cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 76 results. Next

A207661 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 1 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 10, 36, 36, 9, 16, 100, 84, 81, 14, 26, 256, 292, 198, 196, 22, 42, 676, 912, 870, 474, 484, 35, 68, 1764, 2812, 3358, 2774, 1140, 1225, 56, 110, 4624, 8928, 12040, 13902, 9060, 2748, 3136, 90, 178, 12100, 28152, 47320, 55752, 60762, 30440
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Table starts
..2....4....6.....10......16......26.......42.........68........110.........178
..4...16...36....100.....256.....676.....1764.......4624......12100.......31684
..6...36...84....292.....912....2812.....8928......28152......87972......277292
..9...81..198....870....3358...12040....47320.....182192.....676396.....2611234
.14..196..474...2774...13902...55752...284272....1391724....6009486....29516206
.22..484.1140...9060...60762..264568..1806676...11731102...56370696...366295198
.35.1225.2748..30440..284108.1296732.12327618..111194040..568720390..5097396968
.56.3136.6630.103838.1384420.6454684.87753008.1144562438.5955572036.76412972266

Examples

			Some solutions for n=4 k=3
..0..1..1....0..1..0....0..1..1....1..1..0....0..0..1....0..1..1....1..0..0
..1..0..0....1..1..0....1..0..0....1..0..1....1..1..0....1..1..0....0..1..1
..0..1..1....1..0..0....0..1..1....0..1..1....1..0..1....1..0..1....1..0..0
..1..1..0....0..1..0....1..0..1....1..1..0....1..1..0....0..1..1....0..1..1
		

Crossrefs

Column 1 is A001611(n+2)
Column 2 is A207436
Row 1 is A006355(n+2)
Row 2 is A206981
Row 3 is A207341

A207752 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 12, 81, 102, 81, 14, 16, 144, 289, 270, 196, 22, 20, 256, 612, 900, 798, 484, 35, 25, 400, 1296, 2100, 3249, 2354, 1225, 56, 30, 625, 2340, 4900, 8778, 11449, 7210, 3136, 90, 36, 900, 4225, 9450, 23716, 34668, 42436, 22232, 8100, 145, 42
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Table starts
..2....4.....6......9.....12......16......20.......25.......30........36
..4...16....36.....81....144.....256.....400......625......900......1296
..6...36...102....289....612....1296....2340.....4225.....6890.....11236
..9...81...270....900...2100....4900....9450....18225....31185.....53361
.14..196...798...3249...8778...23716...51590...112225...213060....404496
.22..484..2354..11449..34668..104976..247860...585225..1182690...2390116
.35.1225..7210..42436.147084..509796.1341606..3530641..7826035..17347225
.56.3136.22232.157609.617732.2421136.6978660.20115225.47881860.113976976

Examples

			Some solutions for n=4 k=3
..1..1..0....0..0..0....1..1..0....0..0..0....0..0..0....1..0..1....0..1..0
..1..0..1....1..1..1....0..1..0....0..1..0....1..0..1....0..0..0....1..0..0
..1..1..1....0..0..0....1..0..0....0..1..0....1..0..0....1..0..1....1..1..0
..0..1..0....1..1..1....0..1..0....0..0..0....1..0..1....0..0..0....0..0..0
		

Crossrefs

Column 1 is A001611(n+2)
Column 2 is A207436
Row 1 is A002620(n+2)
Row 2 is A030179(n+2)
Row 3 is A207118

A207960 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 13, 81, 102, 81, 14, 19, 169, 281, 297, 196, 22, 28, 361, 699, 989, 932, 484, 35, 41, 784, 1799, 3080, 3923, 2974, 1225, 56, 60, 1681, 4706, 9994, 15839, 15921, 9723, 3136, 90, 88, 3600, 12161, 32358, 66089, 84013, 67007, 32164
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Table starts
..2....4.....6......9......13.......19........28.........41..........60
..4...16....36.....81.....169......361.......784.......1681........3600
..6...36...102....281.....699.....1799......4706......12161.......31356
..9...81...297....989....3080.....9994.....32358.....104176......335940
.14..196...932...3923...15839....66089....274310....1137227.....4717144
.22..484..2974..15921...84013...454223...2439422...13111617....70473286
.35.1225..9723..67007..463482..3256420..22743106..159145878..1113110358
.56.3136.32164.286299.2593815.23710041.215653086.1965912435.17907299730

Examples

			Some solutions for n=4 k=3
..0..1..1....1..0..0....1..1..0....0..1..1....1..1..0....1..0..0....0..0..1
..0..1..1....0..1..1....0..0..1....1..1..0....0..0..1....0..1..0....0..0..1
..0..1..1....1..0..0....1..1..1....1..1..1....1..1..1....1..0..0....0..0..1
..0..0..1....0..1..1....1..0..0....1..0..0....0..1..1....1..1..0....0..0..1
		

Crossrefs

Column 1 is A001611(n+2)
Column 2 is A207436
Column 3 is A207495
Row 1 is A000930(n+3)
Row 2 is A207170

A208108 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 1 and 1 1 0 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 15, 81, 78, 81, 14, 25, 225, 169, 171, 196, 22, 40, 625, 611, 361, 406, 484, 35, 64, 1600, 2209, 1805, 841, 990, 1225, 56, 104, 4096, 6016, 9025, 6235, 2025, 2485, 3136, 90, 169, 10816, 16384, 25555, 46225, 22995, 5041, 6328, 8100
Offset: 1

Views

Author

R. H. Hardin Feb 23 2012

Keywords

Comments

Table starts
..2....4....6.....9.....15.......25.......40.......64........104.........169
..4...16...36....81....225......625.....1600.....4096......10816.......28561
..6...36...78...169....611.....2209.....6016....16384......51840......164025
..9...81..171...361...1805.....9025....25555....72361.....292941.....1185921
.14..196..406...841...6235....46225...134160...389376....2189616....12313081
.22..484..990..2025..22995...261121...768544..2262016...18608992...153091129
.35.1225.2485..5041..89815..1600225..4747545.14085009..176312187..2207026441
.56.3136.6328.12769.361261.10220809.30461016.90782784.1769397240.34486347025

Examples

			Some solutions for n=10 k=3
..1..0..0....0..0..1....1..0..1....1..1..0....1..0..0....0..1..1....0..0..1
..0..0..1....1..0..0....0..1..1....0..1..1....0..0..1....1..1..0....0..0..1
..1..0..0....0..1..1....0..0..1....1..1..0....1..1..0....0..1..1....1..0..1
..0..1..1....1..0..0....0..0..1....0..1..1....0..0..1....1..1..0....0..0..1
..1..0..0....0..1..1....0..1..1....1..1..0....1..0..0....0..1..1....1..0..1
..0..1..1....1..0..0....0..0..1....0..1..1....0..0..1....1..1..0....0..0..1
..1..0..0....0..0..1....1..1..1....1..1..0....1..0..0....0..1..1....1..1..1
..0..0..1....1..0..0....0..0..1....0..1..1....0..0..1....1..1..0....0..0..1
..1..1..0....0..1..1....1..1..1....1..1..0....1..0..0....0..1..1....0..0..1
..0..0..1....1..0..0....0..0..1....0..1..1....0..0..1....1..1..0....0..1..1
		

Crossrefs

Column 1 is A001611(n+2)
Column 2 is A207436
Row 1 is A006498(n+2)
Row 2 is A189145(n+2)
Row 3 is A207730

A081659 a(n) = n + Fibonacci(n+1).

Original entry on oeis.org

1, 2, 4, 6, 9, 13, 19, 28, 42, 64, 99, 155, 245, 390, 624, 1002, 1613, 2601, 4199, 6784, 10966, 17732, 28679, 46391, 75049, 121418, 196444, 317838, 514257, 832069, 1346299, 2178340, 3524610, 5702920, 9227499, 14930387, 24157853, 39088206
Offset: 0

Views

Author

Paul Barry, Mar 26 2003

Keywords

Comments

Row sums of triangle A135222. - Gary W. Adamson, Nov 23 2007
a(n) is the F(n+1)-th highest positive integer not equal to any a(k), 1 <= k <= n-1, where F(n) = Fibonacci numbers = A000045(n). - Jaroslav Krizek, Oct 28 2009

Crossrefs

Cf. A000045, A001611 (first differences), A002062, A135222.

Programs

Formula

a(n) = (sqrt(5)*(1+sqrt(5))^(n+1) - sqrt(5)*(1-sqrt(5))^(n+1))/(10*2^n) + n.
G.f.: (1-x-x^3)/((1-x-x^2)*(1-x)^2).
From Jaroslav Krizek, Oct 28 2009: (Start)
a(0) = 1, a(n) = a(n-1) + A000045(n-1) + 1 for n >= 1.
a(0) = 1, a(n) = a(n-1) + A000045(n+1) - A000045(n) + 1 for n >= 1.
a(0) = 1, a(1) = 2, a(2) = 4, a(n) = a(n-1) + a(n-2) - (n-3) n >= 3. (End)
E.g.f.: (1/10)*exp(-2*x/(1+sqrt(5)))*(5 - sqrt(5) + (5 + sqrt(5))*exp(sqrt(5)*x) + 10*exp((1/2)*(1+sqrt(5))*x)*x). - Stefano Spezia, Nov 20 2019

A207741 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 0 0 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 15, 81, 114, 81, 14, 25, 225, 361, 387, 196, 22, 40, 625, 1425, 1849, 1414, 484, 35, 64, 1600, 5625, 10535, 10201, 5302, 1225, 56, 104, 4096, 20550, 60025, 86355, 58081, 20265, 3136, 90, 169, 10816, 75076, 327075, 731025
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Table starts
..2....4.....6.......9.......15.........25..........40............64
..4...16....36......81......225........625........1600..........4096
..6...36...114.....361.....1425.......5625.......20550.........75076
..9...81...387....1849....10535......60025......327075.......1782225
.14..196..1414...10201....86355.....731025.....5959350......48580900
.22..484..5302...58081...733363....9259849...113534330....1392036100
.35.1225.20265..335241..6349893..120275089..2215586241...40813292529
.56.3136.78120.1946025.55343835.1573946929.43590708750.1207251562500

Examples

			Some solutions for n=4 k=3
..1..1..1....0..1..1....0..1..1....0..0..1....1..1..1....0..1..1....1..1..0
..1..1..1....1..1..0....1..0..0....1..0..0....1..1..0....1..0..1....1..0..1
..1..1..1....1..1..1....1..1..1....0..0..1....1..0..1....0..1..1....1..1..0
..1..1..1....1..0..1....1..1..0....1..0..1....1..1..1....1..1..0....0..1..1
		

Crossrefs

Column 1 is A001611(n+2)
Column 2 is A207436
Column 3 is A207712
Row 1 is A006498(n+2)
Row 2 is A189145(n+2)
Row 3 is A207427

A207885 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 1 1 and 1 1 0 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 13, 81, 82, 81, 14, 19, 169, 221, 177, 196, 22, 28, 361, 493, 575, 408, 484, 35, 41, 784, 1095, 1360, 1673, 942, 1225, 56, 60, 1681, 2654, 3106, 4387, 4881, 2233, 3136, 90, 88, 3600, 6203, 8652, 10207, 14225, 14825, 5348, 8100, 145, 129
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Table starts
..2....4....6.....9.....13.....19......28.......41.......60........88.......129
..4...16...36....81....169....361.....784.....1681.....3600......7744.....16641
..6...36...82...221....493...1095....2654.....6203....14182.....33242.....77781
..9...81..177...575...1360...3106....8652....22114....53620....139806....360132
.14..196..408..1673...4387..10207...33976....97989...250976....751786...2196861
.22..484..942..4881..14225..33631..138552...452415..1213630...4316538..14467167
.35.1225.2233.14825..49586.119278..618202..2332602..6535778..28238814.110355600
.56.3136.5348.45411.175747.430317.2857532.12501427.36429646.195734448.894867543

Examples

			Some solutions for n=4 k=3
..1..1..1....0..1..0....0..1..1....0..0..1....0..1..0....0..0..1....1..0..0
..1..1..1....1..0..0....1..1..0....0..1..1....1..1..1....1..1..0....0..0..1
..1..1..1....0..1..1....0..1..1....0..0..1....0..1..0....0..0..1....1..1..0
..1..1..1....1..0..0....1..1..0....1..1..1....0..1..0....1..0..0....0..0..1
		

Crossrefs

Column 1 is A001611(n+2)
Column 2 is A207436
Column 3 is A207483
Row 1 is A000930(n+3)
Row 2 is A207170
Row 3 is A207763

A207938 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 14, 81, 98, 64, 10, 22, 196, 271, 200, 100, 12, 35, 484, 844, 643, 350, 144, 14, 56, 1225, 2706, 2422, 1271, 556, 196, 16, 90, 3136, 8977, 9430, 5594, 2239, 826, 256, 18, 145, 8100, 30168, 38207, 25490, 11256, 3641, 1168, 324, 20, 234
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Table starts
..2...4....6....9....14.....22......35.......56.......90.......145........234
..4..16...36...81...196....484....1225.....3136.....8100.....21025......54756
..6..36...98..271...844...2706....8977....30168...102384....349069....1193648
..8..64..200..643..2422...9430...38207...156792...649758...2703377...11276024
.10.100..350.1271..5594..25490..121313...584386..2841676..13864995...67793828
.12.144..556.2239.11256..58602..319439..1760946..9794226..54631117..305277128
.14.196..826.3641.20568.120276..737575..4570122.28555126.178852957.1121957980
.16.256.1168.5581.34986.226850.1544037.10609482.73474400.509887759.3543126698

Examples

			Some solutions for n=4 k=3
..0..1..0....1..1..0....0..0..0....1..1..0....1..1..1....0..1..1....0..0..0
..1..1..1....1..1..0....0..0..0....0..0..0....1..0..1....1..1..0....0..1..1
..0..1..1....1..1..0....0..0..0....0..1..0....1..1..1....1..1..1....0..1..0
..0..1..1....1..1..0....0..0..0....0..1..0....1..1..1....1..1..1....0..1..1
		

Crossrefs

Column 1 is A004275(n+1)
Column 2 is A016742
Column 3 is A207106
Column 4 is A207107
Row 1 is A001611(n+2)
Row 2 is A207436

A208840 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 1 and 1 1 0 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 10, 36, 36, 9, 16, 100, 78, 81, 14, 26, 256, 282, 171, 196, 22, 42, 676, 768, 855, 406, 484, 35, 68, 1764, 2430, 2421, 3010, 990, 1225, 56, 110, 4624, 7086, 9801, 8736, 11242, 2485, 3136, 90, 178, 12100, 21588, 31419, 49126, 33088, 44275
Offset: 1

Views

Author

R. H. Hardin Mar 01 2012

Keywords

Comments

Table starts
..2....4....6.....10.....16.......26.......42........68........110.........178
..4...16...36....100....256......676.....1764......4624......12100.......31684
..6...36...78....282....768.....2430.....7086.....21588......64230......193554
..9...81..171....855...2421.....9801....31419....116919.....394965.....1419849
.14..196..406...3010...8736....49126...169974....833364....3166030....14462714
.22..484..990..11242..33088...272206...992574...6800596...28280758...173714530
.35.1225.2485..44275.131355..1644265..6206445..62470275..277136755..2417186345
.56.3136.6328.179032.533568.10399480.40122936.613538688.2842543480.36689660504

Examples

			Some solutions for n=4 k=3
..1..0..0....1..1..1....1..1..1....1..0..1....0..1..0....0..1..0....0..1..1
..0..1..1....0..1..0....1..1..0....1..0..0....1..1..0....1..0..1....0..1..1
..1..0..0....0..1..0....1..1..1....1..1..1....0..1..0....0..1..0....0..1..1
..0..1..1....0..1..1....1..1..0....1..0..0....0..1..0....1..0..0....1..1..1
		

Crossrefs

Column 1 is A001611(n+2)
Column 2 is A207436
Column 3 is A208103
Row 1 is A006355(n+2)
Row 2 is A206981
Row 3 is A208689

Formula

Empirical for row n:
n=1: a(k)=a(k-1)+a(k-2)
n=2: a(k)=2*a(k-1)+2*a(k-2)-a(k-3)
n=3: a(k)=2*a(k-1)+4*a(k-2)-3*a(k-3)
n=4: a(k)=2*a(k-1)+7*a(k-2)-6*a(k-3)
n=5: a(k)=2*a(k-1)+12*a(k-2)-11*a(k-3)
n=6: a(k)=2*a(k-1)+20*a(k-2)-19*a(k-3)
n=7: a(k)=2*a(k-1)+33*a(k-2)-32*a(k-3)

A209650 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 14, 81, 102, 64, 10, 22, 196, 270, 216, 100, 12, 35, 484, 798, 630, 390, 144, 14, 56, 1225, 2354, 2156, 1215, 636, 196, 16, 90, 3136, 7210, 7128, 4690, 2079, 966, 256, 18, 145, 8100, 22232, 24990, 16830, 8904, 3276, 1392, 324, 20, 234
Offset: 1

Views

Author

R. H. Hardin Mar 11 2012

Keywords

Comments

Table starts
..2...4....6....9....14.....22.....35......56.......90......145.......234
..4..16...36...81...196....484...1225....3136.....8100....21025.....54756
..6..36..102..270...798...2354...7210...22232....69570...218950....693810
..8..64..216..630..2156...7128..24990...87136...311040..1112150...4018716
.10.100..390.1215..4690..16830..65765..251160...994050..3911375..15639390
.12.144..636.2079..8904..34012.145775..597856..2579940.10954895..47622744
.14.196..966.3276.15386..61754.287140.1247736..5805450.26247900.122620446
.16.256.1392.4860.24808.103664.518700.2364992.11769120.56106300.279344520

Examples

			Some solutions for n=4 k=3
..1..1..1....1..1..1....1..1..0....0..0..0....0..1..0....0..0..0....0..1..0
..1..1..1....1..1..1....1..1..0....0..1..1....1..1..0....0..0..0....0..0..0
..1..1..1....0..1..0....1..1..0....0..1..0....0..0..0....0..0..0....0..0..0
..1..1..1....0..1..0....1..1..0....0..0..0....0..0..0....0..0..0....0..0..0
		

Crossrefs

Column 2 is A016742
Column 3 is A086113
Row 1 is A001611(n+2)
Row 2 is A207436
Row 3 is A207747

Formula

Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = 2*n^3 + 6*n^2 - 2*n
k=4: a(n) = 9*n^3 + (9/2)*n^2 - (9/2)*n
k=5: a(n) = (7/2)*n^4 + 21*n^3 - (7/2)*n^2 - 7*n
k=6: a(n) = 22*n^4 + (88/3)*n^3 - 22*n^2 - (22/3)*n
k=7: a(n) = 7*n^5 + 70*n^4 + (35/3)*n^3 - (105/2)*n^2 - (7/6)*n
Previous Showing 31-40 of 76 results. Next