cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A052856 E.g.f.: (1-3*exp(x)+exp(2*x))/(exp(x)-2).

Original entry on oeis.org

1, 2, 4, 14, 76, 542, 4684, 47294, 545836, 7087262, 102247564, 1622632574, 28091567596, 526858348382, 10641342970444, 230283190977854, 5315654681981356, 130370767029135902, 3385534663256845324
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.
Stirling transform of A005212(n-1)=[1,1,0,6,0,120,0,...] is a(n-1)=[1,2,4,14,76,...]. - Michael Somos, Mar 04 2004
Stirling transform of (-1)^n*A052612(n-1)=[0,2,-2,12,-24,...] is a(n-1)=[0,2,4,14,76,...]. - Michael Somos, Mar 04 2004
Stirling transform of A000142(n)=[2,2,6,24,120,...] is a(n)=[2,2,4,14,76,...]. - Michael Somos, Mar 04 2004

Crossrefs

A000670(n)=a(n)-1, if n>0. A032109(n)=a(n)/2, if n>0.
A000629, A000670, A002050, A052856, A076726 are all more-or-less the same sequence. - N. J. A. Sloane, Jul 04 2012

Programs

  • Maple
    spec := [S,{B=Sequence(C),C=Set(Z,1 <= card),S=Union(B,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[(1-3Exp[x]+Exp[x]^2)/(-2+Exp[x]),{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Nov 24 2012 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(subst(y+1/(1-y),y,exp(x+x*O(x^n))-1),n))

Formula

E.g.f.: (1-3*exp(x)+exp(x)^2)/(-2+exp(x))
a(n) ~ n!/(2*(log(2))^(n+1)). - Vaclav Kotesovec, Oct 05 2013

Extensions

New name using e.g.f., Vaclav Kotesovec, Oct 05 2013

A076726 a(n) = Sum_{k>=0} k^n/2^k.

Original entry on oeis.org

2, 2, 6, 26, 150, 1082, 9366, 94586, 1091670, 14174522, 204495126, 3245265146, 56183135190, 1053716696762, 21282685940886, 460566381955706, 10631309363962710, 260741534058271802, 6771069326513690646
Offset: 0

Views

Author

Charles G. Waldman (cgw(AT)alum.mit.edu), Oct 27 2002

Keywords

Examples

			a(0) = 2 because 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + ... = 2; a(1) = 2 because 0 + 1/2 + 2/4 + 3/8 + 4/16 + 5/32 + ... = 2.
G.f. = 2 + 2*x + 6*x^2 + 26*x^3 + 150*x^4 + 1082*x^5 + 9366*x^6 + 94586*x^7 + ...
		

Crossrefs

Same as A000629 except for a(0).
A000629, A000670, A002050, A052856, A076726 are all more-or-less the same sequence. - N. J. A. Sloane, Jul 04 2012

Programs

  • Mathematica
    a[n_] := Sum[(k^n)/(2^k), {k, 0, Infinity}]; Table[ a[n], {n, 0, 18}]
    a[n_] := (-1)^(n+1) PolyLog[-n, 2] (* Vladimir Reshetnikov, Jan 23 2011 *)
  • PARI
    a(n)=abs(polylog(-n, 2)) \\ Charles R Greathouse IV, Jul 15 2014

Formula

a(n) = 2*A000670(n). - Philippe Deléham, Mar 06 2004
a(n) ~ n! / (log(2))^(n+1). - Vaclav Kotesovec, Nov 28 2013
From Jianing Song, May 04 2022: (Start)
a(0) = 2, a(n) = Sum_{k=0..n-1} binomial(n,k)*a(k) for n >= 1.
G.f.: Sum_{k>=0} 1/(2^k*(1-k*x)).
E.g.f.: 1/(1-exp(x)/2). (End)

Extensions

More terms from Robert G. Wilson v, Oct 29 2002

A002051 Steffensen's bracket function [n,2].

Original entry on oeis.org

0, 0, 1, 9, 67, 525, 4651, 47229, 545707, 7087005, 102247051, 1622631549, 28091565547, 526858344285, 10641342962251, 230283190961469, 5315654681948587, 130370767029070365, 3385534663256714251, 92801587319328148989, 2677687796244383678827, 81124824998504072833245, 2574844419803190382447051
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of ways to arrange the blocks of the partitions of {1,2,...,n} in an undirected cycle of length 3 or more, see A000629. - Geoffrey Critzer, Nov 23 2012
From Gus Wiseman, Jun 24 2020: (Start)
Also the number of (1,2)-matching length-n sequences covering an initial interval of positive integers. For example, the a(2) = 1 and a(3) = 9 sequences are:
(1,2) (1,1,2)
(1,2,1)
(1,2,2)
(1,2,3)
(1,3,2)
(2,1,2)
(2,1,3)
(2,3,1)
(3,1,2)
Missing from this list are:
(1,1) (1,1,1)
(2,1) (2,1,1)
(2,2,1)
(3,2,1)
(End)

Examples

			a(4) = 9. There are 6 partitions of {1,2,3,4} into exactly three blocks and one way to put them in an undirected cycle of length three. There is one partition of {1,2,3,4} into four blocks and 3 ways to make an undirected cycle of length four. 6 + 3 = 9. - _Geoffrey Critzer_, Nov 23 2012
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Steffensen, J. F. Interpolation. 2d ed. Chelsea Publishing Co., New York, N. Y., 1950. ix+248 pp. MR0036799 (12,164d)

Crossrefs

A diagonal of the triangular array in A241168.
(1,2)-avoiding patterns are counted by A011782.
(1,1)-matching patterns are counted by A019472.
(1,2)-matching permutations are counted by A033312.
(1,2)-matching compositions are counted by A056823.
(1,2)-matching permutations of prime indices are counted by A335447.
(1,2)-matching compositions are ranked by A335485.
Patterns are counted by A000670 and ranked by A333217.
Patterns matched by compositions are counted by A335456.

Programs

  • Mathematica
    a[n_] := Sum[ k!*StirlingS2[n-1, k], {k, 0, n-1}] - 2^(n-2); Table[a[n], {n, 3, 17}] (* Jean-François Alcover, Nov 18 2011, after Manfred Goebel *)
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],!GreaterEqual@@#&]],{n,0,5}] (* Gus Wiseman, Jun 24 2020 *)
  • PARI
    a(n) = sum(s=2, n-1, stirling(n,s+1,2)*s!/2); \\ Michel Marcus, Jun 24 2020

Formula

[n,2] = Sum_{s=2..n-1} Stirling2(n,s+1)*s!/2 (cf. A241168).
a(1)=0; for n >= 2, a(n) = A000670(n-1) - 2^(n-2). - Manfred Goebel (mkgoebel(AT)essex.ac.uk), Feb 20 2000; formula adjusted by N. J. A. Sloane, Apr 22 2014. For example, a(5) = 67 = A000670(4)-2^3 = 75-8 = 67.
E.g.f.: (1 - exp(2*x) - 2*log(2 - exp(x)))/4 = B(A(x)) where A(x) = exp(x)-1 and B(x) = (log(1/(1-x))- x - x^2/2)/2. - Geoffrey Critzer, Nov 23 2012

Extensions

Entry revised by N. J. A. Sloane, Apr 22 2014

A006483 a(n) = Fibonacci(n)*2^n + 1.

Original entry on oeis.org

1, 3, 5, 17, 49, 161, 513, 1665, 5377, 17409, 56321, 182273, 589825, 1908737, 6176769, 19988481, 64684033, 209321985, 677380097, 2192048129, 7093616641, 22955425793, 74285318145, 240392339457, 777925951489, 2517421260801, 8146546327553, 26362777698305
Offset: 0

Views

Author

Dennis S. Kluk (mathemagician(AT)ameritech.net)

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A103435 + 1.

Programs

Formula

G.f.: -(-1+6*x^2)/((1-x)*(1-2*x-4*x^2)).

Extensions

G.f. in Formula field corrected by Vincenzo Librandi, Jun 09 2013

A053440 Number of k-simplices in the first derived complex of the standard triangulation of an n-simplex. Equivalently, T(n,k) is the number of ascending chains of length k+1 of nonempty subsets of the set {1, 2, ..., n+1}.

Original entry on oeis.org

1, 3, 2, 7, 12, 6, 15, 50, 60, 24, 31, 180, 390, 360, 120, 63, 602, 2100, 3360, 2520, 720, 127, 1932, 10206, 25200, 31920, 20160, 5040, 255, 6050, 46620, 166824, 317520, 332640, 181440, 40320, 511, 18660, 204630, 1020600, 2739240, 4233600, 3780000, 1814400, 362880
Offset: 0

Views

Author

Rob Arthan, Jan 12 2000

Keywords

Comments

T(n,k) is the number of length k+1 sequences of nonempty mutually disjoint subsets of {1,2,...,n+1}. The e.g.f. for the column corresponding to k is exp(x)*(exp(x)-1)^(k+1). - Geoffrey Critzer, Dec 20 2011

Examples

			T(2,1) = 12 because there are 12 such length 2 sequences of subsets of {1,2,3}: ({1},{2}), ({1},{3}), ({2},{3}), ({1},{2,3}), ({2},{1,3}), ({3},{1,2}) with two orderings for each. - _Geoffrey Critzer_, Dec 20 2011
Triangle begins:
   1
   3      2
   7     12      6
  15     50     60     24
  31    180    390    360    120
		

Crossrefs

Other versions are A028246, A142071.
Columns k=0..1 are A000225(n+1), A028243(n+2).
Cf. A000142 (main diagonal), A002050 (row sums), A019538.

Programs

  • Maple
    a := (n, k) -> (k+1)!*Stirling2(n+2, k+2):
    seq(print(seq(a(n, k), k = 0..n)), n = 0..10);
  • Mathematica
    nn = 5; a = Exp[ x] - 1 ; f[list_] := Select[list, # > 0 &];Map[f, Transpose[Table[Drop[Range[0, nn]!CoefficientList[Series[a^k  Exp[x], {x, 0, nn}],x], 1], {k, 1, 5}]]] // Grid (* Geoffrey Critzer, Dec 20 2011 *)
    Table[(k+1)!*StirlingS2[n+2,k+2], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 19 2017 *)
  • PARI
    for(n=0,10, for(k=0,n, print1((k+1)!*stirling(n+2,k+2,2), ", "))) \\ G. C. Greubel, Nov 19 2017

Formula

T(0,k) = delta(0,k), T(n,k) = delta(0,k) + (k+1)(T(n-1,k-1) + (k+2)T(n-1,k)).
E.g.f.: exp(x)*(exp(x)-1)/(1-y*(exp(x)-1)). - Vladeta Jovovic, Apr 13 2003
T(n,k) = Sum_{i = 0..n} binomial(n+1,i+1)*(k+1)!*Stirling2(i+1,k+1) = (k+1)!*Stirling2(n+2,k+2) (Brenti and Welker). - Peter Bala, Jul 12 2014
T(n,k) = (k+1)!*Stirling2(n+2, k+2). - G. C. Greubel, Nov 19 2017

Extensions

More terms from James Sellers, Jan 14 2000

A383987 Series expansion of the exponential generating function -tridend(-(1-exp(x))) where tridend(x) = (1 - 3*x - sqrt(1+6*x+x^2)) / (4*x) (A001003).

Original entry on oeis.org

0, 1, -5, 49, -725, 14401, -360005, 10863889, -384415925, 15612336481, -715930020005, 36592369889329, -2062911091119125, 127170577711282561, -8510569547826528005, 614491222512504748369, -47615614242877583230325, 3941408640018910366196641
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Crossrefs

Composition of A001003 with exp(x)-1.

Programs

  • Mathematica
    nn = 17; f[x_] := (1 + 3*x - Sqrt[1 + 6*x + x^2])/(4*x); Range[0, nn]! * CoefficientList[Series[f[-(1 - Exp[x])], {x, 0, nn}], x]

A383989 Series expansion of the exponential generating function ff6^!(exp(x)-1) where ff6^!(x) = x * (1-3*x-x^2+x^3) / (1+3*x+x^2-x^3).

Original entry on oeis.org

0, 1, -11, 61, -467, 4381, -49091, 643021, -9615827, 161844541, -3026079971, 62243374381, -1396619164787, 33949401567901, -888725861445251, 24926889744928141, -745755560487363347, 23705772035082494461, -797875590555470224931, 28346366547928396344301
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 19; f[x_] := x*(1 - 3*x - x^2 + x^3)/(1 + 3*x + x^2 - x^3);
    Range[0, nn]! * CoefficientList[Series[f[-(1 - Exp[x])], {x, 0, nn}], x]

A383993 Series expansion of the exponential generating function exp(tridup^!(x)) - 1 where tridup^!(x) = x / ((1+x) * (1+2*x)).

Original entry on oeis.org

0, 1, -5, 25, -119, 301, 5611, -171275, 3574705, -68597639, 1282415131, -23479249199, 409082338105, -6146707844315, 46462772999371, 2072826643602541, -160983324879816479, 8004468391727017585, -352443295329194182085, 14817357881274444545161
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Comments

The series tridup^!(x) is the inverse for the substitution of the series tridup(x) (given by A001003), given by the suspension of the Koszul dual of tridup. - Bérénice Delcroix-Oger, May 28 2025

Crossrefs

Programs

  • Mathematica
    nn = 19; f[x_] := Exp[x] - 1;
    Range[0, nn]! * CoefficientList[Series[f[x/((1 + x)*(1 + 2*x))], {x, 0, nn}], x]

A006488 Numbers n such that n! has a square number of digits.

Original entry on oeis.org

0, 1, 2, 3, 7, 12, 18, 32, 59, 81, 105, 132, 228, 265, 284, 304, 367, 389, 435, 483, 508, 697, 726, 944, 1011, 1045, 1080, 1115, 1187, 1454, 1494, 1617, 1659, 1788, 1921, 2012, 2105, 2200, 2248, 2395, 2445, 2861, 2915, 3192, 3480, 3539, 3902, 3964, 4476
Offset: 1

Views

Author

Keywords

Comments

Numbers whose square is represented by the number of digits of n!: 1, 2, 3, 4, 6, 9, 11, 13, 15, 21, 23, 24, 25, 28, 29, ..., . - Robert G. Wilson v, May 14 2014
From Bernard Schott, Jan 04 2020: (Start)
In M. Gardner's book, see reference, there is a tree printout of 105! with 169 digits, where the bottom row consists of the 25 trailing zeros of 105!. M. Gardner does not explain if this is the only factorial that can be displayed in a similar tree form.
Proof: If m! has q^2 digits, hence the number of trailing zeros in m! must be equal to 2*q-1 to satisfy this triangular look; m = 105 satisfies these two conditions with q = 13 because 105! has 13^2 = 169 digits and 2*13-1 = 25 trailing zeros.
When m < 105 and m! has q^2 digits (m <= 81), then q <= 11 and the number of trailing zeros is <= 2*q - 3.
When m > 105 and m! has q^2 digits (m >= 132), then q >= 15 and the number of trailing zeros is >= 2*q + 2.
Hence, only 105! presents such a tree printout.
1
081
39675
8240290
900504101
30580032964
9720646107774
902579144176636
57322653190990515
3326984536526808240
339776398934872029657
99387290781343681609728
0000000000000000000000000
(End)

References

  • M. Gardner, Mathematical Magic Show. Random House, NY, 1978, p. 55.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000142, A027868 (trailing zeros), A034886 (number of digits), A056851.

Programs

  • Magma
    [k:k in [0..5000]| IsSquare(#Intseq(Factorial(k)))]; // Marius A. Burtea, Jan 04 2020
  • Mathematica
    LogBase10Stirling[n_] := Floor[Log[10, 2 Pi n]/2 + n*Log[10, n/E] + Log[10, 1 + 1/(12n) + 1/(288n^2) - 139/(51840n^3) - 571/(2488320n^4) + 163879/(209018880n^5)]]; Select[ Range[ 4500], IntegerQ[ Sqrt[ (LogBase10Stirling[ # ] + 1)]] & ] (* The Mathematica coding comes from J. Stirling's expansion for the Gamma function; see the links. For more terms inside the last Log_10 function, use A001163 & A001164. Robert G. Wilson v, Apr 27 2014 *)
    Select[Range[0,4500],IntegerQ[Sqrt[IntegerLength[#!]]]&] (* Harvey P. Dale, Sep 27 2018 *)
  • PARI
    isok(n) = issquare(#Str(n!)); \\ Michel Marcus, Sep 05 2015
    

A241168 Triangle read by rows: T(n,k) (1 <= k <= n) = Steffensen's bracket function [n,n-k].

Original entry on oeis.org

1, 1, 2, 1, 5, 6, 1, 9, 25, 26, 1, 14, 67, 149, 150, 1, 20, 145, 525, 1081, 1082, 1, 27, 275, 1450, 4651, 9365, 9366, 1, 35, 476, 3430, 15421, 47229, 94585, 94586, 1, 44, 770, 7266, 43281, 180894, 545707, 1091669, 1091670, 1, 54, 1182, 14154, 107751, 581280, 2359225, 7087005, 14174521, 14174522
Offset: 1

Views

Author

N. J. A. Sloane, Apr 22 2014

Keywords

Comments

Steffensen's bracket function [n,k] = Sum_{s=k..n-1} Stirling2(n,s+1)*s!/k!.
The numbers are used in numerical integration.

Examples

			Triangle begins:
1,
1, 2,
1, 5, 6,
1, 9, 25, 26,
1, 14, 67, 149, 150,
1, 20, 145, 525, 1081, 1082,
1, 27, 275, 1450, 4651, 9365, 9366,
1, 35, 476, 3430, 15421, 47229, 94585, 94586,
1, 44, 770, 7266, 43281, 180894, 545707, 1091669, 1091670,
...
		

References

  • J. F. Steffensen, On a class of polynomials and their application to actuarial problems, Skandinavisk Aktuarietidskrift, 11 (1928), 75-97.

Crossrefs

Diagonals include A000096, A000629, A002050, A002051, A241169, A241170.

Programs

  • Maple
    with(combinat);
    T:=proc(n,k) add(stirling2(n,s+1)*s!/k!,s=k..n-1); end;
    for n from 1 to 12 do lprint([seq(T(n,n-k),k=1..n)]); od:
Previous Showing 11-20 of 28 results. Next