A052856
E.g.f.: (1-3*exp(x)+exp(2*x))/(exp(x)-2).
Original entry on oeis.org
1, 2, 4, 14, 76, 542, 4684, 47294, 545836, 7087262, 102247564, 1622632574, 28091567596, 526858348382, 10641342970444, 230283190977854, 5315654681981356, 130370767029135902, 3385534663256845324
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Sequence(C),C=Set(Z,1 <= card),S=Union(B,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
With[{nn=20},CoefficientList[Series[(1-3Exp[x]+Exp[x]^2)/(-2+Exp[x]),{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Nov 24 2012 *)
-
a(n)=if(n<0,0,n!*polcoeff(subst(y+1/(1-y),y,exp(x+x*O(x^n))-1),n))
A076726
a(n) = Sum_{k>=0} k^n/2^k.
Original entry on oeis.org
2, 2, 6, 26, 150, 1082, 9366, 94586, 1091670, 14174522, 204495126, 3245265146, 56183135190, 1053716696762, 21282685940886, 460566381955706, 10631309363962710, 260741534058271802, 6771069326513690646
Offset: 0
Charles G. Waldman (cgw(AT)alum.mit.edu), Oct 27 2002
a(0) = 2 because 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + ... = 2; a(1) = 2 because 0 + 1/2 + 2/4 + 3/8 + 4/16 + 5/32 + ... = 2.
G.f. = 2 + 2*x + 6*x^2 + 26*x^3 + 150*x^4 + 1082*x^5 + 9366*x^6 + 94586*x^7 + ...
-
a[n_] := Sum[(k^n)/(2^k), {k, 0, Infinity}]; Table[ a[n], {n, 0, 18}]
a[n_] := (-1)^(n+1) PolyLog[-n, 2] (* Vladimir Reshetnikov, Jan 23 2011 *)
-
a(n)=abs(polylog(-n, 2)) \\ Charles R Greathouse IV, Jul 15 2014
A002051
Steffensen's bracket function [n,2].
Original entry on oeis.org
0, 0, 1, 9, 67, 525, 4651, 47229, 545707, 7087005, 102247051, 1622631549, 28091565547, 526858344285, 10641342962251, 230283190961469, 5315654681948587, 130370767029070365, 3385534663256714251, 92801587319328148989, 2677687796244383678827, 81124824998504072833245, 2574844419803190382447051
Offset: 1
a(4) = 9. There are 6 partitions of {1,2,3,4} into exactly three blocks and one way to put them in an undirected cycle of length three. There is one partition of {1,2,3,4} into four blocks and 3 ways to make an undirected cycle of length four. 6 + 3 = 9. - _Geoffrey Critzer_, Nov 23 2012
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Steffensen, J. F. Interpolation. 2d ed. Chelsea Publishing Co., New York, N. Y., 1950. ix+248 pp. MR0036799 (12,164d)
- T. D. Noe, Table of n, a(n) for n = 1..100
- G. J. Simmons, Letter to N. J. Sloane, May 29 1974
- J. F. Steffensen, On a class of polynomials and their application to actuarial problems, Skandinavisk Aktuarietidskrift, Vol. 11, pp. 75-97, 1928.
- Wikipedia, Permutation pattern
- Gus Wiseman, Sequences counting and ranking compositions by the patterns they match or avoid.
A diagonal of the triangular array in
A241168.
(1,2)-avoiding patterns are counted by
A011782.
(1,1)-matching patterns are counted by
A019472.
(1,2)-matching permutations are counted by
A033312.
(1,2)-matching compositions are counted by
A056823.
(1,2)-matching permutations of prime indices are counted by
A335447.
(1,2)-matching compositions are ranked by
A335485.
Patterns matched by compositions are counted by
A335456.
-
a[n_] := Sum[ k!*StirlingS2[n-1, k], {k, 0, n-1}] - 2^(n-2); Table[a[n], {n, 3, 17}] (* Jean-François Alcover, Nov 18 2011, after Manfred Goebel *)
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
Table[Length[Select[Join@@Permutations/@allnorm[n],!GreaterEqual@@#&]],{n,0,5}] (* Gus Wiseman, Jun 24 2020 *)
-
a(n) = sum(s=2, n-1, stirling(n,s+1,2)*s!/2); \\ Michel Marcus, Jun 24 2020
A006483
a(n) = Fibonacci(n)*2^n + 1.
Original entry on oeis.org
1, 3, 5, 17, 49, 161, 513, 1665, 5377, 17409, 56321, 182273, 589825, 1908737, 6176769, 19988481, 64684033, 209321985, 677380097, 2192048129, 7093616641, 22955425793, 74285318145, 240392339457, 777925951489, 2517421260801, 8146546327553, 26362777698305
Offset: 0
Dennis S. Kluk (mathemagician(AT)ameritech.net)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- D. S. Kluk and N. J. A. Sloane, Correspondence, 1979.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (3,2,-4).
-
[Fibonacci(n)*2^n + 1: n in [0..50]]; // Vincenzo Librandi, Jun 09 2013
-
A006483:=-(-1+6*z**2)/(z-1)/(4*z**2+2*z-1); # Simon Plouffe in his 1992 dissertation
-
lst={};Do[AppendTo[lst, Fibonacci[n]*2^n+1], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 19 2008 *)
CoefficientList[Series[(-(- 1 + 6 x^2)) / ((1 - x) (1 - 2 x - 4 x^2)), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
LinearRecurrence[{3,2,-4},{1,3,5},40] (* Harvey P. Dale, Aug 01 2021 *)
A053440
Number of k-simplices in the first derived complex of the standard triangulation of an n-simplex. Equivalently, T(n,k) is the number of ascending chains of length k+1 of nonempty subsets of the set {1, 2, ..., n+1}.
Original entry on oeis.org
1, 3, 2, 7, 12, 6, 15, 50, 60, 24, 31, 180, 390, 360, 120, 63, 602, 2100, 3360, 2520, 720, 127, 1932, 10206, 25200, 31920, 20160, 5040, 255, 6050, 46620, 166824, 317520, 332640, 181440, 40320, 511, 18660, 204630, 1020600, 2739240, 4233600, 3780000, 1814400, 362880
Offset: 0
T(2,1) = 12 because there are 12 such length 2 sequences of subsets of {1,2,3}: ({1},{2}), ({1},{3}), ({2},{3}), ({1},{2,3}), ({2},{1,3}), ({3},{1,2}) with two orderings for each. - _Geoffrey Critzer_, Dec 20 2011
Triangle begins:
1
3 2
7 12 6
15 50 60 24
31 180 390 360 120
-
a := (n, k) -> (k+1)!*Stirling2(n+2, k+2):
seq(print(seq(a(n, k), k = 0..n)), n = 0..10);
-
nn = 5; a = Exp[ x] - 1 ; f[list_] := Select[list, # > 0 &];Map[f, Transpose[Table[Drop[Range[0, nn]!CoefficientList[Series[a^k Exp[x], {x, 0, nn}],x], 1], {k, 1, 5}]]] // Grid (* Geoffrey Critzer, Dec 20 2011 *)
Table[(k+1)!*StirlingS2[n+2,k+2], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 19 2017 *)
-
for(n=0,10, for(k=0,n, print1((k+1)!*stirling(n+2,k+2,2), ", "))) \\ G. C. Greubel, Nov 19 2017
A383987
Series expansion of the exponential generating function -tridend(-(1-exp(x))) where tridend(x) = (1 - 3*x - sqrt(1+6*x+x^2)) / (4*x) (A001003).
Original entry on oeis.org
0, 1, -5, 49, -725, 14401, -360005, 10863889, -384415925, 15612336481, -715930020005, 36592369889329, -2062911091119125, 127170577711282561, -8510569547826528005, 614491222512504748369, -47615614242877583230325, 3941408640018910366196641
Offset: 0
Cf.
A002050,
A006531,
A084099,
A101851,
A114285,
A225883,
A383985,
A383986,
A383988,
A383989,
A383991.
Composition of
A001003 with exp(x)-1.
-
nn = 17; f[x_] := (1 + 3*x - Sqrt[1 + 6*x + x^2])/(4*x); Range[0, nn]! * CoefficientList[Series[f[-(1 - Exp[x])], {x, 0, nn}], x]
A383989
Series expansion of the exponential generating function ff6^!(exp(x)-1) where ff6^!(x) = x * (1-3*x-x^2+x^3) / (1+3*x+x^2-x^3).
Original entry on oeis.org
0, 1, -11, 61, -467, 4381, -49091, 643021, -9615827, 161844541, -3026079971, 62243374381, -1396619164787, 33949401567901, -888725861445251, 24926889744928141, -745755560487363347, 23705772035082494461, -797875590555470224931, 28346366547928396344301
Offset: 0
Cf.
A002050,
A006531,
A084099,
A101851,
A114285,
A225883,
A383985,
A383986,
A383987,
A383988,
A383995.
-
nn = 19; f[x_] := x*(1 - 3*x - x^2 + x^3)/(1 + 3*x + x^2 - x^3);
Range[0, nn]! * CoefficientList[Series[f[-(1 - Exp[x])], {x, 0, nn}], x]
A383993
Series expansion of the exponential generating function exp(tridup^!(x)) - 1 where tridup^!(x) = x / ((1+x) * (1+2*x)).
Original entry on oeis.org
0, 1, -5, 25, -119, 301, 5611, -171275, 3574705, -68597639, 1282415131, -23479249199, 409082338105, -6146707844315, 46462772999371, 2072826643602541, -160983324879816479, 8004468391727017585, -352443295329194182085, 14817357881274444545161
Offset: 0
Cf.
A002050,
A003725,
A097388,
A111884,
A112242,
A177885,
A318215,
A383990,
A383991,
A383992,
A383994,
A383995.
-
nn = 19; f[x_] := Exp[x] - 1;
Range[0, nn]! * CoefficientList[Series[f[x/((1 + x)*(1 + 2*x))], {x, 0, nn}], x]
A006488
Numbers n such that n! has a square number of digits.
Original entry on oeis.org
0, 1, 2, 3, 7, 12, 18, 32, 59, 81, 105, 132, 228, 265, 284, 304, 367, 389, 435, 483, 508, 697, 726, 944, 1011, 1045, 1080, 1115, 1187, 1454, 1494, 1617, 1659, 1788, 1921, 2012, 2105, 2200, 2248, 2395, 2445, 2861, 2915, 3192, 3480, 3539, 3902, 3964, 4476
Offset: 1
- M. Gardner, Mathematical Magic Show. Random House, NY, 1978, p. 55.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
[k:k in [0..5000]| IsSquare(#Intseq(Factorial(k)))]; // Marius A. Burtea, Jan 04 2020
-
LogBase10Stirling[n_] := Floor[Log[10, 2 Pi n]/2 + n*Log[10, n/E] + Log[10, 1 + 1/(12n) + 1/(288n^2) - 139/(51840n^3) - 571/(2488320n^4) + 163879/(209018880n^5)]]; Select[ Range[ 4500], IntegerQ[ Sqrt[ (LogBase10Stirling[ # ] + 1)]] & ] (* The Mathematica coding comes from J. Stirling's expansion for the Gamma function; see the links. For more terms inside the last Log_10 function, use A001163 & A001164. Robert G. Wilson v, Apr 27 2014 *)
Select[Range[0,4500],IntegerQ[Sqrt[IntegerLength[#!]]]&] (* Harvey P. Dale, Sep 27 2018 *)
-
isok(n) = issquare(#Str(n!)); \\ Michel Marcus, Sep 05 2015
A241168
Triangle read by rows: T(n,k) (1 <= k <= n) = Steffensen's bracket function [n,n-k].
Original entry on oeis.org
1, 1, 2, 1, 5, 6, 1, 9, 25, 26, 1, 14, 67, 149, 150, 1, 20, 145, 525, 1081, 1082, 1, 27, 275, 1450, 4651, 9365, 9366, 1, 35, 476, 3430, 15421, 47229, 94585, 94586, 1, 44, 770, 7266, 43281, 180894, 545707, 1091669, 1091670, 1, 54, 1182, 14154, 107751, 581280, 2359225, 7087005, 14174521, 14174522
Offset: 1
Triangle begins:
1,
1, 2,
1, 5, 6,
1, 9, 25, 26,
1, 14, 67, 149, 150,
1, 20, 145, 525, 1081, 1082,
1, 27, 275, 1450, 4651, 9365, 9366,
1, 35, 476, 3430, 15421, 47229, 94585, 94586,
1, 44, 770, 7266, 43281, 180894, 545707, 1091669, 1091670,
...
- J. F. Steffensen, On a class of polynomials and their application to actuarial problems, Skandinavisk Aktuarietidskrift, 11 (1928), 75-97.
-
with(combinat);
T:=proc(n,k) add(stirling2(n,s+1)*s!/k!,s=k..n-1); end;
for n from 1 to 12 do lprint([seq(T(n,n-k),k=1..n)]); od:
Comments