cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 109 results. Next

A048482 a(n) = T(n,n), array T given by A048472.

Original entry on oeis.org

1, 3, 13, 49, 161, 481, 1345, 3585, 9217, 23041, 56321, 135169, 319489, 745473, 1720321, 3932161, 8912897, 20054017, 44826625, 99614721, 220200961, 484442113, 1061158913, 2315255809, 5033164801, 10905190401, 23555211265, 50734301185, 108984795137
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(n^2+n)*2^(n-1) + 1: n in [0..30]]; // Vincenzo Librandi, Sep 23 2011
    
  • Mathematica
    LinearRecurrence[{7,-18,20,-8},{1,3,13,49},30] (* Harvey P. Dale, Feb 02 2015 *)
  • PARI
    Vec(-(8*x^3-10*x^2+4*x-1)/((x-1)*(2*x-1)^3) + O(x^100)) \\ Colin Barker, Nov 26 2014

Formula

a(n) = 2 * A001788(n) + 1.
a(n) = (n^2+n)*2^(n-1) + 1. - Ralf Stephan, Sep 02 2003
G.f.: -(8*x^3-10*x^2+4*x-1) / ((x-1)*(2*x-1)^3). - Colin Barker, Nov 26 2014
a(0)=1, a(1)=3, a(2)=13, a(3)=49, a(n)=7*a(n-1)-18*a(n-2)+ 20*a(n-3)- 8*a(n-4). - Harvey P. Dale, Feb 02 2015

A048506 a(n) = T(0,n), array T given by A048505.

Original entry on oeis.org

1, 2, 7, 25, 81, 241, 673, 1793, 4609, 11521, 28161, 67585, 159745, 372737, 860161, 1966081, 4456449, 10027009, 22413313, 49807361, 110100481, 242221057, 530579457, 1157627905, 2516582401, 5452595201, 11777605633, 25367150593, 54492397569, 116769423361
Offset: 0

Views

Author

Keywords

Comments

n-th difference of a(n), a(n-1), ..., a(0) is (1, 4, 9, 16, 25, ...).
Similar to A000697 in so far as it can be seen as the transform of 1, 1, 4, 9, 16, ... by a variant of the boustrophedon algorithm (see the Sage implementation). - Peter Luschny, Oct 30 2014

Crossrefs

Programs

  • Magma
    [n*(n+1)*2^(n-2) + 1: n in [0..30]]; // Vincenzo Librandi, Sep 26 2011
    
  • Mathematica
    LinearRecurrence[{7,-18,20,-8}, {1,2,7,25}, 30] (* Jean-François Alcover, Jun 11 2019 *)
  • PARI
    Vec(-(8*x^3-11*x^2+5*x-1)/((x-1)*(2*x-1)^3) + O(x^100)) \\ Colin Barker, Nov 26 2014
  • Sage
    def sq():
        yield 1
        for n in PositiveIntegers():
            yield n*n
    def bous_variant(f):
        k = 0
        am = next(f)
        a = [am]
        while True:
            yield am
            am = next(f)
            a.append(am)
            for j in range(k,-1,-1):
                am += a[j]
                a[j] = am
            k += 1
    b = bous_variant(sq())
    print([next(b) for  in range(26)]) # _Peter Luschny, Oct 30 2014
    

Formula

a(n) = n*(n+1)*2^(n-2) + 1 = A001788(n) + 1. - Ralf Stephan, Jan 16 2004
a(n) = 7*a(n-1)-18*a(n-2)+20*a(n-3)-8*a(n-4). - Colin Barker, Nov 26 2014
G.f.: -(8*x^3-11*x^2+5*x-1) / ((x-1)*(2*x-1)^3). - Colin Barker, Nov 26 2014

A052481 a(n) = 2^n*(binomial(n,2) + 1).

Original entry on oeis.org

1, 2, 8, 32, 112, 352, 1024, 2816, 7424, 18944, 47104, 114688, 274432, 647168, 1507328, 3473408, 7929856, 17956864, 40370176, 90177536, 200278016, 442499072, 973078528, 2130706432, 4647288832, 10099884032, 21877489664, 47244640256, 101737037824, 218506461184
Offset: 0

Views

Author

N. J. A. Sloane, Mar 16 2000

Keywords

Comments

a(n) is the generalized Euler number of an (n+2)-dimensional hypercube: (number of vertices) - (number of edges) + (number of faces) = A000079(n+2) - A001787(n+2) + A001788(n+1). - Amiram Eldar, Nov 08 2019

Crossrefs

Programs

  • GAP
    List([0..30], n-> 2^(n-1)*(n^2-n+2)); # G. C. Greubel, May 16 2019
  • Magma
    [2^n*(Binomial(n,2)+1): n in [0..30]]; // Vincenzo Librandi, Dec 22 2016
    
  • Mathematica
    Table[2^n (Binomial[n, 2]+1), {n,0,30}] (* Vincenzo Librandi, Dec 22 2016 *)
    LinearRecurrence[{6,-12,8},{1,2,8},30] (* Harvey P. Dale, May 16 2019 *)
  • PARI
    {a(n) = 2^(n-1)*(n^2-n+2)}; \\ G. C. Greubel, May 16 2019
    
  • Sage
    [2^(n-1)*(n^2-n+2) for n in (0..30)] # G. C. Greubel, May 16 2019
    

Formula

For the sequence 1, 1, 1, 2, 8, 32, ... we have a(n) = 2^n*(n^2-5n+8)/8. - Paul Barry, Jun 26 2003
From R. J. Mathar, Jan 04 2011: (Start)
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3).
G.f.: (1-4*x+8*x^2)/(1-2*x)^3. (End)
E.g.f.: (1 + 2*x^2)*exp(2*x). - G. C. Greubel, May 16 2019

A056468 a(n) = Sum_{k=1..n} k^6*binomial(n,k).

Original entry on oeis.org

0, 1, 66, 924, 7400, 44040, 217392, 942592, 3714048, 13593600, 46914560, 154328064, 487778304, 1490384896, 4423372800, 12801146880, 36235378688, 100580917248, 274361352192, 736775372800, 1950815354880, 5099601002496, 13176144920576, 33682341494784
Offset: 0

Views

Author

Benoit Cloitre, Dec 06 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^6*Binomial[n, k], {k, n}], {n, 0, 30}] (* T. D. Noe, Nov 22 2013 *)
  • PARI
    a(n) = sum(k = 1, n, k^6*binomial(n,k)); \\ Michel Marcus, Nov 20 2013

Formula

a(n) = 2^(n-6)*n*(n+1)*(n^4 + 14*n^3 + 31*n^2 - 46*n + 16).
G.f.: -x*(136*x^4-272*x^3+84*x^2+52*x+1)/(2*x-1)^7. [Colin Barker, Sep 20 2012]

A082150 A transform of C(n,2).

Original entry on oeis.org

0, 0, 1, 9, 60, 360, 2040, 11088, 58240, 297216, 1480320, 7223040, 34636800, 163657728, 763549696, 3523645440, 16107110400, 73016672256, 328570011648, 1468890021888, 6528375193600, 28862235279360, 126993714118656
Offset: 0

Views

Author

Paul Barry, Apr 07 2003

Keywords

Comments

Represents the mean of the first and third binomial transforms of C(n,2) Binomial transform of A082149.

Crossrefs

Programs

  • GAP
    List([0..23], n-> Binomial(n,2)*(2^(n-2)+4^(n-2))/2); # Muniru A Asiru, Feb 12 2018
    
  • Magma
    [Binomial(n,2)*(2^(n-2) + 4^(n-2))/2: n in [0..30]]; // G. C. Greubel, Feb 10 2018
    
  • Maple
    A082150:=[seq(binomial(n,2)*(2^(n-2)+4^(n-2))/2,n=0..23)]; # Muniru A Asiru, Feb 12 2018
  • Mathematica
    CoefficientList[Series[(x^2/(1-2*x)^3 + x^2/(1-4*x)^3)/2, {x,0,50}], x] (* or *) Table[Binomial[n,2]*(2^(n-2) + 4^(n-2))/2, {n,0,30}] (* G. C. Greubel, Feb 10 2018 *)
    LinearRecurrence[{18,-132,504,-1056,1152,-512},{0,0,1,9,60,360},30] (* Harvey P. Dale, Jan 17 2022 *)
  • Maxima
    makelist(2^(n-4)*(2^(n-2)+1)*(n-1)*n, n, 0, 30); /* Bruno Berselli, Feb 13 2018 */
  • PARI
    for(n=0,30, print1(binomial(n,2)*(2^(n-2) + 4^(n-2))/2, ", ")) \\ G. C. Greubel, Feb 10 2018
    

Formula

a(n) = C(n, 2)*(2^(n-2) + 4^(n-2))/2.
G.f.: (x^2/(1-2*x)^3 + x^2/(1-4*x)^3)/2.
G.f.: x^2*(36*x^3 - 30*x^2 + 9*x-1)/((1 - 2*x)^3*(4*x - 1)^3).
E.g.f.: x^2*exp(3*x)*cosh(x)/2.
From Bruno Berselli, Feb 12 2018: (Start)
E.g.f.: x^2*(1 + exp(2*x))*exp(2*x)/4.
a(n) = 2^(n-4)*(2^(n-2) + 1)*(n - 1)*n. (End)

A087076 Sums of the squares of the elements in the subsets of the integers 1 to n.

Original entry on oeis.org

0, 1, 10, 56, 240, 880, 2912, 8960, 26112, 72960, 197120, 518144, 1331200, 3354624, 8314880, 20316160, 49020928, 116981760, 276430848, 647495680, 1504706560, 3471835136, 7958691840, 18136170496, 41104179200, 92694118400, 208071032832
Offset: 0

Views

Author

Alan Sutcliffe (alansut(AT)ntlworld.com), Aug 08 2003

Keywords

Comments

A000076 gives the number of subsets of 1 to n. A001787 gives the number of elements in the subsets. A001788 gives the sum of the elements.

Examples

			a(3)=56 since the subsets of (1,2,3) are ( ) (1) (1,2) (1,3) (1,2,3) (2) (2,3) (3) and the sum of the squares of the elements in these subsets is 56.
		

Crossrefs

Cf. A058645 has the same then similar initial values.
Equals A014483 shifted right.

Programs

  • PARI
    a(n) = (2^(n-2))*n*(n+1)*(2*n+1)/3 \\ Michel Marcus, Jul 12 2013

Formula

a(n) = 2^(n - 2)*n*(n + 1)*(2*n + 1)/3.
G.f.: x*(1 + 2*x)/(1 - 2*x)^4.
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4). - Matthew House, Feb 13 2017
a(n) = (1/2) * Sum_{k=0..n} Sum_{i=0..n} i^2 * C(n,k). - Wesley Ivan Hurt, Sep 21 2017

A130811 If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 5-subsets of X containing none of X_i, (i=1,...n).

Original entry on oeis.org

32, 192, 672, 1792, 4032, 8064, 14784, 25344, 41184, 64064, 96096, 139776, 198016, 274176, 372096, 496128, 651168, 842688, 1076768, 1360128, 1700160, 2104960, 2583360, 3144960, 3800160, 4560192, 5437152, 6444032, 7594752, 8904192
Offset: 5

Views

Author

Milan Janjic, Jul 16 2007

Keywords

Comments

Number of n permutations (n>=5) of 3 objects u,v,z, with repetition allowed, containing n-5 u's. Example: if n=5 then n-5 =(0) zero u, a(1)=32. - Zerinvary Lajos, Aug 05 2008
a(n) is the number of 4-dimensional elements in an n-cross polytope where n>=5. - Patrick J. McNab, Jul 06 2015

Crossrefs

Programs

  • Magma
    [Binomial(n,n-5)*2^5: n in [5..40]]; // Vincenzo Librandi, Jul 09 2015
  • Maple
    a:=n->binomial(2*n,5)+(2*n-4)*binomial(n,2)-n*binomial(2*n-2,3)
    seq(binomial(n,n-5)*2^5,n=5..34); # Zerinvary Lajos, Dec 07 2007
    seq(binomial(n+4, 5)*2^5, n=1..22); # Zerinvary Lajos, Aug 05 2008
  • Mathematica
    Table[Binomial[2 n, 5] + (2 n - 4) Binomial[n, 2] - n Binomial[2 n - 2, 3], {n, 5, 40}] (* Vincenzo Librandi, Jul 09 2015 *)

Formula

a(n) = binomial(2*n,5) + (2*n-4)*binomial(n,2) - n*binomial(2*n-2,3).
a(n) = C(n,n-5)*2^5, for n>=5. - Zerinvary Lajos, Dec 07 2007
G.f.: 32*x^5/(1-x)^6. - Colin Barker, Apr 14 2012

A181407 a(n) = (n-4)*(n-3)*2^(n-2).

Original entry on oeis.org

3, 3, 2, 0, 0, 16, 96, 384, 1280, 3840, 10752, 28672, 73728, 184320, 450560, 1081344, 2555904, 5963776, 13762560, 31457280, 71303168, 160432128, 358612992, 796917760, 1761607680, 3875536896, 8489271296, 18522046464, 40265318400, 87241523200, 188441690112
Offset: 0

Views

Author

Paul Curtz, Jan 28 2011

Keywords

Comments

Binomial transform of (3, 0, -1, followed by A005563).
The sequence and its successive differences are:
3, 3, 2, 0, 0, 16, 96, 384, a(n),
0, -1, -2, 0, 16, 80, 288, 896, A178987,
-1, -1, 2, 16, 64, 208, 608, 2688, -A127276,
0, 3, 14, 48, 144, 400, 1056, 2688, A176027,
3, 11, 34, 96, 256, 656, 1632, 3968, A084266(n+1)
8, 23, 62, 160, 400, 976, 2336, 5504,
15, 39, 98, 240, 576, 1360, 3168, 7296.
Division of the k-th column by abs(A174882(k)) gives
3, 3, 1, 0, 0, 1, 3, 3, 5, 15, 21, 14, A064038(n-3),
0, -1, -1, 0, 1, 5, 9, 7, 10, 27, 35, 22, A160050(n-3),
-1, -1, 1, 2, 4, 13, 19, 13, 17, 43, 53, 32, A176126,
0, 3, 7, 6, 9, 25, 33, 21, 26, 63, 75, 44, A178242,
3, 11, 17, 12, 16, 41, 51, 31, 37, 87, 101, 58,
8 23, 31, 20, 25, 61, 73, 43, 50, 115, 131, 74,
15, 39, 49, 30, 36, 85, 99, 57, 65, 147, 165, 92.

Crossrefs

Programs

  • GAP
    List([0..40], n-> (n-4)*(n-3)*2^(n-2)); # G. C. Greubel, Feb 21 2019
  • Magma
    [(n-4)*(n-3)*2^(n-2): n in [0..40] ]; // Vincenzo Librandi, Feb 01 2011
    
  • Mathematica
    Table[(n-4)*(n-3)*2^(n-2), {n,0,40}] (* G. C. Greubel, Feb 21 2019 *)
  • PARI
    vector(40, n, n--; (n-4)*(n-3)*2^(n-2)) \\ G. C. Greubel, Feb 21 2019
    
  • Sage
    [(n-4)*(n-3)*2^(n-2) for n in (0..40)] # G. C. Greubel, Feb 21 2019
    

Formula

a(n) = 16*A001788(n-4).
a(n+1) - a(n) = A178987(n).
G.f.: (3 - 15*x + 20*x^2) / (1-2*x)^3. - R. J. Mathar, Jan 30 2011
E.g.f.: (x^2 - 3*x + 3)*exp(2*x). - G. C. Greubel, Feb 21 2019

A190050 Expansion of ((1-x)*(3*x^2-3*x+1))/(1-2*x)^3.

Original entry on oeis.org

1, 2, 6, 17, 46, 120, 304, 752, 1824, 4352, 10240, 23808, 54784, 124928, 282624, 634880, 1417216, 3145728, 6946816, 15269888, 33423360, 72876032, 158334976, 342884352, 740294656, 1593835520, 3422552064
Offset: 0

Views

Author

Johannes W. Meijer, May 06 2011

Keywords

Comments

The second left hand column of triangle A175136.

Crossrefs

Related to A001788.

Programs

  • Magma
    [1] cat [(n^2 + 5*n + 10)*2^(n-4): n in [1..30]]; // G. C. Greubel, Jan 10 2018
  • Maple
    A190050:= proc(n) option remember; if n=0 then A190050(n):=1: else A190050(n):=(n^2+5*n+10)*2^(n-4) fi: end: seq (A190050(n), n=0..26);
  • Mathematica
    Join[{1}, LinearRecurrence[{6,-12,8}, {2,6,17}, 30]] (* or *) CoefficientList[Series[((1-x)*(3*x^2-3*x+1))/(1-2*x)^3, {x, 0, 50}], x] (* G. C. Greubel, Jan 10 2018 *)
  • PARI
    x='x+O('x^30); Vec(((1-x)*(3*x^2-3*x+1))/(1-2*x)^3) \\ G. C. Greubel, Jan 10 2018
    
  • PARI
    for(n=0,30, print1(if(n==0,1,(n^2 + 5*n + 10)*2^(n-4)), ", ")) \\ G. C. Greubel, Jan 10 2018
    

Formula

G.f.: ((1-x)*(3*x^2-3*x+1))/(1-2*x)^3.
a(n) = (n^2 + 5*n + 10)*2^(n-4) for n >=1 with a(0)=1.
a(n) = A001788(n+1) -4*A001788(n) +6*A001788(n-1) -3*A001788(n-2) for n >=1 with a(0)=1.

A213344 2-quantum transitions in systems of N>=2 spin 1/2 particles, in columns by combination indices.

Original entry on oeis.org

1, 6, 24, 4, 80, 40, 240, 240, 15, 672, 1120, 210, 1792, 4480, 1680, 56, 4608, 16128, 10080, 1008, 11520, 53760, 50400, 10080, 210, 28160, 168960, 221760, 73920, 4620, 67584, 506880, 887040, 443520, 55440, 792
Offset: 2

Views

Author

Stanislav Sykora, Jun 09 2012

Keywords

Comments

For a general discussion, please see A213343.
This a(n) is for double-quantum transitions (q = 2).
It lists the flattened triangle T(2;N,k) with rows N = 2,3,... and columns N, k = 0..floor((N-2)/2).

Examples

			For N=4, there are 4 second-quantum transitions with combination index 1: (0001,1110),(0010,1101),(0100,1011),(1000,0111).
Starting rows of the triangle:
  N | k = 0, 1, ..., floor((N-2)/2)
  2 |   1
  3 |   6
  4 |  24   4
  5 |  80  40
  6 | 240 240 15
		

References

Crossrefs

Cf. A051288 (q=0), A213343 (q=1), A213345 to A213352 (q=3..10).
Cf. A001788 (first column), A002694 (row sums).

Programs

  • Mathematica
    With[{q = 2}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, 12}, {k, 0, Floor[(n - 2)/2]}]] // Flatten (* Michael De Vlieger, Nov 18 2019 *)
  • PARI
    See A213343; set thisq = 2.

Formula

Set q = 2 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k).
Previous Showing 71-80 of 109 results. Next