cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 69 results. Next

A124811 Number of 4-ary Lyndon words of length n with exactly three 1s.

Original entry on oeis.org

3, 18, 89, 405, 1701, 6801, 26244, 98415, 360846, 1299078, 4605822, 16120350, 55801305, 191318760, 650483703, 2195382771, 7360989291, 24536630727, 81358302690, 268482398877, 882156452724, 2887057484028, 9414317882700, 30596533116588, 99132767304831
Offset: 4

Views

Author

Mike Zabrocki, Nov 08 2006

Keywords

Examples

			a(5) = 18 because 111ab and 11a1b are Lyndon of length 4 for ab=2,3,4.
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x^4*(3-9*x+8*x^2)/((1-3*x)^3*(1-3*x^3)) )); // G. C. Greubel, Aug 08 2023
    
  • Mathematica
    (3-9*x+8*x^2)/((1-3*x)^3*(1-3*x^3)) + O[x]^23//CoefficientList[#, x]& (* Jean-François Alcover, Sep 19 2017 *)
    LinearRecurrence[{9,-27,30,-27,81,-81}, {3,18,89,405,1701,6801}, 41] (* G. C. Greubel, Aug 08 2023 *)
  • SageMath
    def b(n): return (1/2)*(1 + (-1)^(n + (n+1)//3))*3^(n//3)
    def A124811(n): return 3^(n-4)*binomial(n-1,2) - b(n-6)
    [A124811(n) for n in range(4,41)] # G. C. Greubel, Aug 08 2023

Formula

O.g.f.: x^4*(3-9*x+8*x^2)/((1-3*x)^3*(1-3*x^3)).
O.g.f.: (1/3)*((x/(1-3*x))^3 - x^3/(1-3*x^3)).
a(n) = (1/3)*Sum_{d|3, d|n} mu(d) C(n/d-1,(n-3)/d)*3^((n-3)/d).
a(n) = 3^(n/3-2)*(binomial(n-1, 2)*3^(2*n/3-2) - 1 + (n^2 mod 3)).
a(n) = 3^(n-4)*binomial(n-1, 2) - b(n-6), where b(n) = A079978(n)*3^floor(n/3). - G. C. Greubel, Aug 08 2023

A145919 A000332(n) = a(n)*(3*a(n) - 1)/2.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, -3, 5, 7, -9, 12, 15, -18, 22, 26, -30, 35, 40, -45, 51, 57, -63, 70, 77, -84, 92, 100, -108, 117, 126, -135, 145, 155, -165, 176, 187, -198, 210, 222, -234, 247, 260, -273, 287, 301, -315, 330, 345, -360, 376, 392, -408, 425, 442, -459, 477
Offset: 0

Views

Author

Matthew Vandermast, Oct 28 2008

Keywords

Comments

As the formula in the description shows, all members of A000332 belong to the generalized pentagonal sequence (A001318). A001318 also lists all nonnegative numbers that belong to A145919.

Examples

			a(6) = -3 and A000332(6) = (-3)(-10)/2 = 15.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(-x^4*(x^4 + 2*x^3 - 3*x^2 + 2*x + 1))/((x - 1)^3*(1 + x^2 + x)^3), {x,0,50}], x] (* G. C. Greubel, Jun 13 2017 *)
    LinearRecurrence[{0,0,3,0,0,-3,0,0,1},{0,0,0,0,1,2,-3,5,7},60] (* Harvey P. Dale, Feb 13 2023 *)
  • PARI
    my(x='x+O('x^50)); concat([0, 0, 0, 0], Vec((-x^4*(x^4 +2*x^3 -3*x^2 +2*x +1))/((x-1)^3*(1+x^2+x)^3))) \\ G. C. Greubel, Jun 13 2017

Formula

a(n+3) = A001840(n) when 3 does not divide n, A001840(n)*-1 otherwise.
After first two zeros, this sequence consists of all values of A001318(n) and A045943(n)*(-1), n>=0, sorted in order of increasing absolute value.
G.f.: (-x^4*(x^4+2*x^3-3*x^2+2*x+1))/((x-1)^3*(1+x^2+x)^3). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
a(n) = ((n^2-3*n+1)*(1-4*cos(2*Pi*n/3))+3)/18. - Natalia L. Skirrow, Apr 14 2025

A321773 Number of compositions of n into parts with distinct multiplicities and with exactly three parts.

Original entry on oeis.org

1, 3, 6, 4, 9, 9, 10, 12, 15, 13, 18, 18, 19, 21, 24, 22, 27, 27, 28, 30, 33, 31, 36, 36, 37, 39, 42, 40, 45, 45, 46, 48, 51, 49, 54, 54, 55, 57, 60, 58, 63, 63, 64, 66, 69, 67, 72, 72, 73, 75, 78, 76, 81, 81, 82, 84, 87, 85, 90, 90, 91, 93, 96, 94, 99, 99
Offset: 3

Views

Author

Alois P. Heinz, Nov 18 2018

Keywords

Examples

			From _Gus Wiseman_, Nov 11 2020: (Start)
Also the number of 3-part non-strict compositions of n. For example, the a(3) = 1 through a(11) = 15 triples are:
  111   112   113   114   115   116   117   118   119
        121   122   141   133   161   144   181   155
        211   131   222   151   224   171   226   191
              212   411   223   233   225   244   227
              221         232   242   252   262   272
              311         313   323   333   334   335
                          322   332   414   343   344
                          331   422   441   424   353
                          511   611   522   433   434
                                      711   442   443
                                            622   515
                                            811   533
                                                  551
                                                  722
                                                  911
(End)
		

Crossrefs

Column k=3 of A242887.
A235451 counts 3-part compositions with distinct run-lengths
A001399(n-6) counts 3-part compositions in the complement.
A014311 intersected with A335488 ranks these compositions.
A140106 is the unordered case, with Heinz numbers A285508.
A261982 counts non-strict compositions of any length.
A001523 counts unimodal compositions, with complement A115981.
A007318 and A097805 count compositions by length.
A032020 counts strict compositions.
A047967 counts non-strict partitions, with Heinz numbers A013929.
A242771 counts triples that are not strictly increasing.

Programs

  • Mathematica
    Table[Length[Join@@Permutations/@Select[IntegerPartitions[n,{3}],!UnsameQ@@#&]],{n,0,100}] (* Gus Wiseman, Nov 11 2020 *)

Formula

Conjectures from Colin Barker, Dec 11 2018: (Start)
G.f.: x^3*(1 + 3*x + 5*x^2) / ((1 - x)^2*(1 + x)*(1 + x + x^2)).
a(n) = a(n-2) + a(n-3) - a(n-5) for n>7. (End)
Conjecture: a(n) = (3*n-k)/2 where k value has a cycle of 6 starting from n=3 of (7,6,3,10,3,6). - Bill McEachen, Aug 12 2025

A008727 Molien series for 3-dimensional group [2,n] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into two kinds of 1's and one kind of 9. - Joerg Arndt, Dec 27 2014

Crossrefs

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,8,9,11,13];; for n in [12..70] do a[n]:=2*a[n-1]-a[n-2]+a[n-9]-2*a[n-10]+a[n-11]; od; a; # G. C. Greubel, Sep 09 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^9)) )); // G. C. Greubel, Sep 09 2019
    
  • Maple
    seq(coeff(series(1/((1-x)^2*(1-x^9)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 09 2019
  • Mathematica
    Drop[Accumulate[Floor[Range[70]/9]], 8] (* Jean-François Alcover, Mar 27 2013 *)
    CoefficientList[Series[1/(1-x)^2/(1-x^9), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
    LinearRecurrence[{2,-1,0,0,0,0,0,0,1,-2,1},{1,2,3,4,5,6,7,8,9,11,13},120] (* Harvey P. Dale, Feb 13 2022 *)
  • PARI
    Vec(1/(1-x)^2/(1-x^9)+O(x^66)) /* Joerg Arndt, Mar 27 2013 */
    
  • Sage
    def A008727_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/((1-x)^2*(1-x^9))).list()
    A008727_list(70) # G. C. Greubel, Sep 09 2019
    

Formula

G.f.: 1/((1-x)^2*(1-x^9)).
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+9} floor(j/9).
a(n-9) = (1/2)*floor(n/9)*(2*n - 7 - 9*floor(n/9)). (End)

A008729 Molien series for 3-dimensional group [2, n] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 171, 177, 183, 189, 195, 201, 207, 213, 219
Offset: 0

Views

Author

Keywords

Examples

			..1....2....3....4....5....6....7....8....9...10...11
.13...15...17...19...21...23...25...27...29...31...33
.36...39...42...45...48...51...54...57...60...63...66
.70...74...78...82...86...90...94...98..102..106..110
115..120..125..130..135..140..145..150..155..160..165
171..177..183..189..195..201..207..213..219..225..231
238..245..252..259..266..273..280..287..294..301..308
316..324..332..340..348..356..364..372..380..388..396
405..414..423..432..441..450..459..468..477..486..495
505..515..525..535..545..555..565..575..585..595..605
...
The first six columns are A051865, A180223, A022268, A022269, A211013, A152740.
- _Philippe Deléham_, Apr 03 2013
		

Crossrefs

Programs

  • GAP
    a:=[1,2,3,4,5,6,7,8,9,10,11,13,15];; for n in [14..70] do a[n]:=2*a[n-1]-a[n-2]+a[n-11]-2*a[n-12]+a[n-13]; od; a; # G. C. Greubel, Jul 30 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^11)) )); // G. C. Greubel, Jul 30 2019
    
  • Maple
    g:= 1/((1-x)^2*(1-x^11)); gser:= series(g, x=0,72); seq(coeff(gser, x, n), n=0..70); # modified by G. C. Greubel, Jul 30 2019
  • Mathematica
    CoefficientList[Series[1/((1-x)^2*(1-x^11)), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^11))) \\ G. C. Greubel, Jul 30 2019
    
  • Sage
    (1/((1-x)^2*(1-x^11))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019
    

Formula

From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+11} floor(j/11).
a(n-11) = (1/2)*floor(n/11)*(2*n - 9 - 11*floor(n/11)). (End)
a(n) = A218530(n+11). - Philippe Deléham, Apr 03 2013
From Chai Wah Wu, Jul 08 2016: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-11) - 2*a(n-12) + a(n-13) for n > 12.
G.f.: 1/(1 - 2*x + x^2 - x^11 + 2*x^12 - x^13) = 1/((1-x)^3 *(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10)). (End)

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010

A023133 Signature sequence of Pi (arrange the numbers i+j*x (i,j >= 1) in increasing order; the sequence of i's is the signature of x).

Original entry on oeis.org

1, 2, 3, 4, 1, 5, 2, 6, 3, 7, 4, 1, 8, 5, 2, 9, 6, 3, 10, 7, 4, 1, 11, 8, 5, 2, 12, 9, 6, 3, 13, 10, 7, 4, 1, 14, 11, 8, 5, 2, 15, 12, 9, 6, 3, 16, 13, 10, 7, 4, 1, 17, 14, 11, 8, 5, 2, 18, 15, 12, 9, 6, 3, 19, 16, 13, 10, 7, 4, 1, 20, 17, 14, 11, 8, 5, 2, 21, 18, 15, 12, 9, 6, 3
Offset: 1

Views

Author

Keywords

References

  • C. Kimberling, "Fractal Sequences and Interspersions", Ars Combinatoria, vol. 45 p 157 1997.

Crossrefs

Programs

  • PARI
    lista(nn) = {v = vector(nn^2, k, kij = k+nn-1; i = 1+(kij % nn); j = kij\nn; i+j*Pi); vs = vecsort(v, , 1); for (k=1, #vs, print1(curi = 1+((vs[k]+nn-1) % nn), ", "); if (curi == nn, break));} \\ Michel Marcus, Apr 10 2015

A242771 Number of integer points in a certain quadrilateral scaled by a factor of n (another version).

Original entry on oeis.org

0, 0, 1, 3, 6, 9, 14, 19, 25, 32, 40, 48, 58, 68, 79, 91, 104, 117, 132, 147, 163, 180, 198, 216, 236, 256, 277, 299, 322, 345, 370, 395, 421, 448, 476, 504, 534, 564, 595, 627, 660, 693, 728, 763, 799, 836, 874, 912, 952, 992, 1033, 1075, 1118, 1161, 1206
Offset: 1

Views

Author

Michael Somos, May 22 2014

Keywords

Comments

The quadrilateral is given by four vertices [(1/2, 1/3), (0, 1), (0, 0), (1, 0)] as an example on page 22 of Ehrhart 1967. Here the open line segment from (1/2, 1/3) to (0, 1) is included but the rest of the boundary is not. The sequence is denoted by d'(n).
From Gus Wiseman, Oct 18 2020: (Start)
Also the number of ordered triples of positive integers summing to n that are not strictly increasing. For example, the a(3) = 1 through a(7) = 14 triples are:
(1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,1,5)
(1,2,1) (1,2,2) (1,3,2) (1,3,3)
(2,1,1) (1,3,1) (1,4,1) (1,4,2)
(2,1,2) (2,1,3) (1,5,1)
(2,2,1) (2,2,2) (2,1,4)
(3,1,1) (2,3,1) (2,2,3)
(3,1,2) (2,3,2)
(3,2,1) (2,4,1)
(4,1,1) (3,1,3)
(3,2,2)
(3,3,1)
(4,1,2)
(4,2,1)
(5,1,1)
A001399(n-6) counts the complement (unordered strict triples).
A014311 \ A333255 ranks these compositions.
A140106 is the unordered version.
A337484 is the case not strictly decreasing either.
A337698 counts these compositions of any length, with complement A000009.
A001399(n-6) counts unordered strict triples.
A001523 counts unimodal compositions, with complement A115981.
A007318 and A097805 count compositions by length.
A069905 counts unordered triples.
A218004 counts strictly increasing or weakly decreasing compositions.
A337483 counts triples either weakly increasing or weakly decreasing.
(End)

Examples

			G.f. = x^3 + 3*x^4 + 6*x^5 + 9*x^6 + 14*x^7 + 19*x^8 + 25*x^9 + 32*x^10 + ...
		

Crossrefs

Programs

  • Magma
    [Floor((5*n-7)*(n-1)/12): n in [1..60]]; // Vincenzo Librandi, Jun 27 2015
  • Mathematica
    a[ n_] := Quotient[ 7 - 12 n + 5 n^2, 12];
    a[ n_] := With[ {o = Boole[ 0 < n], c = Boole[ 0 >= n], m = Abs@n}, Length @ FindInstance[ 0 < c + x && 0 < c + y && (2 x < c + m && 4 x + 3 y < o + 3 m || m < o + 2 x && 2 x + 3 y < c + 2 m), {x, y}, Integers, 10^9]];
    LinearRecurrence[{1,1,0,-1,-1,1},{0,0,1,3,6,9},90] (* Harvey P. Dale, May 28 2015 *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],!Less@@#&]],{n,0,15}] (* Gus Wiseman, Oct 18 2020 *)
  • PARI
    {a(n) = (7 - 12*n + 5*n^2) \ 12};
    
  • PARI
    {a(n) = if( n<0, polcoeff( x * (2 + x^2 + x^3 + x^4) / ((1 - x)^2 * (1 - x^6)) + x * O(x^-n), -n), polcoeff( x^3 * (1 + x + x^2 + 2*x^4) / ((1 - x)^2 * (1 - x^6)) + x * O(x^n), n))};
    

Formula

G.f.: x^3 * (1 + 2*x + 2*x^2) / (1 - x - x^2 + x^4 + x^5 - x^6) = (x^3 + x^4 + x^5 + 2*x^7) / ((1 - x)^2 * (1 - x^6)).
a(n) = floor( A147874(n) / 12).
a(-n) = A002789(n).
a(n+1) - a(n) = A010761(n).
For n >= 6, a(n) = A000217(n-2) - A001399(n-6). - Gus Wiseman, Oct 18 2020

A276235 Number of triangular partitions of n of order 6.

Original entry on oeis.org

1, 6, 21, 61, 156, 361, 781, 1599, 3124, 5876, 10696, 18917, 32627, 55027, 90948, 147604, 235610, 370395, 574181, 878616, 1328343, 1985833, 2937727, 4303249, 6245316, 8984932, 12819913, 18149148, 25503623, 35586130, 49321916, 67922649, 92967170, 126503102
Offset: 0

Views

Author

Vincenzo Librandi, Aug 29 2016

Keywords

Crossrefs

Cf. number of triangular partitions of n of order k: A000012 (k=1), A001840 (k=2), A084439 (k=3). A084446 (k=4), A084447 (k=5), this sequence (k=6), A276236 (k=7), A276279 (k=8), A276280 (k=9).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)^6*(1-x^3)^5*(1-x^5)^4*(1-x^7)^3*(1-x^9)^2*(1-x^11))));
    
  • Mathematica
    CoefficientList[Series[1/((1 - x)^6 (1 - x^3)^5 (1 - x^5)^4 (1 - x^7)^3 (1 - x^9)^2 (1 - x^11)), {x, 0, 50}],x]
  • PARI
    Vec(1/((1-x)^6*(1-x^3)^5*(1-x^5)^4*(1-x^7)^3*(1-x^9)^2*(1-x^11)) + O(x^30)) \\ Felix Fröhlich, Aug 29 2016

Formula

G.f.: 1/((1-x)^6*(1-x^3)^5*(1-x^5)^4*(1-x^7)^3*(1-x^9)^2* (1-x^11)).

A337460 Numbers k such that the k-th composition in standard order is a non-unimodal triple.

Original entry on oeis.org

22, 38, 44, 70, 76, 88, 134, 140, 148, 152, 176, 262, 268, 276, 280, 296, 304, 352, 518, 524, 532, 536, 552, 560, 592, 608, 704, 1030, 1036, 1044, 1048, 1064, 1072, 1096, 1104, 1120, 1184, 1216, 1408, 2054, 2060, 2068, 2072, 2088, 2096, 2120, 2128, 2144, 2192
Offset: 1

Views

Author

Gus Wiseman, Sep 18 2020

Keywords

Comments

These are triples matching the pattern (2,1,2), (3,1,2), or (2,1,3).
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding triples begins:
      22: (2,1,2)     296: (3,2,4)    1048: (6,1,4)
      38: (3,1,2)     304: (3,1,5)    1064: (5,2,4)
      44: (2,1,3)     352: (2,1,6)    1072: (5,1,5)
      70: (4,1,2)     518: (7,1,2)    1096: (4,3,4)
      76: (3,1,3)     524: (6,1,3)    1104: (4,2,5)
      88: (2,1,4)     532: (5,2,3)    1120: (4,1,6)
     134: (5,1,2)     536: (5,1,4)    1184: (3,2,6)
     140: (4,1,3)     552: (4,2,4)    1216: (3,1,7)
     148: (3,2,3)     560: (4,1,5)    1408: (2,1,8)
     152: (3,1,4)     592: (3,2,5)    2054: (9,1,2)
     176: (2,1,5)     608: (3,1,6)    2060: (8,1,3)
     262: (6,1,2)     704: (2,1,7)    2068: (7,2,3)
     268: (5,1,3)    1030: (8,1,2)    2072: (7,1,4)
     276: (4,2,3)    1036: (7,1,3)    2088: (6,2,4)
     280: (4,1,4)    1044: (6,2,3)    2096: (6,1,5)
		

Crossrefs

A000212 counts unimodal triples.
A000217(n - 2) counts 3-part compositions.
A001399(n - 3) counts 3-part partitions.
A001399(n - 6) counts 3-part strict partitions.
A001399(n - 6)*2 counts non-unimodal 3-part strict compositions.
A001399(n - 6)*4 counts unimodal 3-part strict compositions.
A001399(n - 6)*6 counts 3-part strict compositions.
A001523 counts unimodal compositions.
A001840 counts non-unimodal triples.
A059204 counts non-unimodal permutations.
A115981 counts non-unimodal compositions.
A328509 counts non-unimodal patterns.
A337459 ranks unimodal triples.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Triples are A014311.
- Sum is A070939.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Heinz number is A333219.
- Non-unimodal compositions are A335373.
- Non-co-unimodal compositions are A335374.
- Strict triples are A337453.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,1000],Length[stc[#]]==3&&MatchQ[stc[#],{x_,y_,z_}/;x>y
    				

Formula

Intersection of A014311 and A335373.

A352946 a(n) = Sum_{k=0..floor(n/3)} (n-3*k)^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 6, 10, 16, 25, 42, 73, 125, 217, 391, 714, 1305, 2428, 4612, 8830, 17038, 33377, 66216, 132349, 267075, 545329, 1123693, 2333278, 4889751, 10342468, 22043954, 47340802, 102504532, 223654713, 491393646, 1087353601, 2423448817, 5437568233
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (n-3*k)^k);
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-k*x^3)))

Formula

G.f.: Sum_{k>=0} x^k / (1 - k * x^3).
a(n) ~ sqrt(2*Pi/3) * (n/LambertW(exp(1)*n))^(n*(1 - 1/LambertW(exp(1)*n))/3 + 1/2) / sqrt(1 + LambertW(exp(1)*n)). - Vaclav Kotesovec, Apr 14 2022
Previous Showing 41-50 of 69 results. Next