A342632
Number of ordered pairs (x, y) with gcd(x, y) = 1 and 1 <= {x, y} <= 2^n.
Original entry on oeis.org
1, 3, 11, 43, 159, 647, 2519, 10043, 39895, 159703, 637927, 2551171, 10200039, 40803219, 163198675, 652774767, 2611029851, 10444211447, 41776529287, 167106121619, 668423198491, 2673693100831, 10694768891659, 42779072149475, 171116268699455, 684465093334979, 2737860308070095
Offset: 0
Only fractions with gcd(numerator, denominator) = 1 are counted. E.g.,
1/2 counts, but 2/4, 3/6, 4/8 ... do not, because they reduce to 1/2;
1/1 counts, but 2/2, 3/3, 4/4 ... do not, because they reduce to 1/1.
.
For n=0, the size of the grid is 1 X 1:
.
| 1
--+--
1 | o Sum: 1
.
For n=1, the size of the grid is 2 X 2:
.
| 1 2
--+----
1 | o o 2
2 | o . 1
--
Sum: 3
.
For n=2, the size of the grid is 4 X 4:
.
| 1 2 3 4
--+--------
1 | o o o o 4
2 | o . o . 2
3 | o o . o 3
4 | o . o . 2
--
Sum: 11
.
For n=3, the size of the grid is 8 X 8:
.
| 1 2 3 4 5 6 7 8
--+----------------
1 | o o o o o o o o 8
2 | o . o . o . o . 4
3 | o o . o o . o o 6
4 | o . o . o . o . 4
5 | o o o o . o o o 7
6 | o . . . o . o . 3
7 | o o o o o o . o 7
8 | o . o . o . o . 4
--
Sum: 43
-
for(n=0,24,my(j=2^n);print1(2*sum(k=1,j,eulerphi(k))-1,", ")) \\ Hugo Pfoertner, Mar 17 2021
-
import math
for n in range (0, 21):
counter = 0
for x in range (1, pow(2, n)+1):
for y in range(1, pow(2, n)+1):
if math.gcd(y, x) == 1:
counter += 1
print(n, counter)
-
from sympy import sieve
def A342632(n): return 2*sum(t for t in sieve.totientrange(1,2**n+1)) - 1 # Chai Wah Wu, Mar 23 2021
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A018805(n):
if n == 1: return 1
return n*n - sum(A018805(n//j) for j in range(2, n//2+1)) - (n+1)//2
print([A018805(2**n) for n in range(25)]) # Michael S. Branicky, Mar 23 2021
A372619
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = 1/(phi(k)) * Sum_{j=1..n} phi(k*j).
Original entry on oeis.org
1, 1, 2, 1, 3, 4, 1, 2, 5, 6, 1, 3, 5, 9, 10, 1, 2, 5, 7, 13, 12, 1, 3, 4, 9, 11, 17, 18, 1, 2, 6, 6, 13, 14, 23, 22, 1, 3, 4, 10, 11, 17, 20, 31, 28, 1, 2, 5, 6, 14, 13, 23, 24, 37, 32, 1, 3, 5, 9, 10, 20, 19, 31, 33, 45, 42, 1, 2, 5, 7, 13, 12, 26, 23, 37, 37, 55, 46
Offset: 1
Square array T(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2, 3, 2, 3, 2, 3, 2, 3, 2, 3, ...
4, 5, 5, 5, 4, 6, 4, 5, 5, 5, ...
6, 9, 7, 9, 6, 10, 6, 9, 7, 9, ...
10, 13, 11, 13, 11, 14, 10, 13, 11, 14, ...
12, 17, 14, 17, 13, 20, 12, 17, 14, 18, ...
18, 23, 20, 23, 19, 26, 19, 23, 20, 24, ...
-
T[n_, k_] := Sum[EulerPhi[k*j], {j, 1, n}] / EulerPhi[k]; Table[T[k, n-k+1], {n, 1, 12}, {k, 1, n}] // Flatten (* Amiram Eldar, May 09 2024 *)
-
T(n, k) = sum(j=1, n, eulerphi(k*j))/eulerphi(k);
A171503
Number of 2 X 2 integer matrices with entries from {0,1,...,n} having determinant 1.
Original entry on oeis.org
0, 3, 7, 15, 23, 39, 47, 71, 87, 111, 127, 167, 183, 231, 255, 287, 319, 383, 407, 479, 511, 559, 599, 687, 719, 799, 847, 919, 967, 1079, 1111, 1231, 1295, 1375, 1439, 1535, 1583, 1727, 1799, 1895, 1959, 2119, 2167, 2335, 2415, 2511, 2599
Offset: 0
See
A326354 for an essentially identical sequence.
-
with(numtheory):
a:= proc(n) option remember;
`if`(n<2, [0, 3][n+1], a(n-1) + 4*phi(n))
end:
seq(a(n), n=0..60);
-
a[n_]:=Count[Det/@(Partition[ #,2]&/@Tuples[Range[0,n],4]),1]
(* Second program: *)
a[0] = 0; a[1] = 3; a[n_] := a[n] = a[n-1] + 4*EulerPhi[n];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jun 16 2018 *)
-
a(n)=(n>0)+2*sum(k=1, n, moebius(k)*(n\k)^2) \\ Charles R Greathouse IV, Apr 20 2015
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A171503(n): # based on second formula in A018805
if n == 0:
return 0
c, j = 0, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*(A171503(k1)-1)//2
j, k1 = j2, n//j2
return 2*(n*(n-1)-c+j) - 1 # Chai Wah Wu, Mar 25 2021
A319087
a(n) = Sum_{k=1..n} k^2*phi(k), where phi is the Euler totient function A000010.
Original entry on oeis.org
1, 5, 23, 55, 155, 227, 521, 777, 1263, 1663, 2873, 3449, 5477, 6653, 8453, 10501, 15125, 17069, 23567, 26767, 32059, 36899, 48537, 53145, 65645, 73757, 86879, 96287, 119835, 127035, 155865, 172249, 194029, 212525, 241925, 257477, 306761, 332753, 369257
Offset: 1
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 48, problem 16, the function phi_1(n).
-
Accumulate[Table[k^2*EulerPhi[k], {k, 1, 50}]]
-
a(n) = sum(k=1, n, k^2*eulerphi(k)); \\ Michel Marcus, Sep 12 2018
A015634
Number of ordered quadruples of integers from [ 1..n ] with no global factor.
Original entry on oeis.org
1, 4, 13, 29, 63, 106, 189, 289, 444, 626, 911, 1203, 1657, 2130, 2766, 3462, 4430, 5359, 6688, 7992, 9670, 11405, 13704, 15840, 18730, 21548, 25037, 28521, 33015, 37067, 42522, 47690, 53940, 60108, 67760, 74748, 83886, 92433, 102629, 112469, 124809, 135763, 149952
Offset: 1
-
a[n_] := Sum[DivisorSum[k, MoebiusMu[k/#]*Binomial[# + 2, 3] &], {k, 1, n}]; Array[a, 45] (* Amiram Eldar, Jun 07 2025 *)
-
a(n) = sum(k=1, n, sumdiv(k, d, moebius(k/d)*binomial(d+2, 3))); \\ Seiichi Manyama, Jun 12 2021
-
a(n) = binomial(n+3, 4)-sum(k=2, n, a(n\k)); \\ Seiichi Manyama, Jun 12 2021
-
my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, moebius(k)*x^k/(1-x^k)^4)/(1-x)) \\ Seiichi Manyama, Jun 12 2021
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A015634(n):
if n == 0:
return 0
c, j = 1, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*A015634(k1)
j, k1 = j2, n//j2
return n*(n+1)*(n+2)*(n+3)//24-c+j-n # Chai Wah Wu, Apr 18 2021
A099957
a(n) = Sum_{k=0..n-1} phi(2k+1).
Original entry on oeis.org
1, 3, 7, 13, 19, 29, 41, 49, 65, 83, 95, 117, 137, 155, 183, 213, 233, 257, 293, 317, 357, 399, 423, 469, 511, 543, 595, 635, 671, 729, 789, 825, 873, 939, 983, 1053, 1125, 1165, 1225, 1303, 1357, 1439, 1503, 1559, 1647, 1719, 1779, 1851, 1947
Offset: 1
A177976
Square array T(n,k) read by antidiagonals up. Cumulative column sums of A177975.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 8, 4, 1, 1, 10, 15, 13, 5, 1, 1, 12, 29, 29, 19, 6, 1, 1, 18, 42, 63, 49, 26, 7, 1, 1, 22, 69, 106, 118, 76, 34, 8, 1, 1, 28, 95, 189, 225, 201, 111, 43, 9, 1, 1, 32, 134, 289, 434, 427, 320, 155, 53, 10, 1, 1, 42, 172, 444, 729, 888, 748, 484, 209, 64, 11, 1
Offset: 1
Table begins:
1..1...1....1.....1.....1......1......1.......1.......1.......1
1..2...3....4.....5.....6......7......8.......9......10......11
1..4...8...13....19....26.....34.....43......53......64......76
1..6..15...29....49....76....111....155.....209.....274.....351
1.10..29...63...118...201....320....484.....703.....988....1351
1.12..42..106...225...427....748...1233....1937....2926....4278
1.18..69..189...434...888...1671...2948....4939....7930...12285
1.22..95..289...729..1624...3303...6260...11209...19150...31447
1.28.134..444..1209..2890...6278..12659...24034...43405...75139
1.32.172..626..1850..4761..11067..23762...47841...91301..166506
1.42.237..911..2850..7763..19074..43209...91598..183678..351261
1.46.287.1203..4059.11829..30911..74129..165737..349426..700699
1.58.377.1657..5878.18016..49474.124516..291706..643355.1347344
1.64.452.2130..8044.26117..75676.200313..492185.1135761.2483392
1.72.552.2766.11020.37599.114199.316228..811416.1952182.4443582
1.80.652.3462.14566.52311.166747.483340.1295295.3248246.7692894
-
T(n, k) = sum(j=1, n, sumdiv(j, d, moebius(j/d)*binomial(d+k-2, d-1))); \\ Seiichi Manyama, Jun 12 2021
-
T(n, k) = binomial(n+k-1, k)-sum(j=2, n, T(n\j, k)); \\ Seiichi Manyama, Jun 12 2021
A306988
a(n) = Sum_{k=1..n} binomial(n,k)*phi(k), where phi is the Euler totient function.
Original entry on oeis.org
1, 3, 8, 20, 49, 117, 272, 620, 1395, 3107, 6852, 14964, 32395, 69647, 149002, 317712, 675749, 1433769, 3033444, 6396320, 13437913, 28130869, 58708304, 122239396, 254141275, 527946013, 1096312050, 2275897660, 4722500707, 9791471587, 20277706762, 41932520528
Offset: 1
-
Table[Sum[Binomial[n, k]*EulerPhi[k], {k, 1, n}], {n, 1, 40}]
A015650
Number of ordered 5-tuples of integers from [ 1..n ] with no global factor.
Original entry on oeis.org
1, 5, 19, 49, 118, 225, 434, 729, 1209, 1850, 2850, 4059, 5878, 8044, 11020, 14566, 19410, 24789, 32103, 40213, 50615, 62260, 77209, 93099, 113504, 135431, 162341, 191396, 227355, 264463, 310838, 359322, 417212, 478408, 551944, 626971, 718360, 812311, 922407, 1036667
Offset: 1
-
a[n_] := Sum[DivisorSum[k, MoebiusMu[k/#]*Binomial[# + 3, 4] &], {k, 1, n}]; Array[a, 40] (* Amiram Eldar, Jun 07 2025 *)
-
a(n) = sum(k=1, n, sumdiv(k, d, moebius(k/d)*binomial(d+3, 4))); \\ Seiichi Manyama, Jun 12 2021
-
a(n) = binomial(n+4, 5)-sum(k=2, n, a(n\k)); \\ Seiichi Manyama, Jun 12 2021
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, moebius(k)*x^k/(1-x^k)^5)/(1-x)) \\ Seiichi Manyama, Jun 12 2021
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A015650(n):
if n == 0:
return 0
c, j = n+1, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*A015650(k1)
j, k1 = j2, n//j2
return n*(n+1)*(n+2)*(n+3)*(n+4)//120-c+j # Chai Wah Wu, Apr 18 2021
A063986
Numbers k that divide Sum_{j=1..k} A051953(j) where A051953(j) = j - Phi(j). Arithmetic mean of first k cototient values is an integer.
Original entry on oeis.org
1, 4, 5, 24, 25, 249, 600, 617, 12272, 13763, 21332, 25228, 783665, 15748051, 41846733, 195853251, 2488541984, 14399065016, 21119309213, 22430204140, 43787603128, 157825075944, 206651865067, 271605149320, 374049315076, 650288309748
Offset: 1
k=5: (1 + 1 + 2 + 2 + 4)/5 = 2.
-
s = 0; Do[s = s + n - EulerPhi[n]; If[ IntegerQ[s/n], Print[n]], {n, 1, 10^7} ]
Comments
Juan M. Marquez, Apr 13 2015