A056858 Triangle of number of rises in restricted growth strings (RGS) for the set partitions of n.
1, 1, 1, 1, 3, 1, 1, 6, 7, 1, 1, 10, 26, 14, 1, 1, 15, 71, 89, 26, 1, 1, 21, 161, 380, 267, 46, 1, 1, 28, 322, 1268, 1709, 732, 79, 1, 1, 36, 588, 3571, 8136, 6794, 1887, 133, 1, 1, 45, 1002, 8878, 31532, 44924, 24717, 4654, 221, 1, 1, 55, 1617, 20053, 104927, 234412, 221857, 84170, 11113, 364, 1
Offset: 1
A064551 Ado [Simone Caramel]'s function: a(0) = 1, a(n) = a(n-1) + 2*(Fibonacci(n+1)-n), n > 0.
1, 1, 1, 1, 3, 9, 23, 51, 103, 195, 353, 619, 1061, 1789, 2981, 4925, 8087, 13221, 21547, 35039, 56891, 92271, 149541, 242231, 392233, 634969, 1027753, 1663321, 2691723, 4355745, 7048223, 11404779, 18453871, 29859579, 48314441, 78175075, 126490637, 204666901, 331158797
Offset: 0
Comments
A Pickover sequence with properties analogous to the primes.
References
- Ado [Simone Caramel], Postings in egroups and newsgroups.
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (4,-5,1,2,-1).
Programs
-
ARIBAS
function a064551(maxarg: integer); var n,r,rm,q,qm1,qm2: integer; begin qm2 := 0; qm1 := 0; rm := 0; for n := 0 to maxarg do if n < 2 then q := 1; else q := qm1 + qm2; end; qm2 := qm1; qm1 := q; if n = 0 then r := 1; else r := rm + 2*(q - n); end; rm := r; write(r," "); end; end; a064551(35);
-
Haskell
a064551 n = a064551_list !! n a064551_list = 1 : zipWith (+) a064551_list (map (* 2) $ zipWith (-) (drop 2 a000045_list) [1..]) -- Reinhard Zumkeller, Sep 13 2013
-
Maple
a:= proc(n) option remember: a(n-1)+2*(combinat[fibonacci](n+1)-n) end: a(0):=1: for n from 0 to 60 do printf(`%d, `, a(n)) od:
-
Mathematica
a[0] = f[0] = f[1] = 1; f[n_] := f[n] = f[n - 1] + f[n - 2]; a[n_] := a[n] = a[n - 1] + 2*(f[n] - n); Table[ a[n], {n, 0, 40} ] LinearRecurrence[{4,-5,1,2,-1},{1,1,1,1,3},50] (* Harvey P. Dale, Sep 27 2011 *)
Formula
From T. D. Noe, Oct 12 2007: (Start)
G.f.: (1 - 3x + 2x^2 + x^3 + x^4)/((x-1)^3 (x^2 + x - 1)).
a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5). (End)
a(n) = (1/5)*2^(-n)*(-15*2^n + (10-4*sqrt(5))*(1-sqrt(5))^n + (1+sqrt(5))^n*(10+4*sqrt(5))) - n - n^2. - Jean-François Alcover, May 28 2013
a(n) = a(n-1) - 2 * A065220(n), n > 0. - Reinhard Zumkeller, Sep 13 2013
a(n) = 2*F(n+3) - n^2 - n - 3 = 1 + 2*Sum_{k=1..n} F(k+1) - k = 1 + 2*Sum_{k=1..n} A001924(k-3), F=A000045. - Ehren Metcalfe, Dec 27 2018
E.g.f.: 4*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 2*sqrt(5)*sinh(sqrt(5)*x/2))/5 - exp(x)*(3 + x*(2 + x)). - Stefano Spezia, Oct 16 2023
A119407 Number of nonempty subsets of {1,2,...,n} with no gap of length greater than 4 (a set S has a gap of length d if a and b are in S but no x with a < x < b is in S, where b-a=d).
1, 3, 7, 15, 31, 62, 122, 238, 462, 894, 1727, 3333, 6429, 12397, 23901, 46076, 88820, 171212, 330028, 636156, 1226237, 2363655, 4556099, 8782171, 16928187, 32630138, 62896622, 121237146, 233692122, 450456058, 868281979, 1673667337, 3226097529, 6218502937, 11986549817, 23104817656
Offset: 1
Keywords
Comments
Examples
G.f. = x + 3*x^2 + 7*x^3 + 15*x^4 + 31*x^5 + 62*x^6 + 122*x^7 + 238*x^8 + 462*x^9 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2,0,0,-1,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x/((1-x)*(1-2*x+x^5)) )); // G. C. Greubel, Jun 05 2019 -
Mathematica
Rest@CoefficientList[Series[x/((1-x)*(1-2*x+x^5)), {x, 0, 40}], x] (* G. C. Greubel, Jun 05 2019 *) LinearRecurrence[{3,-2,0,0,-1,1},{1,3,7,15,31,62},40] (* Harvey P. Dale, Dec 04 2019 *)
-
PARI
{a(n) = if( n<0, n = -n; polcoeff( x^5 / ((1 - x)^2 * (1 + x + x^2 + x^3 - x^4)) + x * O(x^n), n), polcoeff( x / ((1 - x)^2 * (1 - x - x^2 - x^3 - x^4)) + x * O(x^n), n))} /* Michael Somos, Dec 28 2012 */
-
PARI
my(x='x+O('x^40)); Vec(x/((1-x)*(1-2*x+x^5))) \\ G. C. Greubel, Jun 05 2019
-
Sage
a=(x/((1-x)*(1-2*x+x^5))).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Jun 05 2019
Formula
G.f. for number of nonempty subsets of {1,2,...,n} with no gap of length greater than d is x/((1-x)*(1-2*x+x^(d+1))). - Vladeta Jovovic, Apr 27 2008
From Michael Somos, Dec 28 2012: (Start)
G.f.: x/((1-x)^2*(1-x-x^2-x^3-x^4)) = x/((1-x)*(1-2*x+x^5)).
First difference is A107066. (End)
a(n-3) = Sum_{k=0..n} (n-k)*A000078(k) for n>3. - Greg Dresden, Jan 01 2021
Extensions
Terms a(25) onward added by G. C. Greubel, Jun 05 2019
A192755 Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
0, 1, 7, 19, 42, 82, 150, 263, 449, 753, 1248, 2052, 3356, 5469, 8891, 14431, 23398, 37910, 61394, 99395, 160885, 260381, 421372, 681864, 1103352, 1785337, 2888815, 4674283, 7563234, 12237658, 19801038, 32038847, 51840041, 83879049
Offset: 0
Keywords
Comments
Programs
-
Mathematica
p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + 5 n + 1; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192754 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192755 *)
Formula
From R. J. Mathar, May 04 2014: (Start)
Conjecture: G.f.: -x*(1+4*x) / ( (x^2+x-1)*(x-1)^2 ).
Partial sums of A192754. (End)
A210673 a(n) = a(n-1)+a(n-2)+n-4, a(0)=0, a(1)=1.
0, 1, -1, -1, -2, -2, -2, -1, 1, 5, 12, 24, 44, 77, 131, 219, 362, 594, 970, 1579, 2565, 4161, 6744, 10924, 17688, 28633, 46343, 74999, 121366, 196390, 317782, 514199, 832009, 1346237, 2178276, 3524544, 5702852, 9227429, 14930315, 24157779, 39088130, 63245946
Offset: 0
Comments
Second differences are Fibonacci numbers A000045 with offset -4. - Olivier Gérard, Aug 21 2016
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Crossrefs
Cf. A066982: a(n)=a(n-1)+a(n-2)+n-2, a(0)=0, a(1)=1 (except the first term).
Cf. A104161: a(n)=a(n-1)+a(n-2)+n-1, a(0)=0, a(1)=1.
Cf. A001924: a(n)=a(n-1)+a(n-2)+n, a(0)=0, a(1)=1.
Cf. A192760: a(n)=a(n-1)+a(n-2)+n+1, a(0)=0, a(1)=1.
Cf. A192761: a(n)=a(n-1)+a(n-2)+n+2, a(0)=0, a(1)=1.
Cf. A192762: a(n)=a(n-1)+a(n-2)+n+3, a(0)=0, a(1)=1.
Cf. A210675: a(n)=a(n-1)+a(n-2)+n+4, a(0)=0, a(1)=1.
Programs
-
Mathematica
RecurrenceTable[{a[0]==0,a[1]==1,a[n]==a[n-1]+a[n-2]+n-4},a,{n,50}] (* or *) LinearRecurrence[{3,-2,-1,1},{0,1,-1,-1},50] (* Harvey P. Dale, Oct 03 2012 *)
Formula
a(0)=0, a(1)=1, a(2)=-1, a(3)=-1, a(n) = 3*a(n-1)-2*a(n-2)-a(n-3)+a(n-4). - Harvey P. Dale, Oct 03 2012
G.f.: x/Q(0), where Q(k)= 1 + (k+1)*x/(1 - x - x*(1-x)/(x + (k+1)*(1-x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 24 2013
G.f.: -x*(2*x-1)^2 / ((x-1)^2*(x^2+x-1)). - Colin Barker, May 31 2013
A210730 a(n) = a(n-1) + a(n-2) + n + 2 with n>1, a(0)=a(1)=0.
0, 0, 4, 9, 19, 35, 62, 106, 178, 295, 485, 793, 1292, 2100, 3408, 5525, 8951, 14495, 23466, 37982, 61470, 99475, 160969, 260469, 421464, 681960, 1103452, 1785441, 2888923, 4674395, 7563350, 12237778, 19801162, 32038975, 51840173, 83879185, 135719396
Offset: 0
Comments
Deleting the 0's leaves row 4 of the convolution array A213579. - Clark Kimberling, Jun 20 2012
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Crossrefs
Cf. A033818: a(n)=a(n-1)+a(n-2)+n-5, a(0)=a(1)=0 (except first 2 terms and sign).
Cf. A002062: a(n)=a(n-1)+a(n-2)+n-4, a(0)=a(1)=0 (except the first term and sign).
Cf. A065220: a(n)=a(n-1)+a(n-2)+n-3, a(0)=a(1)=0.
Cf. A001924: a(n)=a(n-1)+a(n-2)+n-1, a(0)=a(1)=0 (except the first term).
Cf. A023548: a(n)=a(n-1)+a(n-2)+n, a(0)=a(1)=0 (except first 2 terms).
Cf. A023552: a(n)=a(n-1)+a(n-2)+n+1, a(0)=a(1)=0 (except first 2 terms).
Cf. A210731: a(n)=a(n-1)+a(n-2)+n+3, a(0)=a(1)=0.
Programs
-
GAP
F:=Fibonacci;; List([0..40], n-> F(n+3)+3*F(n+1)-n-5); # G. C. Greubel, Jul 08 2019
-
Magma
I:=[0, 0, 4, 9]; [n le 4 select I[n] else 3*Self(n-1)-2*Self(n-2)-Self(n-3)+Self(n-4): n in [1..37]]; // Bruno Berselli, May 10 2012
-
Magma
F:=Fibonacci; [F(n+3)+3*F(n+1)-n-5: n in [0..40]]; // G. C. Greubel, Jul 08 2019
-
Mathematica
RecurrenceTable[{a[0]==a[1]==0, a[n]==a[n-1] +a[n-2] +n+2}, a, {n, 40}] (* Bruno Berselli, May 10 2012 *) LinearRecurrence[{3,-2,-1,1},{0,0,4,9},40] (* Harvey P. Dale, Jul 24 2013 *) With[{F=Fibonacci}, Table[F[n+3]+2*F[n+1]-n-5, {n, 40}]] (* G. C. Greubel, Jul 08 2019 *)
-
PARI
concat(vector(2), Vec(x^2*(4-3*x)/((1-x)^2*(1-x-x^2)) + O(x^50))) \\ Colin Barker, Mar 11 2017
-
PARI
vector(40, n, n--; f=fibonacci; f(n+3)+3*f(n+1)-n-5) \\ G. C. Greubel, Jul 08 2019
-
Sage
f=fibonacci; [f(n+3)+3*f(n+1)-n-5 for n in (0..40)] # G. C. Greubel, Jul 08 2019
Formula
G.f.: x^2*(4-3*x)/((1-x)^2*(1-x-x^2)). - Bruno Berselli, May 10 2012
a(n) = A210677(n)-1. - Bruno Berselli, May 10 2012
a(0)=0, a(1)=0, a(2)=4, a(3)=9, a(n) = 3*a(n-1)-2*a(n-2)-a(n-3)+a(n-4). - Harvey P. Dale, Jul 24 2013
a(n) = -5 + (2^(-1-n)*((1-sqrt(5))^n*(-7+5*sqrt(5)) + (1+sqrt(5))^n*(7+5*sqrt(5)))) / sqrt(5) - n. - Colin Barker, Mar 11 2017
a(n) = Fibonacci(n+3) + 3*Fibonacci(n+1) - n - 5. - G. C. Greubel, Jul 08 2019
A210731 a(n) = a(n-1) + a(n-2) + n + 3 with n>1, a(0) = a(1) = 0.
0, 0, 5, 11, 23, 42, 74, 126, 211, 349, 573, 936, 1524, 2476, 4017, 6511, 10547, 17078, 27646, 44746, 72415, 117185, 189625, 306836, 496488, 803352, 1299869, 2103251, 3403151, 5506434, 8909618, 14416086, 23325739, 37741861, 61067637, 98809536
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Crossrefs
Cf. A033818: a(n)=a(n-1)+a(n-2)+n-5, a(0)=a(1)=0 (except first 2 terms and sign).
Cf. A002062: a(n)=a(n-1)+a(n-2)+n-4, a(0)=a(1)=0 (except the first term and sign).
Cf. A065220: a(n)=a(n-1)+a(n-2)+n-3, a(0)=a(1)=0.
Cf. A001924: a(n)=a(n-1)+a(n-2)+n-1, a(0)=a(1)=0 (except the first term).
Cf. A023548: a(n)=a(n-1)+a(n-2)+n, a(0)=a(1)=0 (except first 2 terms).
Cf. A023552: a(n)=a(n-1)+a(n-2)+n+1, a(0)=a(1)=0 (except first 2 terms).
Cf. A210730: a(n)=a(n-1)+a(n-2)+n+2, a(0)=a(1)=0.
Programs
-
GAP
F:=Fibonacci;; List([0..40], n-> F(n+3)+4*F(n+1)-n-6); # G. C. Greubel, Jul 09 2019
-
Magma
F:=Fibonacci; [F(n+3)+4*F(n+1)-n-6: n in [0..40]]; // G. C. Greubel, Jul 09 2019
-
Mathematica
With[{F = Fibonacci}, Table[F[n+3]+4*F[n+1]-n-6, {n,0,40}]] (* G. C. Greubel, Jul 09 2019 *) nxt[{n_,a_,b_}]:={n+1,b,a+b+n+4}; NestList[nxt,{1,0,0},40][[;;,2]] (* or *) LinearRecurrence[{3,-2,-1,1},{0,0,5,11},40] (* Harvey P. Dale, Dec 30 2024 *)
-
PARI
vector(40, n, n--; f=fibonacci; f(n+3)+4*f(n+1)-n-6) \\ G. C. Greubel, Jul 09 2019
-
Sage
f=fibonacci; [f(n+3)+4*f(n+1)-n-6 for n in (0..40)] # G. C. Greubel, Jul 09 2019
Formula
From Colin Barker, Jun 29 2012: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
G.f.: x^2*(5-4*x)/((1-x)^2*(1-x-x^2)). (End)
a(n) = Fibonacci(n+3) + 4*Fibonacci(n+1) - (n+6). - G. C. Greubel, Jul 09 2019
A248944 T(n,k)=Number of length n arrays x(i), i=1..n with x(i) in i..i+k and no value appearing more than 1 time.
2, 3, 3, 4, 7, 4, 5, 13, 14, 5, 6, 21, 36, 26, 6, 7, 31, 76, 90, 46, 7, 8, 43, 140, 246, 212, 79, 8, 9, 57, 234, 566, 738, 478, 133, 9, 10, 73, 364, 1146, 2104, 2108, 1044, 221, 10, 11, 91, 536, 2106, 5150, 7364, 5794, 2227, 364, 11, 12, 111, 756, 3590, 11196, 21652, 24720
Offset: 1
Comments
Table starts
..2...3....4......5......6.......7........8........9........10........11
..3...7...13.....21.....31......43.......57.......73........91.......111
..4..14...36.....76....140.....234......364......536.......756......1030
..5..26...90....246....566....1146.....2106.....3590......5766......8826
..6..46..212....738...2104....5150....11196....22162.....40688.....70254
..7..79..478...2108...7364...21652....55532...127604....268108....523244
..8.133.1044...5794..24720...86608...260720...693552...1666000...3675680
..9.221.2227..15458..80196..334072..1173240..3598120...9856552..24553080
.10.364.4664..40296.253072.1249768..5112544.17990600..56010096.157175032
.11.596.9627.103129.780902.4557284.21670160.87396728.308055528.971055240
Links
- R. H. Hardin, Table of n, a(n) for n = 1..507
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2)
k=2: a(n) = 3*a(n-1) -2*a(n-2) -a(n-3) +a(n-4)
k=3: a(n) = 4*a(n-1) -4*a(n-2) -2*a(n-4) +4*a(n-5) -a(n-8)
k=4: [order 16]
k=5: [order 32]
k=6: [order 63]
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = n^2 + n + 1
n=3: a(n) = n^3 + 3*n
n=4: a(n) = n^4 - 2*n^3 + 9*n^2 - 8*n + 6 for n>1
n=5: a(n) = n^5 - 5*n^4 + 25*n^3 - 55*n^2 + 80*n - 46 for n>1
n=6: a(n) = n^6 - 9*n^5 + 60*n^4 - 225*n^3 + 555*n^2 - 774*n + 484 for n>3
n=7: a(n) = n^7 - 14*n^6 + 126*n^5 - 700*n^4 + 2625*n^3 - 6342*n^2 + 9072*n - 5840 for n>4
A345123 Number T(n,k) of ordered subsequences of {1,...,n} containing at least k elements and such that the first differences contain only odd numbers; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 2, 1, 4, 3, 1, 7, 6, 3, 1, 12, 11, 7, 3, 1, 20, 19, 14, 8, 3, 1, 33, 32, 26, 17, 9, 3, 1, 54, 53, 46, 34, 20, 10, 3, 1, 88, 87, 79, 63, 43, 23, 11, 3, 1, 143, 142, 133, 113, 83, 53, 26, 12, 3, 1, 232, 231, 221, 196, 156, 106, 64, 29, 13, 3, 1, 376, 375, 364, 334, 279, 209, 132, 76, 32, 14, 3, 1
Offset: 0
Comments
The sequence of column k satisfies a linear recurrence with constant coefficients of order 2k if k >= 2 and of order 3 for k in {0, 1}.
Examples
T(0,0) = 1: []. T(1,1) = 1: [1]. T(2,2) = 1: [1,2]. T(3,1) = 6: [1], [2], [3], [1,2], [2,3], [1,2,3]. T(4,0) = 12: [], [1], [2], [3], [4], [1,2], [1,4], [2,3], [3,4], [1,2,3], [2,3,4], [1,2,3,4]. T(6,3) = 17: [1,2,3], [1,2,5], [1,4,5], [2,3,4], [2,3,6], [2,5,6], [3,4,5], [4,5,6], [1,2,3,4], [1,2,3,6], [1,2,5,6], [1,4,5,6], [2,3,4,5], [3,4,5,6], [1,2,3,4,5], [2,3,4,5,6], [1,2,3,4,5,6]. Triangle T(n,k) begins: 1; 2, 1; 4, 3, 1; 7, 6, 3, 1; 12, 11, 7, 3, 1; 20, 19, 14, 8, 3, 1; 33, 32, 26, 17, 9, 3, 1; 54, 53, 46, 34, 20, 10, 3, 1; 88, 87, 79, 63, 43, 23, 11, 3, 1; 143, 142, 133, 113, 83, 53, 26, 12, 3, 1; 232, 231, 221, 196, 156, 106, 64, 29, 13, 3, 1; ...
References
- Chu, Hung Viet, Various Sequences from Counting Subsets, Fib. Quart., 59:2 (May 2021), 150-157.
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Chu, Hung Viet, Various Sequences from Counting Subsets, arXiv:2005.10081 [math.CO], 2021.
Crossrefs
Programs
-
Maple
b:= proc(n, l, t) option remember; `if`(n=0, `if`(t=0, 1, 0), `if`(0 in [l, irem(1+l-n, 2)], b(n-1, n, max(0, t-1)), 0)+b(n-1, l, t)) end: T:= (n, k)-> b(n, 0, k): seq(seq(T(n, k), k=0..n), n=0..10); # second Maple program: g:= proc(n, k) option remember; `if`(k>n, 0, `if`(k in [0, 1], n^k, g(n-1, k-1)+g(n-2, k))) end: T:= proc(n, k) option remember; `if`(k>n, 0, g(n, k)+T(n, k+1)) end: seq(seq(T(n, k), k=0..n), n=0..10); # third Maple program: T:= proc(n, k) option remember; `if`(k>n, 0, binomial(iquo(n+k, 2), k)+ `if`(k>0, binomial(iquo(n+k-1, 2), k), 0)+T(n, k+1)) end: seq(seq(T(n, k), k=0..n), n=0..10);
-
Mathematica
T[n_, k_] := T[n, k] = If[k > n, 0, Binomial[Quotient[n+k, 2], k] + If[k > 0, Binomial[Quotient[n+k-1, 2], k], 0] + T[n, k+1]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 11}] // Flatten (* Jean-François Alcover, Nov 06 2021, after 3rd Maple program *)
A077880 Expansion of (1-x)^(-1)/(1-2*x^2+x^3).
1, 1, 3, 2, 6, 2, 11, -1, 21, -12, 44, -44, 101, -131, 247, -362, 626, -970, 1615, -2565, 4201, -6744, 10968, -17688, 28681, -46343, 75051, -121366, 196446, -317782, 514259, -832009, 1346301, -2178276, 3524612, -5702852, 9227501, -14930315, 24157855, -39088130, 63246026, -102334114
Offset: 0
Keywords
Examples
1 + x + 3*x^2 + 2*x^3 + 6*x^4 + 2*x^5 + 11*x^6 - x^7 + 21*x^8 - 12*x^9 + 44*x^10 + ...
Links
- Index entries for linear recurrences with constant coefficients, signature (1, 2, -3, 1).
Crossrefs
Cf. A000045.
Programs
-
Mathematica
Table[(-1)^n*Fibonacci[n - 1] + n, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 28 2011 *)
-
PARI
{a(n) = fibonacci(1-n) + n} /* Michael Somos, Dec 31 2012 */
Formula
a(n) = (-1)^n*Fibonacci(n-1) + n. - Vladeta Jovovic, Jul 18 2004
a(n) = A001924(-3-n) = 2*a(n-2) - a(n-3) + 1. - Michael Somos, Dec 31 2012
If 0 is prepended then BINOMIAL transform is A079282 with 0 prepended. - Michael Somos, Dec 31 2012
a(n) = (-1)^n * Sum_{k=0..n} binomial(k-2,n-k). - Seiichi Manyama, Aug 14 2024
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
Extensions