cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A336625 Indices of triangular numbers that are eight times other triangular numbers.

Original entry on oeis.org

0, 15, 32, 527, 1104, 17919, 37520, 608735, 1274592, 20679087, 43298624, 702480239, 1470878640, 23863649055, 49966575152, 810661587647, 1697392676544, 27538630330959, 57661384427360, 935502769664975, 1958789677853712, 31779555538278207, 66541187662598864, 1079569385531794079, 2260441590850507680
Offset: 1

Views

Author

Vladimir Pletser, Aug 13 2020

Keywords

Comments

Second member of the Diophantine pair (b(n), a(n)) that satisfies a(n)^2 + a(n) = 8*(b(n)^2 + b(n)) or T(a(n)) = 8*T(b(n)) where T(x) is the triangular number of x. The T(a)'s are in A336626, the T(b)'s are in A336624 and the b's are in A336623.
Can be defined for negative n by setting a(-n) = -a(n+1) - 1 for all n in Z.

Examples

			a(3) = 34*a(1) - a(-1) + 16 = 0 - (-16) + 16 = 32,
a(4) = 34*a(2) - a(0) + 16 = 34*15 - (-1) + 16 = 527, etc.
		

Crossrefs

Programs

  • Maple
    f := gfun:-rectoproc({a(n) = 34*a(n - 2) - a(n - 4) + 16, a(2) = 15, a(1) = 0, a(0) = -1, a(-1) = -16}, a(n), remember); map(f, [$ (0 .. 1000)]); #
  • Mathematica
    LinearRecurrence[{1, 34, -34, -1, 1}, {0, 15, 32, 527, 1104, 17919}, 29] (* Amiram Eldar, Aug 18 2020 *)
    FullSimplify[Table[((Sqrt[2] + 1)^(2*n + 1) * (3 - Sqrt[2]*(-1)^n) - (Sqrt[2] - 1)^(2*n + 1) * (3 + Sqrt[2]*(-1)^n) - 2)/4, {n, 0, 20}]] (* Vaclav Kotesovec, Sep 08 2020 *)
  • PARI
    concat(0, Vec(x*(15 + 17*x - 15*x^2 - x^3) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^22))) \\ Colin Barker, Aug 14 2020

Formula

a(n) = 34*a(n-2) - a(n-4) + 16, for n>=2 with a(2)=15, a(1)=0, a(0)=-1, a(-1)=-16.
a(n) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5), for n>=3 with a(3)=32, a(2)=15, a(1)=0, a(0)=-1, a(-1)=-16.
a(n) = (-1 + sqrt(8*b(n) + 1))/2, where b(n) is A336626(n).
G.f.: x^2*(15 + 17*x - 15*x^2 - x^3) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)). - Colin Barker, Aug 14 2020
a(n) = ((sqrt(2) + 1)^(2*n+1) * (3 - sqrt(2)*(-1)^n) - (sqrt(2) - 1)^(2*n+1) * (3 + sqrt(2)*(-1)^n) - 2)/4. - Vaclav Kotesovec, Sep 08 2020
From Vladimir Pletser, Feb 21 2021: (Start)
a(n) = ((3 - sqrt(2))*(1 + sqrt(2))^(2*n+1) + (3 + sqrt(2))*(1 - sqrt(2))^(2*n+1))/4 - 1/2 for even n.
a(n) = ((3 + sqrt(2))*(1 + sqrt(2))^(2*n+1) + (3 - sqrt(2))*(1 - sqrt(2))^(2*n+1))/4 - 1/2 for odd n. (End)

A336623 First member of the Diophantine pair (m, k) that satisfies 8*(m^2 + m) = k^2 + k; a(n) = m.

Original entry on oeis.org

0, 5, 11, 186, 390, 6335, 13265, 215220, 450636, 7311161, 15308375, 248364270, 520034130, 8437074035, 17665852061, 286612152936, 600118935960, 9736376125805, 20386377970595, 330750176124450, 692536732064286, 11235769612105511, 23525862512215145, 381685416635462940
Offset: 0

Views

Author

Vladimir Pletser, Aug 07 2020

Keywords

Comments

The indices of triangular numbers that are one-eighth of other triangular numbers [m of T(m) such that T(m)=T(k)/8]. The T(m)'s are in A336624, the T(k)'s are in A336626 and the k's are in A336625.
Also, nonnegative m such that 32*m^2 + 32*m + 1 is a square.
Can be defined for negative n by setting a(n) = a(-1-n) for all n in Z.

Examples

			a(2) = 34 a(0) - a(-2)+16=0 -5 +16 = 11 ; a(3) = 34 a(1) - a(-1)+16 = 34*5 -0 +16 = 186, etc.
		

Crossrefs

Programs

  • Maple
    f := gfun:-rectoproc({a(n) = 34*a(n - 2) - a(n - 4) + 16, a(1) = 5, a(0) = 0, a(-1) = 0,  a(-2) = 5}, a(n), remember); map(f, [$ (0 .. 50)]); #
  • Mathematica
    LinearRecurrence[{1, 34, -34, -1, 1}, {0, 5, 11, 186, 390}, 24] (* Amiram Eldar, Aug 08 2020 *)
    FullSimplify[Table[((3*Sqrt[2] - 2*(-1)^n)*(1 + Sqrt[2])^(2*n + 1) + (3*Sqrt[2] + 2*(-1)^n)*(Sqrt[2] - 1)^(2*n + 1) - 8)/16, {n, 0, 20}]] (* Vaclav Kotesovec, Sep 08 2020 *)
  • PARI
    concat(0, Vec(x*(5 + 6*x + 5*x^2) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^22))) \\ Colin Barker, Aug 08 2020

Formula

a(n) = 34 a(n-2) - a(n-4) + 16 for n>=2, with a(1)=5, a(0)=0, a(-1)=0, a(-2)=5.
a(n) = a(n-1) + 34 a(n-2) - 34 a(n-3) - a(n-4)+ a(n-5) for n>=3 with a(2)=11, a(1)=5, a(0)=0, a(-1)=0, a(-2)=5.
a(n) = (C+((-1)^n)*D)*A^n + (E+((-1)^n)*F)*B^n -1/2 with A = (sqrt(2) + 1)^2 ; B = (sqrt(2) - 1)^2 ; C = 3*(2 + sqrt(2))/16 ; D = -(1 + sqrt(2))/8 ; E = 3*(2 - sqrt(2))/16 ; F = (sqrt(2) - 1)/8 and n>=0.
a(n) = (-1 + sqrt(8*b(n) + 1))/2 where b(n) = A336624(n).
G.f.: x*(5 + 6*x + 5*x^2) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)). - Colin Barker, Aug 08 2020
a(n) = ((3*sqrt(2) - 2*(-1)^n) * (1 + sqrt(2))^(2*n + 1) + (3*sqrt(2) + 2*(-1)^n) * (sqrt(2) - 1)^(2*n + 1) - 8)/16. - Vaclav Kotesovec, Sep 08 2020
Comment from _Vladimir Pletser, Feb 21 2021: (Start)
a(n) = ((4 + sqrt(2))(1 + sqrt(2))^(2n) + (4 - sqrt(2))(1 - sqrt(2))^(2n))/16 - 1/2 for even n.
a(n) = ((8 + 5 sqrt(2))(1 + sqrt(2))^(2n) + (8 - 5 sqrt(2))(1 - sqrt(2))^(2n))/16 - 1/2 for odd n. (End)

A336626 Triangular numbers that are eight times another triangular number.

Original entry on oeis.org

0, 120, 528, 139128, 609960, 160554240, 703893960, 185279454480, 812293020528, 213812329916328, 937385441796000, 246739243443988680, 1081741987539564120, 284736873122033021040, 1248329316235215199128, 328586104843582662292128, 1440570949193450800230240, 379188080252621270252095320
Offset: 1

Views

Author

Vladimir Pletser, Oct 04 2020

Keywords

Comments

The triangular numbers T(t) that are eight times another triangular number T(u) : T(t) = 8*T(u). The t's are in A336625, the T(u)'s are in A336624 and the u's are in A336623.
Can be defined for negative n by setting a(n) = a(-1-n) for all n in Z.

Examples

			a(2) = 120 is a term because it is triangular and 120/8 = 15 is also triangular.
a(3) = 1154*a(1) - a(-1) + 648 = 0 - 120 + 648 = 528;
a(4) = 1154*a(2) - a(0) + 648 = 1154*120 - 0 + 648 = 139128, etc.
.
From _Peter Luschny_, Oct 19 2020: (Start)
Related sequences in context, as computed by the Julia function:
n   [A336623, A336624,        A336625,  A336626        ]
[0] [0,       0,              0,        0              ]
[1] [5,       15,             15,       120            ]
[2] [11,      66,             32,       528            ]
[3] [186,     17391,          527,      139128         ]
[4] [390,     76245,          1104,     609960         ]
[5] [6335,    20069280,       17919,    160554240      ]
[6] [13265,   87986745,       37520,    703893960      ]
[7] [215220,  23159931810,    608735,   185279454480   ]
[8] [450636,  101536627566,   1274592,  812293020528   ]
[9] [7311161, 26726541239541, 20679087, 213812329916328] (End)
		

Crossrefs

Programs

  • Julia
    function omnibus()
        println("[A336623, A336624, A336625, A336626]")
        println([0, 0, 0, 0])
        t, h = 1, 1
        for n in 1:999999999
            d, r = divrem(t, 8)
            if r == 0
                d2 = 2*d
                s = isqrt(d2)
                d2 == s * (s + 1) && println([s, d, n, t])
            end
            t, h = t + h + 1, h + 1
        end
    end
    omnibus() # Peter Luschny, Oct 19 2020
  • Maple
    f := gfun:-rectoproc({a(n) = 1154*a(n - 2) - a(n - 4) + 648, a(2) = 120, a(1) = 0, a(0) = 0, a(-1) = 120}, a(n), remember); map(f, [$ (1 .. 1000)])[]; #
  • Mathematica
    LinearRecurrence[{1, 1154, -1154, -1, 1}, {0, 120, 528, 139128, 609960}, 18]

Formula

a(n) = 8*A336624(n).
a(n) = 1154*a(n-2) - a(n-4) + 648, for n>=2 with a(2)=120, a(1)=0, a(0)=0, a(-1)=120.
a(n) = a(n-1) + 1154*a(n-2) - 1154*a(n-3) - a(n-4) + a(n-5), for n>=3 with a(3)=528, a(2)=120, a(1)=0, a(0)=0, a(-1)=120.
a(n) = ((10*sqrt(2))/17 + 15/17)*(17 + 12*sqrt(2))^n + (-(10*sqrt(2))/17 + 15/17)*(17 - 12*sqrt(2))^n + (-15/17 - (45*sqrt(2))/68)*(-17 - 12*sqrt(2))^n + (-15/17 + (45*sqrt(2))/68)*(-17 + 12*sqrt(2))^n - 27*(-4 + 3*sqrt(2))*sqrt(2)*(-1/(-17 + 12*sqrt(2)))^n/(1088*(-17 + 12*sqrt(2))) - 27*(4 + 3*sqrt(2))*sqrt(2)*(-1/(-17 - 12*sqrt(2)))^n/(1088*(-17 - 12*sqrt(2))) - 9/16 - 9*(-3 + 2*sqrt(2))*sqrt(2)*(-1/(17 - 12*sqrt(2)))^n/(272*(17 - 12*sqrt(2))) - 9*(3 + 2*sqrt(2))*sqrt(2)*(-1/(17 + 12*sqrt(2)))^n/(272*(17 + 12*sqrt(2))).
Let b(n) be A336625(n). Then a(n) = b(n)*(b(n)+1)/2.
G.f.: 24*x^2*(5 + 17*x + 5*x^2)/(1 - x - 1154*x^2 + 1154*x^3 + x^4 - x^5). - Stefano Spezia, Oct 05 2020
From Vladimir Pletser, Feb 21 2021: (Start)
a(n) = ((11*(1 + sqrt(2))^2 - (-1)^n*6*(4 + 3*sqrt(2)))*(1 + sqrt(2))^(4n) + (11*(1 - sqrt(2))^2 - (-1)^n*6*(4 - 3*sqrt(2)))*(1 - sqrt(2))^(4n))/32 - 9/16.
a(n) = ((1 + 2*sqrt(2))^2*(1 + sqrt(2))^(4n) + (1 - 2*sqrt(2))^2*(1 - sqrt(2))^(4n))/32 - 9/16 for even n.
a(n) = ((5 + 4*sqrt(2))^2*(1 + sqrt(2))^(4n) + (5 - 4*sqrt(2))^2*(1 - sqrt(2))^(4n))/32 - 9/16 for odd n. (End)

A102871 a(n) = a(n-3) - 5*a(n-2) + 5*a(n-1), a(0) = 1, a(1) = 3, a(2) = 10.

Original entry on oeis.org

1, 3, 10, 36, 133, 495, 1846, 6888, 25705, 95931, 358018, 1336140, 4986541, 18610023, 69453550, 259204176, 967363153, 3610248435, 13473630586, 50284273908, 187663465045, 700369586271, 2613814880038, 9754889933880, 36405744855481, 135868089488043, 507066613096690
Offset: 0

Views

Author

Creighton Dement, Mar 01 2005

Keywords

Comments

A floretion-generated sequence resulting from a particular transform of the periodic sequence (-1,1).
Floretion Algebra Multiplication Program, FAMP Code: .5em[J* ]forseq[ .25( 'i + 'j + 'k + i' + j' + k' + 'ii' + 'jj' + 'kk' + 'ij' + 'ik' + 'ji' + 'jk' + 'ki' + 'kj' + e ) ], em[J]forseq = A001834, vesforseq = (1,-1,1,-1). ForType 1A. Identity used: em[J]forseq + em[J* ]forseq = vesforseq.
Also indices of the centered triangular numbers which are triangular numbers - Richard Choulet, Oct 09 2007
Place a(n) red and b(n) blue balls in an urn; draw 2 balls without replacement. Probability(2 red balls) = 3*Probability(2 blue balls); b(n)=A101265(n). - Paul Weisenhorn, Aug 02 2010

Examples

			For n=5, a(5)=495; b(5)=286; binomial(495,2) = 122265 = 3*binomial(286,2). - _Paul Weisenhorn_, Aug 02 2010
		

Crossrefs

Cf. A001075 (first differences), A001834, A082841, A101265.

Programs

  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=4*a[n-1]-a[n-2]-1 od: seq(a[n], n=1..23); # Zerinvary Lajos, Mar 08 2008
  • Mathematica
    LinearRecurrence[{5,-5,1},{1,3,10},30] (* Harvey P. Dale, Oct 04 2011 *)

Formula

2*a(n) - A001834(n) = (-1)^(n+1); a(n) = 4*a(n-1) - a(n) - 1;
G.f.: (2*x-1)/((x-1)*(x^2-4*x+1)).
Superseeker results: a(n+2) - 2a(n+1) + a(n) = A001834(n+1) (from this and the first relation involving A001834 it follows that 4a(n+1) - a(n+2) - a(n) = (-1)^n as well as the recurrence relation given for A001834 ); a(n+1) - a(n) = A001075(n+1); a(n+2) - a(n) = A082841(n+1).
a(j+3) - 3*a(j+2) - 3*a(j+1) + a(j) = -2 for all j.
a(n+1) = 2*a(n) - 1/2 + (1/2)*(12*a(n)^2 - 12*a(n) + 9)^(1/2). - Richard Choulet, Oct 09 2007
a(n) = (sqrt(12*b(n)*(b(n)-1) + 1) + 1)/2; b(n) = A101265(n). - Paul Weisenhorn, Aug 02 2010
a(n) = A001571(n) + 1. - Johannes Boot, Jun 17 2011
E.g.f.: (exp(2*x)*(cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)) + cosh(x) + sinh(x))/2. - Stefano Spezia, Sep 19 2023

A082840 a(n) = 4*a(n-1) - a(n-2) + 3, with a(0) = -1, a(1) = 1.

Original entry on oeis.org

-1, 1, 8, 34, 131, 493, 1844, 6886, 25703, 95929, 358016, 1336138, 4986539, 18610021, 69453548, 259204174, 967363151, 3610248433, 13473630584, 50284273906, 187663465043, 700369586269, 2613814880036, 9754889933878, 36405744855479, 135868089488041
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Apr 14 2003

Keywords

Comments

Apart from the initial -1, these are the numbers k such that the triangular number k*(k + 1)/2 is the sum of three consecutive triangular numbers - see A129803. - Brian Nowell, Nov 03 2009

Crossrefs

Programs

  • GAP
    a:=[-1,1,8];; for n in [4..30] do a[n]:=5*a[n-1]-5*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Feb 25 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( -(1-6*x+2*x^2)/((1-x)*(1-4*x+x^2)) )); // G. C. Greubel, Feb 25 2019
    
  • Mathematica
    CoefficientList[Series[(-1+6x-2x^2)/((1-x)(1-4x+x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 15 2014 *)
    LinearRecurrence[{5,-5,1}, {-1,1,8}, 30] (* G. C. Greubel, Feb 25 2019 *)
  • PARI
    is(n)=ispolygonal(3/2*n*(n+1)+4,3) || n==-1 \\ Charles R Greathouse IV, Apr 14 2014
    
  • PARI
    my(x='x+O('x^30)); Vec(-(1-6*x+2*x^2)/((1-x)*(1-4*x+x^2))) \\ G. C. Greubel, Feb 25 2019
    
  • Sage
    (-(1-6*x+2*x^2)/((1-x)*(1-4*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019
    

Formula

a(n) = A001571(n) - 1. - N. J. A. Sloane, Nov 03 2009
G.f.: -(1 -6*x +2*x^2)/((1 - x)*(1 - 4*x + x^2)).
a(n) = -3/2 + (1/12)*( (a -2*b +5)*a^n + (b -2*a +5)*b^n ), with a = 2 + sqrt(3), b = 2 - sqrt(3):.
a(n) = -3/2 + (3/4)*A003500(n) - (1/4)*A003500(n-1).
a(n) = (1/2)*(A001834(n) - 3).
E.g.f.: ((1 + sqrt(3))*exp((2 + sqrt(3))*x) + (1 - sqrt(3))*exp((2 - sqrt(3))*x) - 6*exp(x))/4. - Franck Maminirina Ramaharo, Nov 12 2018

A341895 Indices of triangular numbers that are ten times other triangular numbers.

Original entry on oeis.org

0, 4, 20, 39, 175, 779, 1500, 6664, 29600, 56979, 253075, 1124039, 2163720, 9610204, 42683900, 82164399, 364934695, 1620864179, 3120083460, 13857908224, 61550154920, 118481007099, 526235577835, 2337285022799, 4499158186320, 19983094049524, 88755280711460, 170849530073079, 758831338304095, 3370363382012699
Offset: 1

Views

Author

Vladimir Pletser, Feb 23 2021

Keywords

Comments

Second member of the Diophantine pair (b(n), a(n)) that satisfies a(n)^2 + a(n) = 10*(b(n)^2 + b(n)) or T(a(n)) = 10*T(b(n)) where T(x) is the triangular number of x. The T(b)'s are in A068085 and the b's are in A341893.
Can be defined for negative n by setting a(-n) = -a(n+1) - 1 for all n in Z.

Examples

			a(2) = 4 is a term because its triangular number, T(a(2)) = 4*5 / 2 = 10 is ten times a triangular number.
a(4) = 38*a(1) - a(-2) + 18 = 38*0 - (-21) + 18 = 39, etc.
		

Crossrefs

Programs

  • Maple
    f := gfun:-rectoproc({a(-2) = -21, a(-1) = -5, a(0) = -1, a(1) = 0, a(2) = 4, a(3) = 20, a(n) = 38*a(n-3)-a(n-6)+18}, a(n), remember); map(f, [`$`(0 .. 1000)]) ; #
  • Mathematica
    Rest@ CoefficientList[Series[x^2*(4 + 16*x + 19*x^2 - 16*x^3 - 4*x^4 - x^5)/(1 - x - 38*x^3 + 38*x^4 + x^6 - x^7), {x, 0, 30}], x] (* Michael De Vlieger, May 19 2022 *)

Formula

a(n) = 38*a(n-3) - a(n-6) + 18 for n > 3, with a(-2) = -21, a(-1) = -5, a(0) = -1, a(1) = 0, a(2) = 4, a(3) = 20.
a(n) = a(n-1) + 38*(a(n-3) - a(n-4)) - (a(n-6) - a(n-7)) for n >= 4 with a(-2) = -21, a(-1) = -5, a(0) = -1, a(1) = 0, a(2) = 4, a(3) = 20.
G.f.: x^2*(4 + 16*x + 19*x^2 - 16*x^3 - 4*x^4 - x^5)/(1 - x - 38*x^3 + 38*x^4 + x^6 - x^7). - Stefano Spezia, Feb 24 2021
a(n) = (A198943(n) + 1)/2 - 1. - Hugo Pfoertner, Feb 26 2021

A093446 Largest member of the n-th row of the triangular triangle (A093445).

Original entry on oeis.org

1, 3, 9, 18, 33, 54, 82, 120, 165, 225, 294, 378, 476, 588, 720, 865, 1035, 1221, 1430, 1662, 1914, 2197, 2499, 2835, 3195, 3585, 4008, 4456, 4947, 5463, 6021, 6612, 7239, 7910, 8610, 9366, 10153, 10989, 11868, 12788, 13764, 14775, 15850, 16965, 18135
Offset: 1

Views

Author

Amarnath Murthy, Apr 02 2004

Keywords

Comments

The largest terms is near the middle term at about 42.265%. Lim a(n) -> 0.19245*n^3

Examples

			The row for n = 4 is (1+2+3+4), (5+6+7), (8+9), 10 => 10 18 17 10. The largest member is 18 hence a(4) = 18.
		

Crossrefs

Programs

  • Haskell
    a093446 = maximum . a093445_row  -- Reinhard Zumkeller, Oct 03 2012
  • Mathematica
    T[n_] := n(n + 1)/2; TT[n_, k_] := T[k*n - T[k - 1]] - T[(k - 1)*n - T[k - 2]]; Max[ # ] & /@ Table[ TT[n, k], {n, 45}, {k, n}]

Extensions

Edited, corrected and extended by Robert G. Wilson v, Apr 24 2004

A341893 Indices of triangular numbers that are one-tenth of other triangular numbers.

Original entry on oeis.org

0, 1, 6, 12, 55, 246, 474, 2107, 9360, 18018, 80029, 355452, 684228, 3039013, 13497834, 25982664, 115402483, 512562258, 986657022, 4382255359, 19463867988, 37466984190, 166410301177, 739114421304, 1422758742216, 6319209189385, 28066884141582, 54027365220036, 239963538895471, 1065802482958830, 2051617119619170
Offset: 1

Views

Author

Vladimir Pletser, Feb 23 2021

Keywords

Comments

The indices of triangular numbers that are one-tenth of other triangular numbers [t of T(t) such that T(t)=T(u)/10].
First member of the Diophantine pair (t, u) that satisfies 10*(t^2 + t) = u^2 + u; a(n) = t.
The T(t)'s are in A068085 and the u's are in A341895.
Also, nonnegative t such that 40*t^2 + 40*t + 1 is a square.
Can be defined for negative n by setting a(n) = a(-1-n) for all n in Z.

Examples

			a(4) = 12 is a term because its triangular number, (12*13) / 2 = 78 is one-tenth of 780, the triangular number of 39.
a(4) = 38 a(1) - a(-2) +18 = 0 - 6 +18 = 12 ;
a(5) = 38 a(2) - a(-1) + 18 = 38*1 - 1 +18 = 55.
		

Crossrefs

Programs

  • Maple
    f := gfun:-rectoproc({a(-3) = 6, a(-2) = 1, a(-1) = 0, a(0) = 0, a(1) = 1, a(2) = 6, a(n) = 38*a(n-3)-a(n-6)+18}, a(n), remember); map(f, [`$`(0 .. 1000)])[] ;
  • Mathematica
    Rest@ CoefficientList[Series[(x^2*(1 + 5*x + 6*x^2 + 5*x^3 + x^4))/(1 - x - 38*x^3 + 38*x^4 + x^6 - x^7), {x, 0, 31}], x] (* Michael De Vlieger, May 19 2022 *)

Formula

a(n) = (-1 + sqrt(8*b(n) + 1))/2 where b(n) = A068085(n).
a(n) = 38 a(n-3) - a(n-6) + 18 for n > 3, with a(-2) = 6, a(-1) = 1, a(0) = 0, a(1) = 0, a(2) = 1, a(3) = 6.
a(n) = a(n-1) + 38*(a(n-3) - a(n-4)) - (a(n-6) - a(n-7)) for n >= 4 with a(-2) = 6, a(-1) = 1, a(0) = 0, a(1) = 0, a(2) = 1, a(3) = 6.
G.f.: x^2*(1 + 4*x+x^2)*(1+x+x^2)/ ((1-x)*(1-38*x^3+x^6)). - Stefano Spezia, Feb 24 2021
a(n) = A180003(n) - 1. - Hugo Pfoertner, Feb 28 2021

A166477 Minimum positive integer solution x of equation n=x*(x+1)/(t*(t+1)); that is, ratio of product of two consecutive integers divided by product of two consecutive integers. Here n is a nonsquare integer (see A000037).

Original entry on oeis.org

3, 2, 5, 3, 6, 15, 4, 11, 8, 12, 20, 5, 51, 27, 19, 15, 6, 11, 45, 95, 12, 54, 7, 29, 24, 30, 1343, 54, 84, 14, 185, 95, 65, 15, 41, 35, 42, 560, 9, 23, 140, 287, 24, 17, 39, 105, 1539, 10, 48, 18, 87, 1770, 104, 183, 216, 27, 455, 11, 200, 119, 45, 20, 71, 63, 72, 14060, 99
Offset: 2

Views

Author

Carmine Suriano, Oct 14 2009

Keywords

Comments

From R. J. Mathar, Oct 23 2010: (Start)
Writing x = (-1 + sqrt(1 + 4*n*t*(t+1)))/2, each solution is associated with a Diophantine equation 1 + 4*n*t*(t+1) = s^2. The sequence entries are the leading column if all solutions are presented in rows for a given n:
n Seq # solutions
-- ------- ------------------------------------------------
2 A001652 3, 20, 119, 696, 4059
3 A001571 2, 9, 35, 132, 494, 1845, 6887
4 ...
5 A077262 5, 14, 99, 260, 1785, 4674
6 A077291 3, 8, 35, 84, 351, 836, 3479, 8280
7 A077401 6, 14, 104, 231, 1665, 3689
8 A336625 15, 32, 527, 1104, 17919
9 ...
10 A341895 4, 20, 39, 175, 779, 1500, 6664, 29600
11 11, 21, 230, 429, 4598, 8568
12 8, 15, 119, 216, 1664, 3015, 23183
13 12, 77, 845, 1494, 16302
14 20, 35, 615, 1064, 18444, 31899
15 5, 9, 44, 75, 350, 594, 2759, 4680, 21725, 36849
16 ...
17 51, 84, 3399, 5576
18 27, 44, 935, 1512, 31779
19 19, 285, 455, 6649
20 15, 24, 279, 440, 5015, 7904
(End) [table reformatted by Jon E. Schoenfield, Apr 01 2018]

Examples

			For n=14, x=20; corresponding value of t is 5 since 14 = 20*21/(5*6).
		

Crossrefs

Cf. A000037.
Cf. A166478 (associated t). - R. J. Mathar, Oct 23 2010

Extensions

Deleted an 8 between 14 and 185. - R. J. Mathar, Oct 23 2010

A133161 Indices of the triangular numbers which are also centered triangular number.

Original entry on oeis.org

1, 4, 16, 61, 229, 856, 3196, 11929, 44521, 166156, 620104, 2314261, 8636941, 32233504, 120297076, 448954801, 1675522129, 6253133716, 23337012736, 87094917229, 325042656181, 1213075707496, 4527260173804, 16895964987721
Offset: 1

Views

Author

Richard Choulet, Oct 09 2007

Keywords

Comments

Also, indices of the triangular numbers which are sums of three consecutive triangular numbers (see A129803).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5,-5,1},{1,4,16},30] (* Harvey P. Dale, Aug 29 2017 *)

Formula

a(n+2)=4*a(n+1)-a(n)+1.
a(n+1)=2*a(n)+0.5+0.5*(12*a(n)^2+12*a(n)-15)^0.5.
G.f.: x*(1-x+x^2)/(1-x)/(1-4*x+x^2). - R. J. Mathar, Oct 24 2007
a(n)-a(n-1)= A005320(n-1). - R. J. Mathar, Mar 14 2016
Previous Showing 11-20 of 23 results. Next