cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 79 results. Next

A010515 Decimal expansion of square root of 62.

Original entry on oeis.org

7, 8, 7, 4, 0, 0, 7, 8, 7, 4, 0, 1, 1, 8, 1, 1, 0, 1, 9, 6, 8, 5, 0, 3, 4, 4, 4, 8, 8, 1, 2, 0, 0, 7, 8, 6, 3, 6, 8, 1, 0, 8, 6, 1, 2, 2, 0, 2, 0, 8, 5, 3, 7, 9, 4, 5, 9, 8, 8, 4, 2, 5, 5, 0, 3, 1, 3, 7, 6, 0, 8, 4, 6, 8, 1, 7, 6, 9, 8, 0, 5, 6, 9, 2, 6, 1, 9, 1, 3, 5, 1, 2, 4, 8, 7, 4, 6, 8, 8, 9, 9, 2, 7, 4, 5
Offset: 1

Views

Author

Keywords

Comments

Sqrt(62) = 787400 * Sum_{n>=0} (A001790(n)/2^A005187(floor(n/2)) * 10^(-6n-5)) where A001790(n) are numerators in expansion of 1/sqrt(1-x) and the denominators in expansion of 1/sqrt(1-x) are 2^A005187(n). 786400 = 62*12700, see A020819 (expansion of 1/sqrt(62)). - Gerald McGarvey, Jan 01 2005
Continued fraction expansion is 7 followed by {1, 6, 1, 14} repeated. - Harry J. Smith, Jun 07 2009

Examples

			7.874007874011811019685034448812007863681086122020853794598842550313760...
		

Crossrefs

Cf. A010146 Continued fraction.

Programs

  • Mathematica
    RealDigits[N[62^(1/2),200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Jan 22 2012 *)
  • PARI
    { default(realprecision, 20080); x=sqrt(62); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010515.txt", n, " ", d)); } \\ Harry J. Smith, Jun 07 2009

Extensions

Final digits of sequence corrected using the b-file. - N. J. A. Sloane, Aug 30 2009

A144846 Numerators of triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the coefficient of x^(2k+1) in polynomial u_n(x), used to approximate x->sin(Pi*x)/Pi.

Original entry on oeis.org

0, 1, -1, 7, -5, 3, 87, -35, 63, -5, 2047, -105, 819, -45, 35, 78655, -8085, 15939, -7425, 1925, -63, 4439935, -57057, 225225, -211497, 115115, -2457, 231, 344674687, -4429425, 17486469, -8217495, 9003995, -200655, 24255, -429
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2008

Keywords

Comments

All even coefficients of u_n are 0. Sum_{k=0..n} T(n,k) = 0. 1/u(n)(1/2) = A230142(n)/A230143(n) is an approximation to Pi: Pi-1/u(10)(1/2) = 0.6883935...*10^(-9), Pi-1/u(50)(1/2) = 0.2993600...*10^(-47).

Examples

			0, 1/2, -1/2, 7/8, -5/4, 3/8, 87/88, -35/22, 63/88, -5/44, 2047/2048, -105/64, 819/1024, -45/256, 35/2048, 78655/78656, -8085/4916, 15939/19664, -7425/39328, 1925/78656, -63/39328 ... = A144846/A144847
As triangle:
   0;
   1/2,   -1/2;
   7/8,   -5/4,   3/8;
  87/88, -35/22, 63/88, -5/44;
  ...
		

Crossrefs

Denominators of T(n,k): A144847.
Diagonal gives: (-1)^n A001790(n) for n>1.
Cf. A000796.

Programs

  • Maple
    u:= proc(n) option remember; local f,i,x; f:= unapply(simplify(sum('cat(a||(2*i+1))*x^(2*i+1)', 'i'=0..n) ), x); unapply(subs(solve({f(1)=0, seq((D@@i)(f)(1)=`if`(i=1,-1,-(D@@i)(f)(0)), i=1..n)}, {seq(cat(a||(2*i+1)), i=0..n)}), sum('cat(a||(2*i+1))*x^(2*i+1)', 'i'=0..n) ), x); end: T:= (n,k)-> coeff(u(n)(x), x, 2*k+1): seq(seq(numer(T(n,k)), k=0..n), n=0..9);
  • Mathematica
    f[x_] := Sum[a[2i+1] x^(2i+1), {i, 0, n}];
    u[n_] := u[n] = Function[x, f[x] /. Solve[Join[{f[1] == 0}, Table[(D[f[x], {x, i}] /. x -> 1) == If[i == 1, -1, -(D[f[x], {x, i}] /. x -> 0)], {i, 1, n}]]][[1]]];
    T[n_, k_] := Coefficient[u[n][x], x, 2k+1];
    Table[Numerator[T[n, k]], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 12 2014, translated from Maple, updated May 31 2016 *)

Formula

See program.

A173384 a(n) = 2^(2*n - HammingWeight(n)) * [x^n] ((x-1)^(-1) + (1-x)^(-3/2)).

Original entry on oeis.org

0, 1, 7, 19, 187, 437, 1979, 4387, 76627, 165409, 707825, 1503829, 12706671, 26713417, 111868243, 233431331, 7770342787, 16124087129, 66765132341, 137948422657, 1138049013461, 2343380261227, 9636533415373, 19787656251221
Offset: 0

Views

Author

Paul Curtz, Feb 17 2010

Keywords

Comments

If n >= 1 it appears a(n-1) is equal to the difference between the denominator and the numerator of the ratio (2n-1)!!/(2n-2)!!. In particular a(n-1) is the difference between the denominator and the numerator of the ratio A001147(2n-2)/A000165(2n-1). See examples. - Anthony Hernandez, Feb 05 2020
It can be seen that this is true, e.g., using A001803(n) = (2n+1)!/(n!^2*2^A000120(n)) and A046161(n) = 4^n/2^A000120(n). - M. F. Hasler, Feb 07 2020
Numerators in the expansion of (1-(1-x)^(1/2))/(1-x)^(3/2). Denominators are A046161. Compare to A001790. - Thomas Curtright, Feb 09 2024

Examples

			From _Anthony Hernandez_, Feb 05 2020: (Start)
Consider n = 4. The 4th odd number is 7, and 7!!/(7-1)!! = 35/16, and a(4-1) = a(3) = 35 - 16 = 19.
Consider n = 7. The 7th odd number is 13, and 13!!/(13-1)!! = 3003/1024, and a(7-1) = a(6) = 3003 - 1024 = 1979. (End)
		

Crossrefs

Programs

  • GAP
    List([0..30], n-> (NumeratorRat((2*n+1)*Binomial(2*n, n)/(4^n)) - DenominatorRat(Binomial(2*n, n)/(4^n)))); # G. C. Greubel, Dec 09 2018
  • Magma
    [Numerator((2*n+1)*Binomial(2*n, n)/(4^n)) - Denominator(Binomial(2*n, n)/(4^n)): n in [0..30]]; // G. C. Greubel, Dec 09 2018
    
  • Maple
    A046161 := proc(n) binomial(2*n,n)/4^n ; denom(%) ; end proc:
    A173384 := proc(n) A001803(n)-A046161(n) ; end proc: # R. J. Mathar, Jul 06 2011
  • Mathematica
    Table[Numerator[(2*n+1)*Binomial[2*n, n]/(4^n)] - Denominator[Binomial[2*n, n]/(4^n)], {n,0,30}] (* G. C. Greubel, Dec 09 2018 *)
    A173384[n_] := 2^(2*n - DigitCount[n, 2, 1]) Coefficient[Series[(x - 1)^(-1) + (1 - x)^(-3/2), {x, 0, n}], x, n]
    Table[A173384[n], {n, 0, 23}]  (* Peter Luschny, Feb 17 2024 *)
  • PARI
    for(n=0,30, print1(numerator((2*n+1)*binomial(2*n, n)/(4^n)) - denominator(binomial(2*n, n)/4^n), ", ")) \\ G. C. Greubel, Dec 09 2018
    
  • Sage
    [(numerator((2*n+1)*binomial(2*n, n)/(4^n)) - denominator(binomial(2*n, n)/(4^n))) for n in range(30)] # G. C. Greubel, Dec 09 2018
    

Formula

a(n) = A001803(n) - A046161(n). (Previous name.)
Let r(n) = (-2)^n*Sum_{j=0..n-1} binomial(n,j)*Bernoulli(j+n+1, 1/2)/(j+n+1) then a(n) = numerator(r(n)). - Peter Luschny, Jun 20 2017

Extensions

New name using an expansion of Thomas Curtright by Peter Luschny, Feb 17 2024

A244420 Numerators of coefficient triangle for expansion of x^n in terms of polynomials Todd(k, x) = T(2*k+1, sqrt(x))/sqrt(x) (A084930), with the Chebyshev polynomials of the first kind (type T).

Original entry on oeis.org

1, 3, 1, 5, 5, 1, 35, 21, 7, 1, 63, 21, 9, 9, 1, 231, 165, 165, 55, 11, 1, 429, 1287, 715, 143, 39, 13, 1, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 12155, 2431, 1547, 1547, 595, 85, 17, 17, 1, 46189, 37791, 12597, 6783, 2907, 969, 969, 171, 19, 1, 88179, 146965, 101745, 14535, 6783, 20349, 5985, 665, 105, 21, 1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 04 2014

Keywords

Comments

This expansion is due to the Riordan property of the triangle A084930. The inverse of the lower triangular matrix built by A084930 is therefore also a (rational) Riordan triangle, namely ((2 - c(z/4))/(1-z), -1 + c(z/4)) in the standard notation, where c is the o.g.f. of A000108 (Catalan).
For the denominators of this triangle see A244421.
The expansion is x^n = sum(R(n,m)*Todd(m, x), m=0..n), n >= 0, with the rational triangle with entries R(n,m) = a(n, m)/b(n, m) with b(n, m) = A244421(n, m).
If one uses instead the expansion of (4*x)^n one finds the integer triangle A111418: (4*x)^n = sum(A111418(n,k) * Todd(k, x), k=0..n).
The row sums of the rational triangle R(n,m) are identically 1. The alternating row sums have o.g.f. 1/sqrt(1-x) which generates A001790(n)/A046161(n) (see a Michael Somos comment on A046161), namely 1, 1/2, 3/8, 5/16, 35/128, 63/256, 231/1024, 429/2048, ...
From Wolfdieter Lang, Jun 13 2016: (Start)
R(n,m) = a(n, m)/ A244421(n, m) is also the rational triangle for the expansion cos^{2*n+1}(x) = Sum_{m=0..n} R(n, m)*cos((2*m+1)*x), n >= 0, m = 0..n. Compare with the odd numbered rows of A273496. In terms of Chebyshev T-polynomials (A053120) this is the identity x^(2*n+1) = Sum_{m=0..n} R(n, m)*T(2*m+1, x).
S(n,m) = (-1)^m*a(n, m)/ A244421(n, m) is the rational triangle for the expansion sin^{2*n+1}(x) = Sum_{m=0..n} S(n, m)*sin((2*m+1)*x), n >= 0, m = 0..n. In terms of Chebyshev S-polynomials (A049310) this is equivalent to the identity (4 - x^2)*n = Sum_{m=0..n} (-1)^m * binomial(n, n-m)*S(2*m,x), n >= 0.
(End)

Examples

			The numerator triangle a(n,m) begins:
  n\m      0      1      2     3    4     5    6   7   8   9
  0:       1
  1:       3      1
  2:       5      5      1
  3:      35     21      7     1
  4:      63     21      9     9    1
  5:     231    165    165    55   11     1
  6:     429   1287    715   143   39    13    1
  7:    6435   5005   3003  1365  455   105   15   1
  8:   12155   2431   1547  1547  595    85   17  17   1
  9:   46189  37791  12597  6783 2907   969  969 171  19   1
  ...
The rational triangle R(n,m) begins:
  n\m       0        1         2       3        4        5
  0:        1
  1:      3/4      1/4
  2:      5/8     5/16      1/16
  3:    35/64    21/64      7/64    1/64
  4:   63/128    21/64      9/64   9/256    1/256
  5:  231/512  165/512  165/1024 55/1024  11/1024   1/1024
  ...
The next rows are:
  n=6: 429/1024, 1287/4096, 715/4096, 143/2048, 39/2048, 13/4096, 1/4096,
  n=7: 6435/16384, 5005/16384, 3003/16384, 1365/16384, 455/16384, 105/16384, 15/16384, 1/16384,
  n=8: 12155/32768, 2431/8192, 1547/8192, 1547/16384, 595/16384, 85/8192, 17/8192, 17/65536, 1/65536,
  n=9: 46189/131072, 37791/131072, 12597/65536, 6783/65536, 2907/65536, 969/65536, 969/262144, 171/262144, 19/262144, 1/262144,
  ...
Expansions:
x^2 = 5/8 * Todd(0,x) + 5/16 * Todd(1,x) + 1/16 * Todd(2,x) = 5/8 + (5/16)*(-3 + 4*x) +(1/16)*(5 -20*x + 16*x^2).
x^3 = (35*Todd(0, x) + 21*Todd(1, x) + 7*Todd(2, x) + 1*Todd(3, x))/64 = (35 + 21*(-3+4*x) + 7*( 5-20*x+16*x^2) + (-7+56*x-112*x^2+64*x^3))/64.
For the Todd polynomials see the coefficient table A084930.
		

Crossrefs

Formula

a(n, m) = numerator(R(n, m)) with the rationals Riordan matrix elements R(n, m)= [x^m]R(n, x), with the row polynomials R(n, x) generated by ((2 - c(z/4))/(1-z))/(1 - x*(-1 + c(z/4))) = 2*((1+x)*(z-1) + (1-x)*sqrt(1-z))/((1-z)*((1+x)^2*z - 4*x)), where c(x) is the o.g.f. of the Catalan numbers A000108.
The rationals R(n, m) = binomial(2*n+1, m)/2^(2*n). - Wolfdieter Lang, Jun 12 2016

A276738 Irregular triangle read by rows: T(n,m) = coefficients in a power/Fourier series expansion of an arbitrary anharmonic oscillator's exact phase space trajectory.

Original entry on oeis.org

-1, -1, 5, -1, 12, -32, -1, 14, 7, -126, 231, -1, 16, 16, -160, -160, 1280, -1792, -1, 18, 18, -198, 9, -396, 1716, -66, 2574, -12870, 14586, -1, 20, 20, -240, 20, -480, 2240, -240, -240, 6720, -17920, 2240, -35840, 129024, -122880, -1, 22, 22, -286, 22, -572, 2860, 11, -572, -286, 8580, -24310, -286, 4290, 8580, -97240, 184756, 715
Offset: 1

Views

Author

Bradley Klee, Sep 16 2016

Keywords

Comments

Irregular triangle read by rows (see examples). Consider an arbitrary anharmonic oscillator with Hamiltonian energy: H=(1/2)*b^2=(1/2)*(p^2+q^2) + Sum_{i=3} 2*v_i*q^i, and a stable minimum at (p,q)=(0,0). The phase space trajectory can be written in polar phase space coordinates as (q,p) = (R(x)cos(x),R(x)sin(x))=(R(Q)Q,R(Q)P). The present triangle determines a power / Fourier series of R(Q): R(Q) = b * (1 + sum b^n*T(n,m)*f(n,m) ); where the sum runs over n = 1,2,3 ... and m = 1,2,3...A000041(n). The basis functions f(n,m) are constructed from partitions of "n" listed in reverse lexicographic order. Partition n=(z_1+z_2+...z_j) becomes 2*Q^((z_1+2)+(z_2+2)+...(z_j+2))*v_{z_1+2}*v_{z_2+2}*...*v_{z_j+2} (see examples). This sequence transforms into A273506/A273507 by setting v_i=0 for odd i, v_i:=(-1)^(i/2-1)/2/(i!) otherwise, and (1/2)*b^2 = 2*k. For more details read "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			n/m  1    2     3     4     5     6      7
--------------------------------------------
1  | -1
2  | -1   5
3  | -1   12   -32
4  | -1   14    7   -126   231
5  | -1   16    16  -160  -160   1280  -1792
--------------------------------------------
R[1,Q] = -2*v_3*Q^3
R[2,Q] = -2*v_4*Q^4 + 10*v_3^2*Q^6
R[Q]   = b*(1+b*(-2*v_3*Q^3)+b^2*(-2*v_4*Q^4 + 10*v_3^2*Q^6 ))+O(b^4)
Construct basis for R[4,Q]; List partitions: {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}}; Transform Plus 2: {{v_6}, {v_5, v_3}, {v_4, v_4}, {v_4, v_3, v_3}, {v_3, v_3, v_3, v_3}}; Multiply: {v_6, v_5*v_3, v_4^2, v_4*v_3^2, v_3^4}; don't forget power of Q and factor of 2: {2*v_6*Q^6, 2*v_5*v_3*Q^8, 2*v_4^2*Q^8, 2*v_4*v_3^2*Q^10, 2*v_3^4*Q^12}.
		

Crossrefs

Programs

  • Mathematica
    R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
    Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
    H[n_] := Expand[1/2*r^2 + Vp[n]]
    RRules[n_] :=  With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]},  Function[{rules},
        Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
    basis[n_] :=  Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
    TriangleRow[n_, rules_] := With[{term = Expand[rules[[n, 2]]]},
      Coefficient[term, #] & /@ basis[n]]
    With[{rules = RRules[10]}, TriangleRow[#, rules] & /@ Range[10]]

A276816 Irregular triangle read by rows: T(n,m) = coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact period.

Original entry on oeis.org

-24, 480, -120, 6720, 3360, -241920, 1774080, -560, 40320, 40320, -1774080, 20160, -3548160, 61501440, -591360, 92252160, -1845043200, 8364195840, -2520, 221760, 221760, -11531520, 221760, -23063040, 461260800, 110880, -23063040, -11531520, 1383782400, -15682867200, -11531520, 691891200, 1383782400, -62731468800, 476759162880
Offset: 1

Views

Author

Bradley Klee, Sep 18 2016

Keywords

Comments

The phase space trajectory A276738 has phase space angular velocity A276814 and differential time dependence A276815. We calculate the period K = Int dt over the range [2*Pi, 0], trivial to compute from A276815 using A273496. Then K/(2*Pi) = 1 + sum b^(2n)*T(n,m)*f'(n,m); where the sum runs over n = 1, 2, 3 ... and m = 1, 2, 3, ... A000041(2n), and f'(n,m) = f(2n,m) of A276738 with Q=1/2. Choosing one point from the infinite dimensional coefficient space--v_i=0 for odd i, v_i=(-1)^(i/2-1)/2/(i!) otherwise--setting b^2 = 4*k, and summing over the entire table obtains the EllipticK expansion 2*A038534/A038533. For more details read "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			n/m   1     2     3         4         5
------------------------------------------
1  | -24   480
2  | -120  6720  3360   -241920   1774080
------------------------------------------
For pendulum values, f'(1,*)={(-1/384), 0}, f'(2,*) = {1/46080, 0, 1/294912, 0, 0}. Then K/(2Pi) = 1+(-1/384)*(-24)*4*k+((1/46080)*(-120)+(1/294912)*3360)*16*k^2=1+(1/4)*k + (9/64)*k^2, the first few terms of EllipticK.
		

Crossrefs

Programs

  • Mathematica
    RExp[n_]:=Expand[b Plus[R[0], Total[b^# R[#] & /@ Range[n]]]]
    RCalc[n_]:=With[{basis =Subtract[Tally[Join[Range[n + 2], #]][[All, 2]],Table[1, {n + 2}]] & /@ IntegerPartitions[n + 2][[3 ;; -1]]},
    Total@ReplaceAll[Times[-2, Multinomial @@ #, v[Total[#]],Times @@ Power[RSet[# - 1] & /@ Range[n + 2], #]] & /@ basis, {Q^2 -> 1, v[2] -> 1/4}]]
    dt[n_] := With[{exp = Normal[Series[-1/(1 + x)/.x -> Total[(2 # v[#] RExp[n - 1]^(# - 2) &/@Range[3, n + 2])], {b, 0, n}]]},
    Expand@ReplaceAll[Coefficient[exp, b, #] & /@ Range[n], R -> RSet]]
    RingGens[n_] :=Times @@ (v /@ #) & /@ (IntegerPartitions[n]/. x_Integer :> x + 2)
    tri[m_] := MapThread[Function[{a, b},Times[-# /. v[n_] :> Q^n /. Q^n_ :>  Binomial[n, n/2],(1/2) Coefficient[a, #]] & /@ b], {dt[2 m][[2 #]] & /@ Range[m], RingGens[2 #] & /@ Range[m]}]
    RSet[0] = 1; Set[RSet[#], Expand@RCalc[#]] & /@ Range[2*7];
    tri7 = tri[7]; tri7 // TableForm
    PeriodExpansion[tri_, n_] := ReplaceAll[ 1 + Dot[MapThread[ Dot, {tri,
      2 RingGens[2 #] & /@ Range[n]}], (2 h)^(Range[n])], {v[m_] :> (v[m]*(1/2)^m)}]
    {#,SameQ[Normal@Series[(2/Pi)*EllipticK[k],{k,0,7}],#]}&@ReplaceAll[
    PeriodExpansion[tri7,7],{v[n_/;OddQ[n]]:>0,v[n_]:> (-1)^(n/2-1)/2/(n!),h->2 k}]

A276817 Irregular triangle read by rows: T(n,m) = coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact differential precession.

Original entry on oeis.org

-1, 2, 6, -3, -16, 8, -48, 4, 30, -20, 140, 10, -140, 420, -5, -48, 36, -288, -24, 384, -1280, 12, -192, -96, 1920, -3840, 6, 70, -56, 504, 42, -756, 2772, -28, 504, 252, -5544, 12012, 14, -252, -252, 2772, 2772, -24024, 36036, -7, -96, 80, -800, -64, 1280, -5120, 48, -960, -480, 11520, -26880, -32, 640, 640, -7680
Offset: 0

Views

Author

Bradley Klee, Sep 18 2016

Keywords

Comments

Irregular triangle read by rows (see examples).
Consider an axially symmetric oscillator in two dimensions with polar coordinates ( r, y ). By conservation of angular momentum, replace the cyclic angle coordinate y with dy/dt = 1/r^2. The system becomes one-dimensional in r, with an effective potential including the 1/r^2 term. Assume that the effective potential has a minimum around r0 and apply a linear transform r --> q = r-r0. Radial oscillations around the effective potential minimum follow the exact solution of A276738, A276814, A276815, A276816. Now dy = dx (dy/dt) / (dx/dt) = dx * Sum b^n*T(n,m)*F(n,m), with n=1,2,3.... and m=1,2,3...A000070(n). Basis functions F(n,m) are an ordered union over A276738's f(n,m): F(n,m')={ (1/r0^2)*(Q/r0)^n } & Append_{i=1..n}_{m=1..A000041(n)} (1/2/r0^2)*(Q/r0)^(n - i)*f(i,m), where each successive term f(i,m) is appended such that index m' inherets the ordering of each m index (see examples). Integrating dx over a range of 2 Pi loses all odd rows, as in A276815 / A276816. This sequence is a useful tool in classical and relativistic astronomy (follow links to Wolfram demonstrations).

Examples

			n/m   1   2    3    4      5     6    7
------------------------------------------
0  | -1
1  |  2   6
2  | -3  -16   8   -48
3  |  4   30  -20   140   10   -140   420
------------------------------------------
Construction of F(2,_). List f(i,_) basis sets: {f(1,_)={2*Q^3*v_3},f(2,_)= {2*Q^4*v_4, 2*Q^6*v_3^2}}; Integrate and join: F(2,_)={(1/r0^2)*(Q/r0)^2,2*Q^3*v_3*(1/2/r0^2)*(Q/r0),2*Q^4*v_4*(1/2/r0^2), 2*Q^6*v_3^2*(1/2/r0^2)}={Q^2/r0^4,Q^4*v_3/r0^3,Q^4*v_4/r0^2,Q^6*v_3^2/r0^2}.
dy Expansion to second order: dy=dx(-(1/r0^2)+b^2*(2*Q/r0^3 + 6*Q^3*v_3/r0^2)+b^3*(-3*Q^2/r0^4 - 16*Q^4*v_3/r0^3 - 48*Q^6*v_3^2/r0^2 + 8*Q^4*v_4/r0^2)+O(b^3).
Cancellation of higher orders 1 to infinity and closed orbits. Kepler values {r0 = 1, v_n := ((n - 1)/4)*(-1)^n} yield dy = -dx. Harmonic oscillator values {r0 = Sqrt[2], v_n := ((-1)^n*(n + 1)/4/2)/sqrt[2]^n} yield dy = -(1/2)*dx. Parity symmetric conjectured values {r0=Sqrt[1/R],v_n odd n := 0,v_n even n := R^(n/2 - 1)*(n/8)} yield dy = -R*dx (see attached image "Pentagonal Orbits")?
		

References

  • R. M. Wald, General Relativity, University of Chicago press, 2010, pages 139-143.
  • J.A. Wheeler, A Journey into Gravity and Spacetime, Scientific American Library, 1990, pages 168-183.

Crossrefs

Programs

  • Mathematica
    R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
    Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
    H[n_] := Expand[1/2*r^2 + Vp[n]]
    RRules[n_] :=  With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]},  Function[{rules},
        Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
    xDot[n_] := Expand[Normal@Series[ReplaceAll[ Q^2 D[D[q[t], t]/q[t], t], {D[q[t], t] -> R[n] P, q[t] -> R[n] Q, r -> R[n], D[q[t], {t, 2}]
    ->  ReplaceAll[D[-(q^2/2 + Vp[n]), q], q -> R[n] Q]} ], {b, 0, n}] /. RRules[n] /. {P^2 -> 1 - Q^2}]
    ydot[n__] := Expand[Normal@Series[1/(r0 + q)^2 /. {q -> R[n] Q} /. RRules[n], {b, 0, n}]]
    dy[n_] := Expand@Normal@Series[ydot[n]/xDot[n], {b, 0, n}]
    basis[n_] :=  Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
    extendedBasis[n_] :=Flatten[(1/2/r0^2) (Q/r0)^(n - #) basis[#] & /@ Range[0, n]]
    TriangleRow[n_, func_] := Coefficient[func, b^n #] & /@ extendedBasis[n]
    With[{dy5 = dy[5]}, TriangleRow[#, dy5] /. v[_] -> 0 & /@ Range[0, 5]]
    (*Kepler Test*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {r0 -> 1, Cos[] -> 0, v[n] :> ((n - 1)/4)*(-1)^n}
    (*Harmonic Test*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {Cos[] -> 0, v[n] :> ((-1)^n*(n + 1)/4/2)/Sqrt[2]^n, r0 -> Sqrt[2]}
    (*Conjecture*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {Cos[] -> 0, v[n /; OddQ[n]] :> 0, v[n_] :> RR^(n/2 - 1)*n/8, r0 -> Sqrt[1/RR]}

A317933 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A034444 (number of unitary divisors of n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2018

Keywords

Comments

Multiplicative because A034444 is.
The first 2^20 terms are positive. Is the sequence nonnegative?
Records seem to be A001790, occurring at A000302 (apart from 4).

Crossrefs

Cf. A001790, A034444, A317934 (denominators).

Programs

  • PARI
    A034444(n) = (2^omega(n));
    A317933perA317934(n) = if(1==n,n,(A034444(n)-sumdiv(n,d,if((d>1)&&(dA317933perA317934(d)*A317933perA317934(n/d),0)))/2);
    A317933(n) = numerator(A317933perA317934(n));
    
  • PARI
    up_to = 65537;
    \\ Faster:
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v317933aux = DirSqrt(vector(up_to, n, A034444(n)));
    A317933(n) = numerator(v317933aux[n]);
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, ((1+X)/(1-X))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A034444(n) - Sum_{d|n, d>1, d 1.
Sum_{k=1..n} A317933(k) / A317934(k) ~ sqrt(6)*n/Pi. - Vaclav Kotesovec, May 10 2025

A036069 Denominator of rational part of Haar measure on Grassmannian space G(n,1).

Original entry on oeis.org

1, 2, 1, 4, 3, 16, 5, 32, 35, 256, 63, 512, 231, 2048, 429, 4096, 6435, 65536, 12155, 131072, 46189, 524288, 88179, 1048576, 676039, 8388608, 1300075, 16777216, 5014575, 67108864, 9694845, 134217728, 300540195
Offset: 0

Views

Author

Keywords

Comments

Also rational part of denominator of Gamma(n/2+1)/Gamma(n/2+1/2) (cf. A004731).

Examples

			1, 1, 1/2*Pi, 2, 3/4*Pi, 8/3, 15/16*Pi, 16/5, 35/32*Pi, 128/35, 315/256*Pi, ...
The sequence Gamma(n/2+1)/Gamma(n/2+1/2), n >= 0, begins 1/Pi^(1/2), (1/2)*Pi^(1/2), 2/Pi^(1/2), (3/4)*Pi^(1/2), (8/3)/Pi^(1/2), (15/16)*Pi^(1/2), (16/5)/Pi^(1/2), ...
		

References

  • D. A. Klain and G.-C. Rota, Introduction to Geometric Probability, Cambridge, p. 67.

Crossrefs

Cf. A004731.
Bisections are A001790 and A101926.

Programs

  • Maple
    if n mod 2 = 0 then k := n/2; 2*k*Pi*binomial(2*k-1,k)/4^k else k := (n-1)/2; 4^k/binomial(2*k,k); fi;
    f:=n->simplify(GAMMA(n/2+1)/GAMMA(n/2+1/2));
  • Mathematica
    Table[ Denominator[ Gamma[n/2+1]/Gamma[n/2+1/2]*Sqrt[Pi]^(1 - 2 Mod[n, 2])], {n, 0, 32}] (* Jean-François Alcover, Jul 16 2012 *)

A052468 Numerators in the Taylor series for arccosh(x) - log(2*x).

Original entry on oeis.org

1, 3, 5, 35, 63, 77, 429, 6435, 12155, 46189, 88179, 676039, 1300075, 5014575, 646323, 300540195, 583401555, 756261275, 4418157975, 6892326441, 22427411435, 263012370465, 514589420475, 2687300306925, 15801325804719, 61989816618513, 121683714103007
Offset: 1

Views

Author

Keywords

Comments

A055786 is the preferred version of this sequence.

Examples

			i*Pi/2 - arccosh(x) = i*x + (1/6)*i*x^3 + (3/40)*i*x^5 + (5/112)*i*x^7 + (35/1152)*i*x^9 + (63/2816)*i*x^11 + (231/13312)*i*x^13 + (143/10240)*i*x^15 + (6435/557056)*i*x^17 + ...
0, 1, 0, 1/6, 0, 3/40, 0, 5/112, 0, 35/1152, 0, 63/2816, 0, 231/13312, 0, 143/10240, 0, 6435/557056, 0, 12155/1245184, 0, 46189/5505024, 0, ... = A052468/A052469
		

Crossrefs

See A055786 for further information.
a(n)/A052469(n) = (1/(2*n))*A001790(n)/A046161(n) for n=>1.
Equals A162441(n+1)/(2n+1) for n=>1. - Johannes W. Meijer, Jul 06 2009

Programs

  • GAP
    List([1..30], n-> NumeratorRat( Factorial(2*n-1)/(4^n*(Factorial(n))^2) )) # G. C. Greubel, May 18 2019
  • Magma
    [Numerator(Factorial(2*n-1)/( 2^(2*n)* Factorial(n)^2)): n in [1..30]]; // Vincenzo Librandi, Jul 10 2017
    
  • Mathematica
    a [n_]:=Numerator[(2 n - 1)! / (2^(2 n) n!^2)]; Array[a, 40] (* Vincenzo Librandi, Jul 10 2017 *)
  • PARI
    {a(n) = numerator((2*n-1)!/(4^n*(n!)^2))}; \\ G. C. Greubel, May 18 2019
    
  • Sage
    [numerator(factorial(2*n-1)/(4^n*(factorial(n))^2)) for n in (1..30)] # G. C. Greubel, May 18 2019
    

Formula

a(n)/A052469(n) = A001147(n)/(A000165(n)*2*n). E.g., a(6) = 77 = 1*3*5*7*9*11 / gcd( 1*3*5*7*9*11, 2*4*6*8*10*12*12 ).
a(n) = numerator((2*n-1)!/(4^n * (n!)^2)). - Johannes W. Meijer, Jul 06 2009
Let z(n) = 2*(2*n+1)!*4^(-n-1)/((n+1)!)^2, then a(n) = numerator(z(n)), A162442(n) = denominator(z(n)), and z(n) = 1/(n+1) - Sum_{k=0..n}(-1)^k*binomial(n,k)*z(k). - Groux Roland, Jan 04 2011
a(n) = numerator(binomial(2n,n)/(n*2^(2n-1))). - Daniel Suteu, Oct 30 2017

Extensions

Updated by Frank Ellermann, May 22 2011
Cross-references edited by Johannes W. Meijer, Jul 05 2009
Previous Showing 41-50 of 79 results. Next