examples

			0^2 + 2 = 2, 2^2 + 2 = 6, 6^2 + 2 = 38 ...
		

References

  • Mordechai Ben-Ari, Mathematical Logic for Computer Science, Third edition, 173-203

Crossrefs

Cf. A001566 (a(n-1)^2-2), A003095 (a(n-1)^2+1).

Programs

  • Magma
    [n le 1 select 0 else Self(n-1)^2+2: n in [1..10]]; // Vincenzo Librandi, Oct 05 2015
  • Mathematica
    NestList[#^2 + 2 &, 0, 10]  (* Harvey P. Dale, Jan 23 2011 *)
  • PARI
    a(n)=if(n<1, 0, 2+a(n-1)^2) /* Michael Somos, Mar 25 2006 */
    

Formula

a(n) ~ c^(2^n), where c = 1.57583423499194129500626808486999436507... - Vaclav Kotesovec, Sep 20 2013
a(n) mod 2 = 0. - Altug Alkan, Oct 04 2015

Extensions

Edited by Robert G. Wilson v, Jul 03 2002

A144836 a(n) = round(phi^(4^n)) where phi is the golden ratio (A001622).

Original entry on oeis.org

2, 7, 2207, 23725150497407, 316837008400094222150776738483768236006420971486980607
Offset: 0

Views

Author

Artur Jasinski, Sep 22 2008

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n = 0 then 2 elif n = 1 then 7 else a(n-1)^4 - 4*a(n-1)^2 + 2 end if; end proc: seq(a(n), n = 0..4); # Peter Bala, Nov 28 2022
  • Mathematica
    Table[Round[GoldenRatio^(4^n)], {n, 0, 5}]
    c = (1 + Sqrt[5])/2; Join[{2}, Table[Expand[c^(4^n) + (1 - c)^(4^n)], {n, 1, 5}]] (* Artur Jasinski, Oct 05 2008 *)
    Table[Round[2*Cosh[4^n*ArcCosh[Sqrt[5]/2]]], {n, 0, 5}] (* Artur Jasinski, Oct 09 2008 *)
    a[n_] := LucasL[4^n]; a[0] = 2; Array[a, 5, 0] (* Amiram Eldar, Jul 12 2025 *)
  • PARI
    a(n)=round(((1+sqrt(5))/2)^4^n) \\ Charles R Greathouse IV, Jul 29 2011

Formula

a(n) = Lucas(4^n) = A000032(4^n), n>0.
a(n) = phi^(4^n) + (1 - phi)^(4^n) = phi^(4^n) + (-phi)^(-4^n), where phi is golden ratio = (1 + sqrt(5))/2 = 1.6180339887..., n>0. - Artur Jasinski, Oct 05 2008
a(n) = 2*cosh(4^n*arccosh(sqrt(5)/2)), n>0. - Artur Jasinski, Oct 09 2008
a(n+1) = a(n)^4 - 4*a(n-1)^2 + 2 with a(1) = 7. - Peter Bala, Nov 28 2022

Extensions

Offset corrected by Charles R Greathouse IV, May 15 2013
Offset changed to 0 by Georg Fischer, Sep 02 2022
New name from Peter Bala, Nov 18 2022
Revised by editors, Jul 12 2025

A144838 a(n) = Lucas(6^n).

Original entry on oeis.org

18, 33385282, 1384619022984618483717737087933569992335566082
Offset: 1

Views

Author

Artur Jasinski, Sep 22 2008

Keywords

Comments

Previous name was: a(n) = round(phi^(6^n)) where phi = 1.6180339887498948482... = (sqrt(5)+1)/2.
General (hyperbolic) trigonometric formula for a(n) = round(phi^((2*k)^n)) = 2*cosh((2*k)^n*arccosh(sqrt(5)/2)) where phi = 1.6180339887498948482... = (sqrt(5)+1)/2. - Artur Jasinski, Oct 09 2008

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n = 1 then 18 else a(n-1)^6 - 6*a(n-1)^4 + 9*a(n-1)^2 - 2 end if; end;
    seq(a(n), n = 1..5); # Peter Bala, Nov 28 2022
  • Mathematica
    Table[Round[GoldenRatio^(6^n)], {n, 1, 5}]
    c = (1 + Sqrt[5])/2; Table[Expand[c^(6^n) + (1 - c)^(6^n)], {n, 1, 5}] (* Artur Jasinski, Oct 05 2008 *)
    Table[Round[2*Cosh[6^n*ArcCosh[Sqrt[5]/2]]], {n, 1, 4}] (* Artur Jasinski, Oct 09 2008 *)
    Table[LucasL[6^n], {n, 1, 4}] (* Amiram Eldar, Jul 13 2025 *)

Formula

a(n) = G^(6^n) + (1 - G)^(6^n) = G^(6^n) + (-G)^(-6^n) where G is the golden ratio A001622. - Artur Jasinski, Oct 05 2008
a(n) = 2*cosh(6^n*arccosh(sqrt(5)/2)). - Artur Jasinski, Oct 09 2008
From Peter Bala, Nov 28 2022: (Start)
a(n) = Lucas(6^n).
a(n+1) = a(n)^6 - 6*a(n)^4 + 9*a(n)^2 - 2 with a(1) = 18. (End)

Extensions

New name from Peter Bala, Nov 28 2022

A144839 a(n) = Lucas(7^n).

Original entry on oeis.org

29, 17393796001, 481682208844384447843365760878364816732549453120338354329505085763436029
Offset: 1

Views

Author

Artur Jasinski, Sep 22 2008

Keywords

Comments

Previous name was: a(n) = round(phi^(7^n)) where phi = 1.6180339887498948482... = (sqrt(5)+1)/2.

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n = 0 then 1 else a(n-1)^7 + 7*a(n-1)^5 + 14*a(n-1)^3 +7*a(n-1) end if; end;
    seq(a(n), n = 1..5); # Peter Bala, Nov 28 2022
  • Mathematica
    Table[Round[GoldenRatio^(7^n)], {n, 1, 5}]
    c = (1 + Sqrt[5])/2; Table[Expand[c^(7^n) + (1 - c)^(7^n)], {n, 1, 5}] (* Artur Jasinski, Oct 05 2008 *)
    Table[LucasL[7^n], {n, 1, 4}] (* Amiram Eldar, Jul 13 2025 *)

Formula

a(n) = G^(7^n) + (1 - G)^(7^n) = G^(7^n) + (-G)^(-7^n) where G is the golden ratio A001622. [Artur Jasinski, Oct 05 2008]
From Peter Bala, Nov 28 2022: (Start)
a(n) = Lucas(7^n).
a(n+1) = a(n)^7 + 7*a(n)^5 + 14*a(n)^3 + 7*a(n) with a(0) = 1.
a(n) == 1 (mod 7).
a(n+1) == a(n) (mod 7^(n+1)) for n >= 1 (a particular case of the Gauss congruences for the Lucas numbers).
In the ring of 7-adic integers, the limit_{n -> oo} a(n) exists and is a root of the quartic equation x^4 + 4*x^2 + 2 = 0. (End)

Extensions

New name from Peter Bala, Nov 28 2022

A145276 a(n) = A145233(n+1)/A145233(n).

Original entry on oeis.org

1866294, 41473935220454958813340461622291147206
Offset: 1

Views

Author

Artur Jasinski, Oct 06 2008

Keywords

Comments

A member of the family of sequences of type:
(G^(k^(n + 1)) - (1 - G)^(k^(n + 1)))/(G^(k^n) - (1 - G)^(k^n)) where G = (1 + sqrt(5))/2.
For k=2 see A001566.
For k=3 see A002814(n+2).
For k=4 see A145274.
For k=5 see A145275.
For k=6 see this sequence.
For k=7 see A145277.

Crossrefs

Programs

  • Mathematica
    G = (1 + Sqrt[5])/2; Table[Expand[(G^(6^(n + 1)) - (1 - G)^(6^(n + 1)))/Sqrt[5]]/Expand[(G^(6^n) - (1 - G)^(6^n))/Sqrt[5]], {n, 1, 5}]

Formula

a(n) = (G^(6^(n + 1)) - (1 - G)^(6^(n + 1)))/(G^(6^n) - (1 - G)^(6^n)) where G = (1 + sqrt(5))/2.

A181419 Numbers of the form Fibonacci(p^{k+1})/Fibonacci(p^k) where p are primes, k>=1.

Original entry on oeis.org

3, 7, 17, 47, 2207, 5777, 15005, 4870847, 598364773, 192900153617, 23725150497407, 792070839820228500005, 97415813466381445596089, 562882766124611619513723647, 400009475456580321242184872389193
Offset: 1

Views

Author

Vladimir Shevelev, Oct 18 2010

Keywords

Comments

The union of A001566 (p=2), A002814 except the first two terms (p=3), A145275 (p=5), A145277 (p=7), etc.

Crossrefs

Programs

  • Maple
    N:= 10^50: # for terms <= N
    S:= {}: p:= 1:
    do
     p:= nextprime(p);
     v:= combinat:-fibonacci(p);
     for k from 2 do
       w:= v;
       v:= combinat:-fibonacci(p^k);
       r:= v/w;
       if r > N then break fi;
       S:= S union {r};
     od;
     if k = 2 then break fi;
    od:
    sort(convert(S,list)); # Robert Israel, Apr 09 2024
  • Mathematica
    t = Sort@ Flatten[ Table[ {Prime[n]^(e + 1), Prime[n]^e}, {n, 8}, {e, 10}], 1]; u = Select[t, First@# < 350 &]; Sort[ Fibonacci[ #[[1]]]/Fibonacci[ #[[2]]] & /@ u] (* Robert G. Wilson v, Oct 21 2010 *)

Extensions

a(11) onwards from Robert G. Wilson v, Oct 21 2010

A094057 Number of decimal digits of Lucas(2^n).

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 14, 27, 54, 108, 215, 429, 857, 1713, 3425, 6849, 13697, 27393, 54785, 109570, 219140, 438279, 876558, 1753116, 3506231, 7012462, 14024924, 28049847, 56099693, 112199386, 224398771, 448797541, 897595081, 1795190161, 3590380321, 7180760642, 14361521283
Offset: 0

Views

Author

Matthijs Coster, Apr 29 2004

Keywords

Comments

a(n+1) is the number of decimal digits of A001566(n).
From Hans J. H. Tuenter, Jul 24 2025: (Start)
This sequence can be constructed by taking the first n digits of the binary expansion of
alpha = log_10(phi) = 0.00110 10110 00000 00011 ...
For example, expressing a(n)-1 in binary notation, gives
a(0)-1 = 0,
a(1)-1 = 0,
a(2)-1 = 0,
a(3)-1 = 1,
a(4)-1 = 11,
a(5)-1 = 110,
a(6)-1 = 1101,
a(7)-1 = 11010.
Another way of deriving the sequence is by the recurrence a(n+1)=2a(n)-1+d(n+1), with initial value a(0)=1, and d(n) the n-th digit in the binary expansion of alpha.
a(0) = 1,
a(1) = 2*1-1+0=1,
a(2) = 2*1-1+0=1,
a(3) = 2*1-1+1=2,
a(4) = 2*2-1+1=4,
a(5) = 2*4-1+0=7,
a(6) = 2*7-1+1=14,
a(7) = 2*14-1+0=27.
Alternatively, a(n) provides a encoding of the digits in the binary expansion of alpha,
d(n) = a(n)+1-2a(n-1). (End)

Examples

			a(5)=7, as L(2^5)=L(32)=4870847 and has seven digits.
		

Crossrefs

Programs

  • PARI
    a(n) = length(Str(fibonacci(2^(n+1))/fibonacci(2^n))); \\ adapted to new name by Michel Marcus, Jul 24 2025

Formula

a(n) = 1+floor(2^n*log_10(phi)), where phi=(1+sqrt(5))/2, the golden ratio. - Hans J. H. Tuenter, Jul 23 2025
a(n) = 1 + Sum_{i=0..n} d(i)*2^(n-i), where d(i) is the i-th digit in the binary expansion of log_10(phi). - Hans J. H. Tuenter, Jul 24 2025

Extensions

More terms from Jason Earls, Apr 30 2004
a(23)-a(36) from Arkadiusz Wesolowski, Jul 20 2012
Name edited and a(0)=1 inserted by Hans J. H. Tuenter, Jul 23 2025

A186750 a(0) = 3; thereafter, a(n) = a(n-1)^2 - 3.

Original entry on oeis.org

3, 6, 33, 1086, 1179393, 1390967848446, 1934791555410494424614913, 3743418362887760317407541271559358491868341997566
Offset: 0

Views

Author

Jonathan Vos Post, Feb 26 2011

Keywords

Comments

This is to A001566 as 3 is to 2 (subtrahend). Unlike A001566, which begins with 4 consecutive primes, this sequence can never be prime after a(0) = 3, because the first two terms are both multiples of 3, hence all later terms are. This is the k = 3 row of the array A(k, 0) = 3, A(k, n) = A(k, n-1)^2 - k; and A001566 is the k = 2 row. A003096(n+1) is the k = 1 row.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 3, a[n] == a[n-1]^2 - 3}, a, {n, 0, 10}] (* Vaclav Kotesovec, Dec 18 2014 *)
    Drop[Abs[NestList[#^2 - 3 &, 0, 9]], 1] (* Alonso del Arte, Apr 08 2016 *)

Formula

a(n) ~ c^(2^n), where c = 2.3959550115176494685408322564302422183669584045032057908382914927198090627... - Vaclav Kotesovec, Dec 18 2014
Previous Showing 21-30 of 40 results. Next