cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A117887 Number of labeled trees on <= n nodes.

Original entry on oeis.org

1, 4, 20, 145, 1441, 18248, 280392, 5063361, 105063361, 2463011052, 64380375276, 1856540769313, 58550453144609, 2004745521503984, 74062339559431920, 2936485391069247713, 124376016487663499489, 5604762874272465685428
Offset: 1

Views

Author

Jonathan Vos Post, May 03 2006

Keywords

Comments

A000178 = Sum_{k=1..n} k^(k-1). A001923 = Sum_{k=1..n} k^k. A061789 = Sum_{k=1..n} p(k)^p(k), p(k) = k-th prime. a(n) = number of spanning trees in complete graphs K_i on i <= n labeled nodes. Also is partial sum of counts of parking functions, noncrossing partitions, critical configurations of the chip firing game, allowable pairs sorted by a priority queue. a(14) = 58550453144609 is prime.

Crossrefs

Programs

  • Maple
    a:=n->sum ((j+2)^j, j=0..n): seq(a(n), n=0..17); # Zerinvary Lajos, Dec 17 2008
  • Mathematica
    Table[Sum[k^(k-2),{k,2,n}],{n,2,25}] (* Harvey P. Dale, Jul 11 2011 *)

Formula

a(n) = Sum_{k=2..n} k^(k-2). a(n) = Sum_{k=2..n} A000272(k).

A185353 a(n) = (1^1 + 2^2 . . . + n^n) mod 10.

Original entry on oeis.org

1, 5, 2, 8, 3, 9, 2, 8, 7, 7, 8, 4, 7, 3, 8, 4, 1, 5, 4, 4, 5, 9, 6, 2, 7, 3, 6, 2, 1, 1, 2, 8, 1, 7, 2, 8, 5, 9, 8, 8, 9, 3, 0, 6, 1, 7, 0, 6, 5, 5, 6, 2, 5, 1, 6, 2, 9, 3, 2, 2, 3, 7, 4, 0, 5, 1, 4, 0, 9, 9, 0, 6, 9, 5, 0, 6, 3, 7, 6, 6, 7, 1, 8, 4, 9, 5, 8, 4, 3, 3, 4, 0, 3, 9, 4, 0, 7, 1, 0, 0
Offset: 1

Views

Author

Muhammed Hedayet, Jan 26 2012

Keywords

Comments

The last digit of 1^1 + 2^2 +...+ n^n, which has period 100.

Crossrefs

Cf. A000312 (n^n), A001923 (1^1 + 2^2 +...+ n^n).

Programs

  • Mathematica
    Mod[Accumulate[Table[n^n, {n, 200}]], 10] (* T. D. Noe, Jan 27 2012 *)
  • PARI
    a(n) = sum(k=1, n, k^k) % 10; \\ Michel Marcus, Jun 28 2017
    
  • Python
    from itertools import accumulate, count, islice
    def A185353_gen(): # generator of terms
        yield from accumulate((pow(k,k,10) for k in count(1)),func=lambda x,y:(x+y)%10)
    A185353_list = list(islice(A185353_gen(),40)) # Chai Wah Wu, Jun 17 2022

Extensions

Extended by T. D. Noe, Jan 27 2012

A062814 a(n) = Sum_{i=0..n-1} i * (n - i)^(n - i).

Original entry on oeis.org

0, 1, 6, 38, 326, 3739, 53808, 927420, 18578248, 423649565, 10828720882, 306545462810, 9518362652994, 321605286435431, 11745699035775884, 461063683165975712, 19357125741005727156, 865493449685182242777
Offset: 1

Views

Author

Olivier Gérard, Jun 23 2001

Keywords

Comments

Partial sums of A001923. - Amiram Eldar, Mar 26 2022

Crossrefs

Programs

  • Mathematica
    Table[Sum[i*(n - i)^(n - i), {i, 0, -1 + n}], {n, 1, 18}]
  • PARI
    a(n) = sum(i=0, n-1, i*(n-i)^(n-i)); \\ Michel Marcus, Mar 26 2019

Formula

From Amiram Eldar, Mar 26 2022: (Start)
a(n) = Sum_{k=0..n-1} A001923(k).
Limit_{n->oo} a(n+2)/a(n+1) - a(n+1)/a(n) = e (Cusumano, 2013). (End)

A065980 Inverse binomial transform of [1^1,2^2,3^3,...], shifted right by one index.

Original entry on oeis.org

1, 3, 20, 186, 2248, 33340, 585744, 11891236, 273854368, 7053523236, 200894140120, 6268924259884, 212691682554960, 7795165961244532, 306908654169113416, 12918649608270463740, 578931362074039774144
Offset: 1

Views

Author

Robert A. Stump (bee_ess107(AT)yahoo.com), Dec 09 2001

Keywords

Comments

{0, a(n),n=1,...} = inverse binomial transform of {A001923(m), m=0,...} [From Tilman Neumann, Dec 17 2008]

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-E^(-x)*LambertW[-x]/(1+LambertW[-x])^3/x, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Feb 17 2014 *)
  • PARI
    a(n)=if(n<1,0,(n-1)!*polcoeff(exp(-x+O(x^n))*sum(k=0,n-1,(k+1)^(k+1)*x^k/k!),n-1))

Formula

O.g.f.: Sum_{n>0} (n*x/(1+x))^n. E.g.f.: int(-exp(-x)*LambertW(-x)/(1+LambertW(-x))^3/x, x). - Vladeta Jovovic, Apr 12 2003
a(n) ~ n^n * exp(-exp(-1)). - Vaclav Kotesovec, Feb 17 2014

A109392 Partial sums of A109391.

Original entry on oeis.org

0, 1, 13, 175, 2735, 49610, 1029386, 24088590, 628068366, 18061990371, 568061990371, 19398632250697, 714854467214665, 28276489167109688, 1195037205850701368, 53742304051553826368, 2562499498076052846144
Offset: 0

Views

Author

Rick L. Shepherd, Jun 27 2005

Keywords

Comments

The sum of all the terms of all A001923(n) sequences having up to n terms all chosen from {1,2,...,n}.

Crossrefs

Cf. A109391, A001923 (sum k^k, k=1..n).

A117897 Number of labeled trees on prime numbers of nodes through n-th prime.

Original entry on oeis.org

1, 4, 129, 16936, 2357964627, 1794518358664, 2862424846028174457, 5483249282630830360396, 39471589603944768518079950019, 3053134546009996125349281528007992109928
Offset: 1

Views

Author

Jonathan Vos Post, May 03 2006

Keywords

Comments

A000178 = Sum_{k=1..n} k^(k-1). A001923 = Sum_{k=1..n} k^k. A061789 = Sum_{k=1..n} prime(k)^prime(k), prime(k) = k-th prime.
First differences a(n+1) - a(n) for n=1,...,9 are A076931(j) at j=3, 5, 7, 11, 13, 17, 19, 23 and 29. - R. J. Mathar, May 01 2007

Examples

			a(1) = number of labeled trees on prime(1) numbers of nodes = number of labeled trees on 2 nodes = A000272(2) = 2^0 = 1.
a(2) = number of labeled trees on prime(1) or prime(2) numbers of nodes = number of labeled trees on 2 or 3 nodes = A000272(2)+A000272(3) = 2^0 + 3^1 = 4.
a(3) = number of labeled trees on prime(1) or prime(2) or prime(3) numbers of nodes = number of labeled trees on 2 or 3 or 5 nodes = A000272(2)+A000272(3)+A000272(5) = 2^0 + 3^1 + 5^3 = 129.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Prime[k]^(Prime[k] -2), {k,n}], {n,20}] (* G. C. Greubel, Sep 27 2021 *)
  • Sage
    [sum( nth_prime(k)^(nth_prime(k) -2) for k in (1..n)) for n in (1..20)] # G. C. Greubel, Sep 27 2021

Formula

a(n) = Sum_{k=1..n} prime(k)^(prime(k)-2).
a(n) = Sum_{k=1..n} A000272(A000040(k)).

A120929 Partial sums of n^(n^2), A002489.

Original entry on oeis.org

1, 2, 18, 19701, 4294986997, 298023228171940122, 10314424798788558774343889178, 256923577521069192513410265783009965210785, 6277101735386681020759366944276858929512621227473999723681
Offset: 0

Views

Author

Jonathan Vos Post, Aug 18 2006

Keywords

Comments

After 2, can this ever be prime? This is to A001923 Sum k^k, k=1..n, as k^k^k is to k^k.

Examples

			a(0) = 1 because A002489(0) is given formally as 0^0^0 = 1.
a(1) = 2 because 1 + (1^1)^1 = 1 + 1 = 2.
a(2) = 18 because 2 + (2^2)^2 = 2 + 16 = 18.
a(3) = 19701 because 18 + (3^3)^3 = 18 + 19683 = 19701.
a(4) = 4294986997 = 19701 + (4^4)^4 = 19701 + 4294967296.
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Join[{1},Table[n^(n^2),{n,9}]]] (* Harvey P. Dale, Apr 10 2014 *)

Formula

a(n) = Sum_{i=0..n} i^(i^2). a(n) = Sum_{i=0..n} (i^i)^i. In this sequence, we formally define 0^0 = 1.

Extensions

More terms from Harvey P. Dale, Apr 10 2014

A175232 The smallest prime divisor of 1 + 2^2 + 3^3 + ... + n^n.

Original entry on oeis.org

5, 2, 2, 3413, 50069, 2, 2, 7, 10405071317, 2, 2, 88799, 3, 2, 2, 3, 3, 2, 2, 5, 3, 2, 2, 3, 7, 2, 2, 7, 208492413443704093346554910065262730566475781, 2, 2, 3, 17, 2, 2, 5, 61, 2, 2, 71, 11, 2, 2, 11, 7, 2, 2, 5, 3, 2, 2, 3, 3, 2, 2, 23, 3, 2, 2, 3, 44818693, 2, 2, 5
Offset: 2

Views

Author

Michel Lagneau, Mar 09 2010

Keywords

Examples

			a(2) = 5 divides 1 + 2^2.
a(3) = 2 divides 1 + 2^2 + 3^3 = 32.
a(4) = 2 divides 1 + 2^2 + 3^3 + 4^4 = 288.
a(5) = 3413 divides 1 + 2^2 + 3^3 + 4^4 + 5^5 = 3413.
a(13) = 88799 divides 1 + 2^2 + 3^3 + ... + 13^13 = 88799 * 3514531963.
		

Crossrefs

Programs

  • Maple
    with(numtheory): s :=1: for n from 2 to 60 do ;s := s+ n^n: s1 := ifactors(s)[2] : s2 :=s1[i][1], i=1..nops(s1):print(s1[1][1]):od:
  • Mathematica
    a[n_] := FactorInteger[Sum[k^k, {k, 1, n}]][[1, 1]]; Array[a, 20, 2] (* Amiram Eldar, Feb 04 2020 *)

Formula

a(n) = A020639(A001923(n)).

Extensions

Edited by R. J. Mathar, Mar 16 2010
a(61)-a(65) from Amiram Eldar, Feb 04 2020

A214662 Greatest prime divisor of 1 + 2^2 + 3^3 + ... + n^n.

Original entry on oeis.org

5, 2, 3, 3413, 50069, 8089, 487, 2099, 10405071317, 1274641129, 164496735539, 3514531963, 15624709, 23747111, 10343539, 56429700667, 1931869473647715169, 2383792821710269, 144326697012150473, 2053857208873393249, 128801386946535261205906957, 2298815880166789
Offset: 2

Views

Author

Michel Lagneau, Jul 24 2012

Keywords

Examples

			a(2) = 5 divides 1 + 2^2 ;
a(3) = 2 divides 1 + 2^2 + 3^3 = 32 ;
a(4) = 3 divides 1 + 2^2 + 3^3 + 4^4 = 288 = 2^5*3^2 ;
a(5) = 3413 divides 1 + 2^2 + 3^3 + 4^4 + 5^5 = 3413.
a(13) = 3514531963 divides 1 + 2^2 + 3^3 + ... + 13^13 = 88799 * 3514531963.
		

Crossrefs

Programs

  • Magma
    [Max(PrimeDivisors(&+[k^k:k in [1..n]])):n in [2..23]]; // Marius A. Burtea, Feb 09 2020
  • Maple
    with (numtheory):
    s:= proc(n) option remember; `if`(n=1, 1, s(n-1)+n^n) end:
    a:= n-> max(factorset(s(n))[]):
    seq (a(n), n=2..23);  # Alois P. Heinz, Jul 24 2012
  • Mathematica
    s = 1; Table[s = s + n^n; FactorInteger[s][[-1, 1]], {n, 2, 24}] (* T. D. Noe, Jul 25 2012 *)
    Module[{nn=30,lst},lst=Table[n^n,{n,nn}];Table[FactorInteger[Total[Take[lst,k]]][[-1,1]],{k,2,nn}]] (* Harvey P. Dale, Oct 09 2022 *)
  • PARI
    a(n) = vecmax(factor(sum(k=1, n, k^k))[,1]); \\ Michel Marcus, Feb 09 2020
    

Formula

a(n) = A006530(A001923(n)).

A343932 a(n) = (Sum_{k=1..n} k^k) mod n.

Original entry on oeis.org

0, 1, 2, 0, 3, 5, 5, 4, 1, 7, 3, 4, 11, 13, 3, 4, 0, 15, 0, 4, 14, 13, 10, 20, 22, 11, 25, 20, 21, 1, 18, 4, 6, 17, 27, 12, 31, 27, 20, 28, 6, 41, 34, 32, 31, 45, 45, 4, 11, 25, 39, 48, 21, 45, 46, 12, 53, 47, 41, 32, 9, 5, 55, 4, 25, 7, 47, 8, 45, 19, 12, 60, 50, 43, 20, 60, 54, 29, 72, 36, 70, 31, 74, 40, 69, 7, 18, 20, 63, 3, 24, 32
Offset: 1

Views

Author

Seiichi Manyama, May 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[Sum[PowerMod[k, k, n], {k, 1, n}], n]; Array[a, 100] (* Amiram Eldar, May 04 2021 *)
  • PARI
    a(n) = sum(k=1, n, k^k)%n;
    
  • Python
    def A343932(n): return sum(pow(k,k,n) for k in range(1,n+1)) % n # Chai Wah Wu, Jun 18 2022

Formula

a(n) = A001923(n) mod n.
Previous Showing 21-30 of 34 results. Next