cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A338304 Decimal expansion of Sum_{k>=0} 1/L(2^k), where L(k) is the k-th Lucas number (A000032).

Original entry on oeis.org

1, 4, 9, 7, 9, 2, 0, 3, 8, 0, 9, 9, 9, 0, 6, 2, 7, 1, 9, 8, 7, 0, 6, 8, 5, 5, 5, 3, 9, 9, 2, 8, 5, 9, 6, 0, 8, 0, 7, 2, 0, 7, 7, 1, 9, 8, 5, 7, 0, 8, 5, 9, 7, 0, 4, 0, 4, 9, 3, 2, 2, 3, 9, 8, 9, 5, 4, 0, 5, 2, 7, 7, 6, 9, 5, 3, 2, 2, 3, 7, 8, 3, 9, 9, 3, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 21 2020

Keywords

Comments

Erdős and Graham (1980) asked whether this constant is irrational or transcendental.
Badea (1987) proved that it is irrational, and André-Jeannin (1991) proved that it is not a quadratic irrational in Q(sqrt(5)), in contrast to the corresponding sum with Fibonacci numbers, Sum_{k>=0} 1/F(2^k) = (7-sqrt(5))/2 (A079585).
Bundschuh and Pethö (1987) proved that it is transcendental.

Examples

			1.49792038099906271987068555399285960807207719857085...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[1/LucasL[2^n], {n, 0, 10}], 10, 100][[1]]

Formula

Equals 1 + Sum_{k>=0} 1/A001566(k).

A088334 Expansion of 1/phi (phi being the golden ratio) as an infinite product: 1/phi = Product_{k=0..n} (1-1/a(k)).

Original entry on oeis.org

3, 14, 611, 1346270, 6557470319843, 155576970220531065681649694, 87571595343018854458033386304178158174356588264390371
Offset: 0

Views

Author

Thomas Baruchel, Nov 07 2003

Keywords

Comments

The next term is too large to include.

Crossrefs

Programs

  • PARI
    a(n)=if(n<0,0,fibonacci(2^(n+2)-1)+1)

Formula

a(0) = 3, a(n+1) = (a(n)-1)*A001566(n+1)
a(n) = 1+ceiling(1/2*(1-1/sqrt(5))*phi^(2^(n+2))) where phi=(1+sqrt(5))/2. a(n)==2 (mod 3) for n>0. - Benoit Cloitre, Nov 09 2003
a(n) = b(n+2)+1, n>=0, with b(n):= A101342(n) = F(2^n-1). See the reciprocal of the infinite product of this entry. For a proof see the J. Shallit reference. - Wolfdieter Lang, Nov 04 2010

A135928 Digital roots of the Mersenne primes.

Original entry on oeis.org

3, 7, 4, 1, 1, 4, 1, 1, 1, 4, 4, 1, 4, 1, 1, 1, 1, 1, 4, 1, 4, 4, 4, 4, 4, 1, 1, 4, 1, 1, 1, 4, 4, 1, 4, 4, 4, 4, 1, 1, 1, 4, 1, 4, 4, 1, 4, 4
Offset: 1

Views

Author

Ant King, Dec 07 2007

Keywords

Comments

As a consequence of the fact that all prime numbers are of the form 6n-1 or 6n+1 for p>3, all the elements of this sequence after the second will be either 1 or 4, although there is no obvious pattern to their distribution. We can use this result to show that all Mersenne primes after the first are congruent to 1, modulo 6.

Examples

			The fourth Mersenne prime is 127, which has a digital root of 1. Hence a(4)=1.
		

Crossrefs

Programs

  • Mathematica
    DigitalRoot[n_]:=FixedPoint[Plus@@IntegerDigits[ # ]&,n];data1=Select[Range[4500],PrimeQ[2^#-1] &];data2=2^#-1 &/@data1;DigitalRoot/@data2

Formula

a(n) = A010888(A000668(n)).
For n > 2, a(n) = (A000043(n) mod 3)^2. - Jens Kruse Andersen, Jul 29 2014

Extensions

a(40)-a(43) (using A000043) from Jens Kruse Andersen, Jul 29 2014
a(44)-a(48) from mersenne.org added by M Sayer, Jan 05 2023

A181393 Numbers of the form Fibonacci(2^c)/Fibonacci(2^b), 1 <= b < c.

Original entry on oeis.org

3, 7, 21, 47, 329, 987, 2207, 103729, 726103, 2178309, 4870847, 10749959329, 505248088463, 3536736619241, 10610209857723, 23725150497407, 115561578124843393729, 255044402921529369959903, 11987086937311880388115441, 83909608561183162716808087, 251728825683549488150424261
Offset: 1

Views

Author

Vladimir Shevelev, Oct 17 2010

Keywords

Comments

Using an Eratosthenes-like sieve, we find "primes" of the form P_k = Fibonacci(2^(k+1)) / Fibonacci(2^k) = A001566(k-1), k=1,2,..., such that every term has a unique "prime" factorization.

Examples

			If k=3, m=1, by the latter formula, we have a(8) = A001566(2)*A001566(3) = 47*2207 = 103729.
		

Crossrefs

Formula

For n >= 1, a((n^2-n+2)/2) = P_n = A001566(n-1); for 1 <= m < k, a((k^2+3*k)/2-m) = Product_{i=m+1..k} A001566(i).

Extensions

a(12)-a(16) corrected and more terms from Jason Yuen, Feb 10 2025

A293390 Least m such that the exponents in expression for n as a sum of distinct powers of 2 are pairwise distinct mod m; a(0) = 0 by convention.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 2, 3, 1, 2, 3, 4, 2, 4, 3, 4, 1, 3, 2, 5, 3, 3, 4, 5, 2, 5, 4, 5, 3, 5, 4, 5, 1, 2, 3, 3, 2, 4, 5, 6, 3, 4, 3, 6, 4, 4, 5, 6, 2, 3, 5, 6, 4, 6, 5, 6, 3, 6, 5, 6, 4, 6, 5, 6, 1, 4, 2, 4, 3, 5, 3, 7, 2, 4, 4, 4, 5, 5, 6, 7, 3, 5, 4, 7, 3, 5, 6
Offset: 0

Views

Author

Rémy Sigrist, Oct 08 2017

Keywords

Comments

The set of exponents in expression for n as a sum of distinct powers of 2 corresponds to the n-th row of A133457.
The sum of digits of n in base 2^a(n), say s, can be computed without carry in base 2; the Hamming weight of s equals the Hamming weight of n.
a(n) >= A000120(n) for any n > 0.
Apparently, a(n) = A000120(n) iff n = 0 or n belongs to A100290.
a(n) <= A070939(n) for any n >= 0.
For any sequence s of distinct nonnegative integers (s(n) being defined for n >= 0):
- let D_s be defined for any n > 0 by D_s(n) = a(Sum_{k=0..n-1} 2^s(k)),
- then D_s is the discriminator of s as introduced by Arnold, Benkoski, and McCabe in 1985,
- D_s(1) = 1,
- D_s(n) >= n for any n >= 1,
- D_s(n+1) >= D_s(n) for any n >= 1.

Examples

			For n=42:
- 42 = 2^5 + 2^3 + 2^1,
- 5 mod 1 = 3 mod 1,
- 5 mod 2 = 3 mod 2,
- 5 mod 3, 3 mod 3 and 1 mod 3 are all distinct,
- hence a(42) = 3.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local L,D,k;
      L:= convert(n,base,2);
      L:= select(t -> L[t+1]=1, [$0..nops(L)-1]);
      if nops(L) = 1 then return 1 fi;
      D:= {seq(seq(L[j]-L[i],i=1..j-1),j=2..nops(L))};
      D:= `union`(seq(numtheory:-divisors(i),i=D));
      min({$2..max(D)+1} minus D)
    end proc:
    0, seq(f(i),i=1..100); # Robert Israel, Oct 08 2017
  • Mathematica
    {0}~Join~Table[Function[r, SelectFirst[Range@ 10, Length@ Union@ Mod[r, #] == Length@ r &]][Join @@ Position[#, 1] - 1 &@ Reverse@ IntegerDigits[n, 2]], {n, 86}] (* Michael De Vlieger, Oct 08 2017 *)
  • PARI
    a(n) = if (n, my (d=Vecrev(binary(n)), x = []); for (i=1, #d, if (d[i], x = concat(x, i-1))); for (m=1, oo, if (#Set(vector(#x, i, x[i]%m))==#x, return (m))), return (0))

Formula

a(2*n) = a(n) for any n >= 0.
a(2^k-1) = k for any k >= 0.
a(n) = 1 iff n = 2^k for some k >= 0.
a(n) = 2 iff n belongs to A173195.
a(Sum_{k=1..n} 2^(k^2)) = A016726(n) for any n >= 1.
a(Sum_{k=1..n} 2^A000069(k)) = A062383(n) for any n >= 1.
a(Sum_{k=0..n} 2^(2^k)) = A270097(n) for any n >= 0.
a(Sum_{k=1..n} 2^A000045(k+1)) = A270151(n) for any n >= 1.
a(Sum_{k=1..n} 2^A000041(k)) = A270176(n) for any n >= 1.
a(A076793(n)) = A272633(n) for any n >= 0.
a(Sum_{k=1..n} 2^A001969(k)) = A272881(n) for any n >= 1.
a(Sum_{k=1..n} 2^A005823(k)) = A272882(n) for any n >= 1.
a(Sum_{k=1..n} 2^A000215(k-1)) = A273037(n) for any n >= 1.
a(Sum_{k=1..n} 2^A000108(k)) = A273041(n) for any n >= 1.
a(Sum_{k=1..n} 2^A001566(k)) = A273043(n) for any n >= 1.
a(Sum_{k=1..n} 2^A003095(k)) = A273044(n) for any n >= 1.
a(Sum_{k=1..n} 2^A000058(k-1)) = A273056(n) for any n >= 1.
a(Sum_{k=1..n} 2^A002808(k)) = A273062(n) for any n >= 1.
a(Sum_{k=1..n} 2^(k!)) = A273064(n) for any n >= 1.
a(Sum_{k=1..n} 2^(k^k)) = A273068(n) for any n >= 1.
a(Sum_{k=1..n} 2^A000110(k)) = A273237(n) for any n >= 1.
a(Sum_{k=1..n} 2^A001147(k)) = A273377(n) for any n >= 1.

A186751 a(0) = 3; thereafter, a(n) = a(n-1)^2 - 4.

Original entry on oeis.org

3, 5, 21, 437, 190965, 36467631221, 1329888126870853950837, 1768602429992068534155014726612412013000565
Offset: 0

Views

Author

Jonathan Vos Post, Feb 26 2011

Keywords

Comments

This is to A001566 as 4 is to 2 (subtrahend). This is the k=4 row of the array A[k,0] = 3, A[k,n] = A[k,n-1]^2 - k; A186750 is the k=3 row; and A001566 is the k=2 row. A003096(n+1) is the k=1 row.

Examples

			a(1) = a(0)^2 - 4 = 3^2 - 4 = 5, which is, like a(0), a prime.
		

Crossrefs

Programs

A264745 Rectangular array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = Fibonacci(2^(n-1)*(2*k-1) + 1), n,k >= 1.

Original entry on oeis.org

1, 2, 3, 5, 13, 8, 34, 233, 89, 21, 1597, 75025, 10946, 610, 55, 3524578, 7778742049, 165580141, 514229, 4181, 144, 17167680177565, 83621143489848422977, 37889062373143906, 365435296162, 24157817, 28657, 377, 407305795904080553832073954
Offset: 1

Views

Author

L. Edson Jeffery, Nov 23 2015

Keywords

Comments

The array exhausts, without duplication, the subsequence of A000045 obtained by removing the first two terms {0,1}.

Examples

			The array begins:
.     1           3                  8                        21
.     2          13                 89                       610
.     5         233              10946                    514229
.    34       75025          165580141              365435296162
.  1597  7778742049  37889062373143906  184551825793033096366333
		

Crossrefs

Cf. A001906, A033891 (rows 1--2).
Cf. A192222 (column 1).

Programs

  • Mathematica
    (* Array: *)
    Grid[Table[Fibonacci[2^(n - 1)*(2 k - 1) + 1], {n, 5}, {k, 4}]]
    (* Array antidiagonal flattened: *)
    Flatten[Table[Fibonacci[2^(n - k)*(2 k - 1) + 1], {n, 7}, {k, n}]]

Formula

A(n,k) = A000045(A054582(n-1,k-1) + 1).
A(A001511(m),A003602(m)) = A000045(m+1), m >= 1.
Conjectured g.f. for row n: x*(A000045(2^(n-1)+1) - A000045(2^(n-1)-1)*x)/(1 - A001566(n)*x + x^2), n >= 1.

A319749 a(n) is the numerator of the Heron sequence with h(0)=3.

Original entry on oeis.org

3, 11, 119, 14159, 200477279, 40191139395243839, 1615327685887921300502934267457919, 2609283532796026943395592527806764363779539144932833602430435810559
Offset: 0

Views

Author

Paul Weisenhorn, Sep 27 2018

Keywords

Comments

The denominator of the Heron sequence is in A319750.
The following relationship holds between the numerator of the Heron sequence and the numerator of the continued fraction A041018(n)/A041019(n) convergent to sqrt(13).
n even: a(n)=A041018((5*2^n-5)/3).
n odd: a(n)=A041018((5*2^n-1)/3).
More generally, all numbers c(n)=A078370(n)=(2n+1)^2+4 have the same relationship between the numerator of the Heron sequence and the numerator of the continued fraction convergent to 2n+1.
sqrt(c(n)) has the continued fraction 2n+1; n,1,1,n,4n+2.
hn(n)^2-c(n)*hd(n)^2=4 for n>1.
From Peter Bala, Mar 29 2022: (Start)
Applying Heron's method (sometimes called the Babylonian method) to approximate the square root of the function x^2 + 4, starting with a guess equal to x, produces the sequence of rational functions [x, 2*T(1,(x^2+2)/2)/x, 2*T(2,(x^2+2)/2)/( 2*x*T(1,(x^2+2)/2) ), 2*T(4,(x^2+2)/2)/( 4*x*T(1,(x^2+2)/2)*T(2,(x^2+2)/2) ), 2*T(8,(x^2+2)/2)/( 8*x*T(1,(x^2+2)/2)*T(2,(x^2+2)/2)*T(4,(x^2+2)/2) ), ...], where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. The present sequence is the case x = 3. Cf. A001566 and A058635 (case x = 1), A081459 and A081460 (essentially the case x = 4). (End)

Examples

			A078370(2)=29.
hn(0)=A041046(0)=5; hn(1)=A041046(3)=27; hn(2)=A041046(5)=727;
hn(3)=A041046(13)=528527.
		

Crossrefs

2*T(2^n,x/2) modulo differences of offset: A001566 (x = 3 and x = 7), A003010 (x = 4), A003487 (x = 5), A003423 (x = 6), A346625 (x = 8), A135927 (x = 10), A228933 (x = 18).

Programs

  • Maple
    hn[0]:=3:  hd[0]:=1:
    for n from 1 to 6 do
    hn[n]:=(hn[n-1]^2+13*hd[n-1]^2)/2:
    hd[n]:=hn[n-1]*hd[n-1]:
       printf("%5d%40d%40d\n", n, hn[n], hd[n]):
    end do:
    #alternative program
    a := n -> if n = 0 then 3 else simplify( 2*ChebyshevT(2^(n-1), 11/2) ) end if:
    seq(a(n), n = 0..7); # Peter Bala, Mar 16 2022
  • Python
    def aupton(nn):
        hn, hd, alst = 3, 1, [3]
        for n in range(nn):
            hn, hd = (hn**2 + 13*hd**2)//2, hn*hd
            alst.append(hn)
        return alst
    print(aupton(7)) # Michael S. Branicky, Mar 16 2022

Formula

h(n) = hn(n)/hd(n); hn(0)=3; hd(0)=1.
hn(n+1) = (hn(n)^2+13*hd(n)^2)/2.
hd(n+1) = hn(n)*hd(n).
A041018(n) = A010122(n)*A041018(n-1) + A041018(n-2).
A041019(n) = A010122(n)*A041019(n-1) + A041019(n-2).
From Peter Bala, Mar 16 2022: (Start)
a(n) = 2*T(2^(n-1),11/2) for n >= 1, where T(n,x) denotes the n-th Chebyshev polynomial of the first kind.
a(n) = 2*T(2^n, 3*sqrt(-1)/2) for n >= 2.
a(n) = ((11 + 3*sqrt(13))/2)^(2^(n-1)) + ((11 - 3*sqrt(13))/2)^(2^(n-1)) for n >= 1.
a(n+1) = a(n)^2 - 2 for n >= 1.
a(n) = A057076(2^(n-1)) for n >= 1.
Engel expansion of (1/6)*(13 - 3*sqrt(13)); that is, (1/6)*(13 - 3*sqrt(13)) = 1/3 + 1/(3*11) + 1/(3*11*119) + .... (Define L(n) = (1/2)*(n - sqrt(n^2 - 4)) for n >= 2 and show L(n) = 1/n + L(n^2-2)/n. Iterate this relation with n = 11. See also Liardet and Stambul, Section 4.)
sqrt(13) = 6*Product_{n >= 0} (1 - 1/a(n)).
sqrt(13) = (9/5)*Product_{n >= 0} (1 + 2/a(n)). See A001566. (End)

Extensions

a(6) and a(7) added by Peter Bala, Mar 16 2022

A331038 Residues of the Lucas-Lehmer primality test for M(127) = 2^127 - 1.

Original entry on oeis.org

3, 7, 47, 2207, 4870847, 23725150497407, 562882766124611619513723647, 9932388036497706472820043948129789713, 102423269049837077051675109560558766898, 7949236499829405891753012242872011683, 119093374737774941856311333667076322210
Offset: 0

Views

Author

Sergio Pimentel, Jan 08 2020

Keywords

Comments

Since a(125) = 0, 2^127 - 1 = 170141183460469231731687303715884105727 is prime. This calculation was carried out by hand by Edouard Lucas. It took him 19 years from 1857 to 1876. The method works with a(0) = 3 since M(127) == 3 (mod 4). It also works with a(0) = 4 or a(0) = 10.

Crossrefs

Programs

  • Mathematica
    NestList[Mod[#^2-2,2^127-1]&, 3,10] (* Stefano Spezia, Mar 28 2025 *)

Formula

a(n) = (a(n-1)^2 - 2) mod (2^127-1) with a(0) = 3; a(125) is the final term.

A174652 Partial sums of A002814.

Original entry on oeis.org

1, 3, 20, 5797, 192900159414, 7177905237579946589743785824843591, 369822356418414944143680173221426891716916679027557977938929258031497305419444723776968084111223998808
Offset: 0

Views

Author

Jonathan Vos Post, Mar 25 2010

Keywords

Comments

Partial sums of an infinite coprime sequence defined by recursion. 3 is the only prime through a(6). Is it computationally feasible to find another?

Examples

			a(3) = 1 + 2 + 17 + 5777 = 5797 = 11 * 17 * 31.
		

Crossrefs

Formula

a(n) = SUM[i=0..n] A002814(i) = SUM[i=0..n] {a(n) = a(n-1)^3 + 3a(n-1)^2 - 3}.
Previous Showing 31-40 of 40 results.