A048482
a(n) = T(n,n), array T given by A048472.
Original entry on oeis.org
1, 3, 13, 49, 161, 481, 1345, 3585, 9217, 23041, 56321, 135169, 319489, 745473, 1720321, 3932161, 8912897, 20054017, 44826625, 99614721, 220200961, 484442113, 1061158913, 2315255809, 5033164801, 10905190401, 23555211265, 50734301185, 108984795137
Offset: 0
-
[(n^2+n)*2^(n-1) + 1: n in [0..30]]; // Vincenzo Librandi, Sep 23 2011
-
LinearRecurrence[{7,-18,20,-8},{1,3,13,49},30] (* Harvey P. Dale, Feb 02 2015 *)
-
Vec(-(8*x^3-10*x^2+4*x-1)/((x-1)*(2*x-1)^3) + O(x^100)) \\ Colin Barker, Nov 26 2014
A048506
a(n) = T(0,n), array T given by A048505.
Original entry on oeis.org
1, 2, 7, 25, 81, 241, 673, 1793, 4609, 11521, 28161, 67585, 159745, 372737, 860161, 1966081, 4456449, 10027009, 22413313, 49807361, 110100481, 242221057, 530579457, 1157627905, 2516582401, 5452595201, 11777605633, 25367150593, 54492397569, 116769423361
Offset: 0
-
[n*(n+1)*2^(n-2) + 1: n in [0..30]]; // Vincenzo Librandi, Sep 26 2011
-
LinearRecurrence[{7,-18,20,-8}, {1,2,7,25}, 30] (* Jean-François Alcover, Jun 11 2019 *)
-
Vec(-(8*x^3-11*x^2+5*x-1)/((x-1)*(2*x-1)^3) + O(x^100)) \\ Colin Barker, Nov 26 2014
-
def sq():
yield 1
for n in PositiveIntegers():
yield n*n
def bous_variant(f):
k = 0
am = next(f)
a = [am]
while True:
yield am
am = next(f)
a.append(am)
for j in range(k,-1,-1):
am += a[j]
a[j] = am
k += 1
b = bous_variant(sq())
print([next(b) for in range(26)]) # _Peter Luschny, Oct 30 2014
A052481
a(n) = 2^n*(binomial(n,2) + 1).
Original entry on oeis.org
1, 2, 8, 32, 112, 352, 1024, 2816, 7424, 18944, 47104, 114688, 274432, 647168, 1507328, 3473408, 7929856, 17956864, 40370176, 90177536, 200278016, 442499072, 973078528, 2130706432, 4647288832, 10099884032, 21877489664, 47244640256, 101737037824, 218506461184
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Jonathan F. Mason and Richard H. Hudson, A Generalization of Euler's Formula and its Connection to Fibonacci Numbers, in: Frederic T. Howard (ed.), Applications of Fibonacci Numbers, Volume 9: Proceedings of The Tenth International Research Conference on Fibonacci Numbers and Their Applications, Springer, Dordrecht, 2004, pp. 177-185, alternative link.
- Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
-
List([0..30], n-> 2^(n-1)*(n^2-n+2)); # G. C. Greubel, May 16 2019
-
[2^n*(Binomial(n,2)+1): n in [0..30]]; // Vincenzo Librandi, Dec 22 2016
-
Table[2^n (Binomial[n, 2]+1), {n,0,30}] (* Vincenzo Librandi, Dec 22 2016 *)
LinearRecurrence[{6,-12,8},{1,2,8},30] (* Harvey P. Dale, May 16 2019 *)
-
{a(n) = 2^(n-1)*(n^2-n+2)}; \\ G. C. Greubel, May 16 2019
-
[2^(n-1)*(n^2-n+2) for n in (0..30)] # G. C. Greubel, May 16 2019
A056468
a(n) = Sum_{k=1..n} k^6*binomial(n,k).
Original entry on oeis.org
0, 1, 66, 924, 7400, 44040, 217392, 942592, 3714048, 13593600, 46914560, 154328064, 487778304, 1490384896, 4423372800, 12801146880, 36235378688, 100580917248, 274361352192, 736775372800, 1950815354880, 5099601002496, 13176144920576, 33682341494784
Offset: 0
-
Table[Sum[k^6*Binomial[n, k], {k, n}], {n, 0, 30}] (* T. D. Noe, Nov 22 2013 *)
-
a(n) = sum(k = 1, n, k^6*binomial(n,k)); \\ Michel Marcus, Nov 20 2013
A082150
A transform of C(n,2).
Original entry on oeis.org
0, 0, 1, 9, 60, 360, 2040, 11088, 58240, 297216, 1480320, 7223040, 34636800, 163657728, 763549696, 3523645440, 16107110400, 73016672256, 328570011648, 1468890021888, 6528375193600, 28862235279360, 126993714118656
Offset: 0
-
List([0..23], n-> Binomial(n,2)*(2^(n-2)+4^(n-2))/2); # Muniru A Asiru, Feb 12 2018
-
[Binomial(n,2)*(2^(n-2) + 4^(n-2))/2: n in [0..30]]; // G. C. Greubel, Feb 10 2018
-
A082150:=[seq(binomial(n,2)*(2^(n-2)+4^(n-2))/2,n=0..23)]; # Muniru A Asiru, Feb 12 2018
-
CoefficientList[Series[(x^2/(1-2*x)^3 + x^2/(1-4*x)^3)/2, {x,0,50}], x] (* or *) Table[Binomial[n,2]*(2^(n-2) + 4^(n-2))/2, {n,0,30}] (* G. C. Greubel, Feb 10 2018 *)
LinearRecurrence[{18,-132,504,-1056,1152,-512},{0,0,1,9,60,360},30] (* Harvey P. Dale, Jan 17 2022 *)
-
makelist(2^(n-4)*(2^(n-2)+1)*(n-1)*n, n, 0, 30); /* Bruno Berselli, Feb 13 2018 */
-
for(n=0,30, print1(binomial(n,2)*(2^(n-2) + 4^(n-2))/2, ", ")) \\ G. C. Greubel, Feb 10 2018
A087076
Sums of the squares of the elements in the subsets of the integers 1 to n.
Original entry on oeis.org
0, 1, 10, 56, 240, 880, 2912, 8960, 26112, 72960, 197120, 518144, 1331200, 3354624, 8314880, 20316160, 49020928, 116981760, 276430848, 647495680, 1504706560, 3471835136, 7958691840, 18136170496, 41104179200, 92694118400, 208071032832
Offset: 0
Alan Sutcliffe (alansut(AT)ntlworld.com), Aug 08 2003
a(3)=56 since the subsets of (1,2,3) are ( ) (1) (1,2) (1,3) (1,2,3) (2) (2,3) (3) and the sum of the squares of the elements in these subsets is 56.
Cf.
A058645 has the same then similar initial values.
A130811
If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 5-subsets of X containing none of X_i, (i=1,...n).
Original entry on oeis.org
32, 192, 672, 1792, 4032, 8064, 14784, 25344, 41184, 64064, 96096, 139776, 198016, 274176, 372096, 496128, 651168, 842688, 1076768, 1360128, 1700160, 2104960, 2583360, 3144960, 3800160, 4560192, 5437152, 6444032, 7594752, 8904192
Offset: 5
Cf.
A038207,
A000079,
A001787,
A001788,
A001789,
A003472,
A054849,
A002409,
A054851,
A140325,
A140354,
A046092,
A130809,
A130810. -
Zerinvary Lajos, Aug 05 2008
-
[Binomial(n,n-5)*2^5: n in [5..40]]; // Vincenzo Librandi, Jul 09 2015
-
a:=n->binomial(2*n,5)+(2*n-4)*binomial(n,2)-n*binomial(2*n-2,3)
seq(binomial(n,n-5)*2^5,n=5..34); # Zerinvary Lajos, Dec 07 2007
seq(binomial(n+4, 5)*2^5, n=1..22); # Zerinvary Lajos, Aug 05 2008
-
Table[Binomial[2 n, 5] + (2 n - 4) Binomial[n, 2] - n Binomial[2 n - 2, 3], {n, 5, 40}] (* Vincenzo Librandi, Jul 09 2015 *)
A181407
a(n) = (n-4)*(n-3)*2^(n-2).
Original entry on oeis.org
3, 3, 2, 0, 0, 16, 96, 384, 1280, 3840, 10752, 28672, 73728, 184320, 450560, 1081344, 2555904, 5963776, 13762560, 31457280, 71303168, 160432128, 358612992, 796917760, 1761607680, 3875536896, 8489271296, 18522046464, 40265318400, 87241523200, 188441690112
Offset: 0
-
List([0..40], n-> (n-4)*(n-3)*2^(n-2)); # G. C. Greubel, Feb 21 2019
-
[(n-4)*(n-3)*2^(n-2): n in [0..40] ]; // Vincenzo Librandi, Feb 01 2011
-
Table[(n-4)*(n-3)*2^(n-2), {n,0,40}] (* G. C. Greubel, Feb 21 2019 *)
-
vector(40, n, n--; (n-4)*(n-3)*2^(n-2)) \\ G. C. Greubel, Feb 21 2019
-
[(n-4)*(n-3)*2^(n-2) for n in (0..40)] # G. C. Greubel, Feb 21 2019
A190050
Expansion of ((1-x)*(3*x^2-3*x+1))/(1-2*x)^3.
Original entry on oeis.org
1, 2, 6, 17, 46, 120, 304, 752, 1824, 4352, 10240, 23808, 54784, 124928, 282624, 634880, 1417216, 3145728, 6946816, 15269888, 33423360, 72876032, 158334976, 342884352, 740294656, 1593835520, 3422552064
Offset: 0
-
[1] cat [(n^2 + 5*n + 10)*2^(n-4): n in [1..30]]; // G. C. Greubel, Jan 10 2018
-
A190050:= proc(n) option remember; if n=0 then A190050(n):=1: else A190050(n):=(n^2+5*n+10)*2^(n-4) fi: end: seq (A190050(n), n=0..26);
-
Join[{1}, LinearRecurrence[{6,-12,8}, {2,6,17}, 30]] (* or *) CoefficientList[Series[((1-x)*(3*x^2-3*x+1))/(1-2*x)^3, {x, 0, 50}], x] (* G. C. Greubel, Jan 10 2018 *)
-
x='x+O('x^30); Vec(((1-x)*(3*x^2-3*x+1))/(1-2*x)^3) \\ G. C. Greubel, Jan 10 2018
-
for(n=0,30, print1(if(n==0,1,(n^2 + 5*n + 10)*2^(n-4)), ", ")) \\ G. C. Greubel, Jan 10 2018
A213344
2-quantum transitions in systems of N>=2 spin 1/2 particles, in columns by combination indices.
Original entry on oeis.org
1, 6, 24, 4, 80, 40, 240, 240, 15, 672, 1120, 210, 1792, 4480, 1680, 56, 4608, 16128, 10080, 1008, 11520, 53760, 50400, 10080, 210, 28160, 168960, 221760, 73920, 4620, 67584, 506880, 887040, 443520, 55440, 792
Offset: 2
For N=4, there are 4 second-quantum transitions with combination index 1: (0001,1110),(0010,1101),(0100,1011),(1000,0111).
Starting rows of the triangle:
N | k = 0, 1, ..., floor((N-2)/2)
2 | 1
3 | 6
4 | 24 4
5 | 80 40
6 | 240 240 15
- Stanislav Sykora, Table of n, a(n) for n = 2..2501
- Stanislav Sykora, T(2;N,k) with rows N=2,..,100 and columns k=0,..,floor((N-2)/2)
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
-
With[{q = 2}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, 12}, {k, 0, Floor[(n - 2)/2]}]] // Flatten (* Michael De Vlieger, Nov 18 2019 *)
-
See A213343; set thisq = 2.
Comments