cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 324 results. Next

A301594 Expansion of Product_{k>=1} (1 + x^k)^A001615(k), where A001615 is the Dedekind psi function.

Original entry on oeis.org

1, 1, 3, 7, 13, 27, 55, 99, 185, 341, 604, 1064, 1863, 3181, 5411, 9123, 15167, 25051, 41083, 66715, 107703, 172735, 275034, 435484, 685753, 1073481, 1672160, 2592070, 3998278, 6140196, 9389302, 14296376, 21682534, 32759202, 49308812, 73956692, 110545113
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 24 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Exp[Sum[-(-1)^j * Sum[k*Sum[MoebiusMu[d]^2 / d, {d, Divisors @ k}] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 31 2018 *)

Formula

a(n) ~ exp(3^(5/3) * (5*Zeta(3))^(1/3) * n^(2/3) / (2^(4/3) * Pi^(2/3)) - Pi^(2/3) * n^(1/3) / (2^(5/3) * 3^(2/3) * (5*Zeta(3))^(1/3)) - Pi^2 / (2160 * Zeta(3))) * (5*Zeta(3))^(1/6) / (2^(3/4) * 3^(1/6) * Pi^(5/6) * n^(2/3)).

A323328 Lexicographically earliest unbounded aliquot-like sequence based on the Dedekind psi function: a(1) = 318, a(n) = t(a(n-1)) where t(k) = A001615(k) - k.

Original entry on oeis.org

318, 330, 534, 546, 798, 1122, 1470, 2562, 3390, 4818, 5838, 7602, 9870, 17778, 17790, 24978, 27438, 30882, 30894, 34386, 40782, 52530, 82254, 82266, 82278, 106074, 111654, 111690, 176022, 266346, 266382, 266490, 480006, 480330, 674406, 740826, 833814, 834138
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

318 is the least number k whose repeated iteration of the mapping k -> A001615(k) - k yields an unbounded sequence. Since t(m^j * n) = m^j * t(n) if m|n, then if in the sequence a_0 = k, a_1 = t(k), a_2 = t(t(k))... there is a term a_{i1} = m^j * a_0 such that m|k and j > 0 then a_{i+i1} = m^j * a_i for all i and thus the sequence is unbounded. Since a(13)=9870, after 19 iterations a(32) = 27 * 9870, 27 = 3^3 and 3|9870 then a(n+19) = 27 * a(n) for n >= 13.

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, Amer. Math. Soc., 2009, page 71, entry 318.

Crossrefs

Programs

  • Mathematica
    t[1] = 0; t[n_] := (Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]) - 1)*n; NestList[t, 318, 40]

A323329 Lesser of amicable pair m < n defined by t(n) = m and t(m) = n where t(n) = psi(n) - n and psi(n) = A001615(n) is the Dedekind psi function.

Original entry on oeis.org

1330, 2660, 3850, 5320, 6650, 7700, 10640, 11270, 13300, 14950, 15400, 18550, 19250, 21280, 22540, 26600, 29900, 30800, 33250, 37100, 38500, 42560, 45080, 53200, 59800, 61600, 66500, 73370, 74200, 74750, 77000, 78890, 85120, 90160, 92750, 96250, 106400, 119600
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

t(n) = psi(n) - n is the sum of aliquot divisors of n, d, such that n/d is squarefree. Penney & Pomerance proposed a problem to show that the "pseudo-aliquot" sequence related to this function is unbounded. This sequence lists number with pseudo-aliquot sequence of cycle 2. The sequence that is analogous to perfect numbers is A033845.
The asymptotic density of the terms relative to the positive integers is zero. See Dimitrov link. - S. I. Dimitrov, Aug 06 2025

Crossrefs

Cf. A001615, A002025, A033845 (Dedekind psi perfect numbers), A323327, A323328, A323330.

Programs

  • Mathematica
    psi[n_] := n*Times@@(1+1/Transpose[FactorInteger[n]][[1]]); t[n_]:= psi[n] - n; s={}; Do[n=t[m]; If[n>m && t[n]==m, AppendTo[s,m]], {m, 1, 120000}]; s

A327251 Expansion of Sum_{k>=1} psi(k) * x^k / (1 - x^k)^2, where psi = A001615.

Original entry on oeis.org

1, 5, 7, 16, 11, 35, 15, 44, 33, 55, 23, 112, 27, 75, 77, 112, 35, 165, 39, 176, 105, 115, 47, 308, 85, 135, 135, 240, 59, 385, 63, 272, 161, 175, 165, 528, 75, 195, 189, 484, 83, 525, 87, 368, 363, 235, 95, 784, 161, 425, 245, 432, 107, 675, 253, 660, 273
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 15 2019

Keywords

Comments

Inverse Moebius transform of A322577.
Dirichlet convolution of A001615 with A000027.

Crossrefs

Programs

  • Mathematica
    nmax = 57; CoefficientList[Series[Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, k] x^k/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    f[p_, e_] := p^(e - 1)*((p + 1)*e + p); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 24 2021 *)
  • PARI
    mypsi(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
    a(n) = sumdiv(n, d, mypsi(n/d)*d); \\ Michel Marcus, Sep 15 2019

Formula

a(n) = Sum_{d|n} psi(n/d) * d.
a(p) = 2*p + 1, where p is prime.
Multiplicative with a(p^e) = p^(e-1)*((p+1)*e + p). - Antti Karttunen, Aug 24 2021

A344700 Numbers k for which A306927(k) [= A001615(k)-k] is a multiple of A344705(k) [= A001615(k)-A001065(k)], and their quotient is nonnegative.

Original entry on oeis.org

1, 6, 24, 28, 168, 496, 864, 1080, 1520, 1836, 2016, 2088, 2112, 2520, 2912, 2976, 3000, 3024, 3240, 3800, 8128, 9000, 11088, 11232, 11448, 14160, 14688, 16920, 17028, 18360, 19872, 20520, 20880, 25280, 25488, 27552, 29376, 30800, 31200, 31320, 31968, 35400, 39240, 44064, 48768, 49896, 50760, 51480, 51660, 52200, 55680
Offset: 1

Views

Author

Antti Karttunen, May 28 2021

Keywords

Comments

Numbers k for which A344704(k) = A344705(k), i.e., numbers k such that gcd(A001615(k)-k, A001615(k)-A001065(k)) = A001615(k) - A001065(k).
Note that A306927(k) is always nonnegative, but A344705(k) = A033879(k) + A306927(k) gets also negative values. Number k is perfect only when A033879(k) = A344705(k) - A306927(k) = 0, that is, when A344705(k) = A306927(k), which necessitates that A306927(k) should be a multiple of A344705(k), and their quotient should be nonnegative (actually = +1).
In the range 1 .. 2^31 there are 782 such numbers, of which only the initial 1 is odd.

Crossrefs

Cf. A000203, A001065, A001615, A033879, A244963, A306927, A344704, A344705, A344752 (gives the quotient A306927(k)/A344705(k) computed for these terms), A344753.
Cf. A000396 (subsequence).
Cf. also A344754, A344755.

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    isA344700(n) = { my(t=A001615(n), s=sigma(n), u = (n+t)-s); (gcd(t-n,u)==u); };
    \\ Alternatively as:
    isA344700(n) = { my(t=A001615(n), s=sigma(n), u = (n+t)-s); ((u>0)&&(0==((t-n)%u))); };

A203444 Numbers in range of Dedekind Psi function: A001615.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 14, 18, 20, 24, 30, 32, 36, 38, 42, 44, 48, 54, 56, 60, 62, 68, 72, 74, 80, 84, 90, 96, 98, 102, 104, 108, 110, 112, 114, 120, 126, 128, 132, 138, 140, 144, 150, 152, 158, 160, 162, 164, 168, 174, 176, 180, 182, 186, 192, 194, 198, 200
Offset: 1

Views

Author

Enrique Pérez Herrero, Jan 02 2012

Keywords

Comments

a(n) is even for n>2

Crossrefs

Programs

  • Mathematica
    terms = 100; Clear[seq]; seq[k_] := seq[k] = Table[DirichletConvolve[j, MoebiusMu[j]^2, j, n], {n, 1, k terms}] // Union // PadRight[#, terms]&;
    seq[k = 1]; seq[k++]; While[Print[k]; seq[k] != seq[k-1], k++];
    seq[k] (* Jean-François Alcover, Dec 14 2018, after Jan Mangaldan in A001615 *)

A291167 Numbers k such that psi(k) is a perfect square where psi(k) = A001615(k).

Original entry on oeis.org

1, 3, 18, 20, 22, 27, 60, 66, 70, 72, 80, 88, 92, 94, 99, 115, 119, 162, 170, 210, 212, 214, 217, 240, 243, 252, 264, 265, 276, 280, 282, 288, 308, 310, 315, 320, 322, 345, 352, 357, 368, 376, 382, 385, 423, 497, 500, 510, 517, 527, 540, 594, 596, 612, 636, 637, 642, 648, 651, 679, 680, 710, 725, 742
Offset: 1

Views

Author

Altug Alkan, Aug 19 2017

Keywords

Comments

The product of an even number of distinct members of A066436 is in the sequence. - Robert Israel, Aug 22 2017

Examples

			60 is a term because psi(60) = 144 is a perfect square.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) issqr(n*mul(1+1/p,p=numtheory:-factorset(n))) end proc:
    select(filter, [$1..1000]); # Robert Israel, Aug 22 2017
  • Mathematica
    Select[Range@ 750, IntegerQ@ Sqrt[# Sum[MoebiusMu[d]^2/d, {d, Divisors@ #}]] &] (* Michael De Vlieger, Aug 19 2017 *)
  • PARI
    a001615(n) = n*sumdivmult(n, d, issquarefree(d)/d);
    is(n) = issquare(a001615(n));

A323330 Larger of amicable pair m < n defined by t(n) = m and t(m) = n where t(n) = psi(n) - n and psi(n) = A001615(n) is the Dedekind psi function.

Original entry on oeis.org

1550, 3100, 4790, 6200, 7750, 9580, 12400, 12922, 15500, 15290, 19160, 20330, 23950, 24800, 25844, 31000, 30580, 38320, 38750, 40660, 47900, 49600, 51688, 62000, 61160, 76640, 77500, 82150, 81320, 76450, 95800, 90454, 99200, 103376, 101650, 119750, 124000, 122320
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The terms are ordered according to the order of their lesser counterparts (A323329).

Crossrefs

Cf. A001615, A002046, A033845 (Dedekind psi perfect numbers), A323327, A323328, A323329.

Programs

  • Mathematica
    psi[n_] := n*Times@@(1+1/Transpose[FactorInteger[n]][[1]]); t[n_]:= psi[n] - n; s={}; Do[n=t[m]; If[n>m && t[n]==m, AppendTo[s,n]], {m, 1, 120000}]; s

A323332 The Dedekind psi function values of the powerful numbers, A001615(A001694(n)).

Original entry on oeis.org

1, 6, 12, 12, 24, 30, 36, 48, 72, 56, 96, 144, 108, 180, 216, 132, 150, 192, 288, 182, 336, 360, 432, 360, 324, 384, 576, 306, 648, 392, 380, 672, 720, 864, 672, 792, 900, 768, 552, 1152, 750, 1296, 1080, 1092, 972, 1344, 1440, 870, 1728, 2160, 992, 1584
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The sum of the reciprocals of all the terms of this sequence is Pi^2/6 (A013661).
The asymptotic density of a sequence S that possesses the property that an integer k is a term if and only if its powerful part, A057521(k) is a term, is (1/zeta(2)) * Sum_{n>=1, A001694(n) is a term of S} 1/a(n). Examples for such sequences are the e-perfect numbers (A054979), the exponential abundant numbers (A129575), and other sequences listed in the Crossrefs section. - Amiram Eldar, May 06 2025

Crossrefs

Sequences whose density can be calculated using this sequence: A054979, A129575, A307958, A308053, A321147, A322858, A323310, A328135, A339936, A340109, A364990, A382061, A383693, A383695, A383697.

Programs

  • Mathematica
    psi[1]=1; psi[n_] := n * Times@@(1+1/Transpose[FactorInteger[n]][[1]]); psi /@ Join[{1}, Select[Range@ 1200, Min@ FactorInteger[#][[All, 2]] > 1 &]] (* after T. D. Noe at A001615 and Harvey P. Dale at A001694 *)
  • Python
    from math import isqrt, prod
    from sympy import mobius, integer_nthroot, primefactors
    def A323332(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x-squarefreepi(integer_nthroot(x,3)[0]), 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        a = primefactors(m:=bisection(f,n,n))
        return m*prod(p+1 for p in a)//prod(a) # Chai Wah Wu, Sep 14 2024

A342919 a(n) = A003415(n) / gcd(A001615(n), A003415(n)), where A001615 is Dedekind psi, and A003415 is the arithmetic derivative of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 1, 1, 7, 1, 2, 1, 3, 1, 4, 1, 7, 1, 2, 5, 13, 1, 11, 1, 5, 3, 2, 1, 31, 1, 5, 7, 19, 1, 5, 1, 7, 2, 17, 1, 41, 1, 2, 13, 25, 1, 7, 1, 1, 5, 2, 1, 3, 2, 23, 11, 31, 1, 23, 1, 11, 17, 2, 3, 61, 1, 2, 13, 59, 1, 13, 1, 13, 11, 2, 3, 71, 1, 11, 1, 43, 1, 31, 11, 15, 4, 35, 1, 41, 5, 2, 17, 49, 1, 17, 1, 11, 25
Offset: 1

Views

Author

Antti Karttunen, Mar 29 2021

Keywords

Crossrefs

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A342919(n) = { my(u=A003415(n)); (u/gcd(u, A001615(n))); };

Formula

a(n) = A003415(n) / A342458(n) = A003415(n) / gcd(A001615(n), A003415(n)).
a(n) = A342001(n) / A342459(n).
Previous Showing 21-30 of 324 results. Next