cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 218 results. Next

A194416 Numbers m such that Sum_{k=1..m} (<1/3 + k*r> - ) = 0, where r=sqrt(3) and < > denotes fractional part.

Original entry on oeis.org

3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 63, 66, 69, 78, 81, 84, 93, 96, 99, 108, 111, 123, 126, 138, 141, 153, 156, 159, 162, 165, 168, 171, 174, 177, 180, 183, 186, 189, 192, 195, 198, 201, 204, 207, 216, 219, 222, 231, 234
Offset: 1

Views

Author

Clark Kimberling, Aug 24 2011

Keywords

Comments

Every term is divisible by 3; see A194368.

Crossrefs

Programs

  • Mathematica
    r = Sqrt[3]; c = 1/3;
    x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]
    y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]
    t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 150}];
    Flatten[Position[t1, 1]]           (* A194415 *)
    t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 300}];
    Flatten[Position[t2, 1]]           (* A194416 *)
    %/3                                (* A194417 *)
    t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 500}];
    Flatten[Position[t3, 1]]           (* A194418 *)

A214726 Decimal expansion of the perimeter of Cairo and Prismatic tiles.

Original entry on oeis.org

3, 8, 6, 3, 7, 0, 3, 3, 0, 5, 1, 5, 6, 2, 7, 3, 1, 4, 6, 9, 9, 8, 9, 7, 2, 7, 9, 8, 9, 1, 5, 5, 8, 9, 4, 7, 0, 5, 3, 5, 6, 1, 9, 3, 5, 6, 0, 3, 3, 6, 1, 8, 2, 0, 1, 6, 0, 9, 3, 7, 2, 3, 0, 5, 2, 4, 1, 6, 9, 2, 8, 5, 5, 9, 1, 9, 4, 2, 2, 0, 6, 5, 3, 9, 0, 2, 4, 6, 9, 6, 7, 4, 3, 2, 2, 8, 1, 8, 0, 7, 5, 5
Offset: 1

Views

Author

Jonathan Vos Post, Jul 26 2012

Keywords

Comments

An algebraic integer with degree 4 and minimal polynomial x^4 - 16x^2 + 16. - Charles R Greathouse IV, Apr 21 2016
Length of the longest diagonal in a regular 12-gon with unit side. - Mohammed Yaseen, Dec 13 2020

Examples

			3.8637033051562731469989727989....
		

Crossrefs

Programs

Formula

Equals 2*(sqrt(2+sqrt(3))).
Equals csc(Pi/12). - Amiram Eldar, May 28 2021
Equals sqrt(2) + sqrt(6). - Vaclav Kotesovec, May 28 2021
Equals Product_{k>=1} (25 - 144*k^2)/(100 - 144*k^2). - Antonio GraciĆ” Llorente, Jul 13 2024
Equals 4 * A019884. - Alois P. Heinz, Jul 14 2024

Extensions

a(100) corrected by Georg Fischer, Jul 12 2021

A377274 Decimal expansion of the surface area of a truncated tetrahedron with unit edge length.

Original entry on oeis.org

1, 2, 1, 2, 4, 3, 5, 5, 6, 5, 2, 9, 8, 2, 1, 4, 1, 0, 5, 4, 6, 9, 2, 1, 2, 4, 3, 9, 0, 5, 4, 1, 1, 0, 6, 5, 6, 8, 5, 9, 9, 6, 3, 6, 7, 7, 6, 6, 7, 2, 6, 6, 4, 3, 9, 6, 3, 9, 0, 6, 4, 8, 8, 5, 6, 1, 6, 3, 5, 3, 1, 1, 1, 8, 3, 6, 1, 6, 0, 0, 2, 5, 9, 5, 6, 8, 0, 2, 3, 3
Offset: 2

Views

Author

Paolo Xausa, Oct 23 2024

Keywords

Examples

			12.12435565298214105469212439054110656859963677667...
		

Crossrefs

Cf. A377275 (volume), A377276 (circumradius), A093577 (midradius), A377277 (Dehn invariant).
Cf. A002194 (analogous for a regular tetrahedron).

Programs

  • Mathematica
    First[RealDigits[7*Sqrt[3], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedTetrahedron", "SurfaceArea"], 10, 100]]

Formula

Equals 7*sqrt(3) = 7*A002194.

A377996 Decimal expansion of the dihedral angle, in radians, between triangular and square faces in a (small) rhombicosidodecahedron.

Original entry on oeis.org

2, 7, 7, 6, 7, 2, 8, 8, 2, 5, 4, 7, 6, 3, 1, 0, 0, 5, 6, 7, 3, 5, 2, 4, 5, 0, 5, 3, 3, 7, 2, 8, 4, 2, 5, 3, 6, 4, 9, 8, 9, 1, 6, 4, 4, 2, 3, 5, 1, 2, 4, 8, 9, 7, 5, 6, 2, 0, 4, 6, 9, 8, 4, 6, 5, 7, 6, 9, 0, 6, 9, 5, 6, 4, 5, 2, 8, 2, 5, 4, 2, 9, 2, 3, 0, 2, 9, 3, 1, 2
Offset: 1

Views

Author

Paolo Xausa, Nov 15 2024

Keywords

Comments

Also the dihedral angle, in radians, between square and hexagonal faces in a truncated icosidodecahedron (great rhombicosidodecahedron).

Examples

			2.7767288254763100567352450533728425364989164423512...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[ArcCos[-(Sqrt[3] + Sqrt[15])/6], 10, 100]] (* or *)
    First[RealDigits[Max[PolyhedronData["Rhombicosidodecahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-(sqrt(3) + sqrt(15))/6) = arccos(-(A002194 + A010472)/6).

A384286 Decimal expansion of the surface area of a gyroelongated pentagonal rotunda with unit edge.

Original entry on oeis.org

3, 1, 0, 0, 7, 4, 5, 4, 3, 0, 3, 2, 3, 8, 5, 1, 4, 7, 4, 4, 4, 3, 5, 6, 4, 5, 8, 6, 5, 7, 1, 7, 9, 7, 4, 9, 0, 8, 5, 3, 2, 0, 3, 9, 7, 8, 2, 4, 8, 3, 5, 2, 5, 7, 5, 3, 2, 5, 9, 0, 1, 1, 2, 1, 3, 9, 6, 9, 8, 6, 9, 8, 0, 1, 3, 0, 7, 5, 2, 4, 9, 6, 2, 2, 3, 9, 7, 2, 8, 1
Offset: 2

Views

Author

Paolo Xausa, May 30 2025

Keywords

Comments

The gyroelongated pentagonal rotunda is Johnson solid J_25.

Examples

			31.00745430323851474443564586571797490853203978248...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(15*Sqrt[3] + Sqrt[650 + 290*Sqrt[5]])/2, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J25", "SurfaceArea"], 10, 100]]

Formula

Equals (15*sqrt(3) + sqrt(650 + 290*sqrt(5)))/2 = (15*A002194 + sqrt(650 + 290*A002163))/2.
Equals the largest root of 256*x^8 - 339200*x^6 + 98924000*x^4 - 9264250000*x^2 + 176295015625.

A385506 Decimal expansion of the volume of a triaugmented triangular prism with unit edge.

Original entry on oeis.org

1, 1, 4, 0, 1, 1, 9, 4, 8, 3, 0, 7, 8, 7, 6, 6, 8, 4, 7, 7, 8, 2, 7, 0, 5, 9, 4, 7, 4, 8, 1, 3, 1, 7, 1, 3, 1, 0, 2, 0, 5, 3, 7, 2, 5, 1, 1, 4, 1, 0, 6, 9, 1, 9, 3, 6, 0, 2, 2, 9, 1, 6, 1, 3, 8, 5, 8, 3, 4, 9, 4, 9, 3, 4, 5, 8, 2, 5, 3, 5, 2, 8, 6, 9, 5, 4, 8, 0, 3, 1
Offset: 1

Views

Author

Paolo Xausa, Jul 01 2025

Keywords

Comments

The triaugmented triangular prism is Johnson solid J_51.

Examples

			1.140119483078766847782705947481317131020537251141...
		

Crossrefs

Cf. A097715 (surface area).

Programs

  • Mathematica
    First[RealDigits[(Sqrt[8] + Sqrt[3])/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J51", "Volume"], 10, 100]]

Formula

Equals 1/sqrt(2) + sqrt(3)/4 = A010503 + A120011 = (A010466 + A002194)/4.
Equals the largest root of 256*x^4 - 352*x^2 + 25.

A385803 Decimal expansion of the surface area of a parabiaugmented dodecahedron with unit edge.

Original entry on oeis.org

2, 1, 5, 3, 4, 9, 0, 1, 0, 2, 4, 8, 1, 1, 8, 6, 2, 4, 6, 1, 4, 0, 8, 7, 3, 5, 6, 2, 7, 6, 5, 0, 7, 7, 6, 9, 1, 1, 4, 3, 0, 7, 5, 4, 8, 3, 4, 6, 2, 7, 9, 3, 4, 8, 6, 2, 2, 1, 0, 4, 6, 4, 5, 1, 8, 8, 6, 8, 5, 2, 2, 4, 6, 4, 3, 6, 1, 6, 6, 2, 4, 0, 6, 0, 2, 7, 2, 7, 7, 8
Offset: 2

Views

Author

Paolo Xausa, Jul 09 2025

Keywords

Comments

The parabiaugmented dodecahedron is Johnson solid J_59.
Also the surface area of a metabiaugmented dodecahedron (Johnson solid J_60) with unit edge.

Examples

			21.5349010248118624614087356276507769114307548346...
		

Crossrefs

Cf. A385802 (volume).

Programs

  • Mathematica
    First[RealDigits[5/2*(Sqrt[3] + Sqrt[25 + 10*Sqrt[5]]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J59", "SurfaceArea"], 10, 100]]

Formula

Equals (5/2)*(sqrt(3) + sqrt(5*(5 + 2*sqrt(5)))) = (5/2)*(A002194 + sqrt(5*(5 + A010476))).
Equals the largest root of x^8 - 700*x^6 + 121250*x^4 - 5421875*x^2 + 390625.

A385805 Decimal expansion of the surface area of a triaugmented dodecahedron with unit edge.

Original entry on oeis.org

2, 1, 9, 7, 9, 4, 8, 7, 1, 3, 3, 6, 8, 3, 9, 9, 2, 1, 5, 5, 5, 5, 9, 0, 3, 1, 5, 7, 7, 1, 4, 4, 5, 0, 7, 7, 7, 0, 7, 0, 1, 8, 8, 7, 2, 3, 1, 8, 8, 0, 7, 1, 2, 3, 1, 8, 0, 7, 3, 1, 2, 8, 5, 3, 6, 1, 5, 9, 5, 6, 9, 7, 4, 3, 2, 8, 8, 6, 9, 6, 2, 2, 1, 0, 4, 6, 2, 6, 9, 3
Offset: 2

Views

Author

Paolo Xausa, Jul 09 2025

Keywords

Comments

The triaugmented dodecahedron is Johnson solid J_61.

Examples

			21.97948713368399215555903157714450777070188723...
		

Crossrefs

Cf. A385804 (volume).

Programs

  • Mathematica
    First[RealDigits[3/4*(5*Sqrt[3] + 3*Sqrt[25 + 10*Sqrt[5]]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J61", "SurfaceArea"], 10, 100]]

Formula

Equals (3/4)*(5*sqrt(3) + 3*sqrt(5*(5 + 2*sqrt(5)))) = (3/4)*(5*A002194 + 3*sqrt(5*(5 + A010476))).
Equals the largest root of 256*x^8 - 172800*x^6 + 26244000*x^4 - 1230187500*x^2 + 8303765625.

A004549 Expansion of sqrt(3) in base 4.

Original entry on oeis.org

1, 2, 3, 2, 3, 1, 2, 1, 3, 2, 2, 3, 2, 2, 0, 1, 1, 2, 0, 1, 0, 3, 0, 2, 2, 2, 2, 1, 3, 0, 3, 2, 3, 0, 2, 1, 1, 1, 3, 1, 0, 0, 2, 3, 1, 1, 3, 0, 0, 1, 3, 2, 0, 2, 3, 2, 0, 0, 3, 2, 3, 2, 0, 2, 1, 0, 2, 1, 1, 3, 1, 2, 0, 0, 3, 1, 0, 3, 0, 3, 0, 1, 1, 0, 3, 3, 1, 2, 2, 1, 0, 1, 3, 2, 1, 2, 0, 3, 0
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    Prune(Reverse(IntegerToSequence(Isqrt(3*4^200), 4))); // Vincenzo Librandi, Jan 07 2018
  • Mathematica
    RealDigits[Sqrt[3], 4, 130][[1]] (* Vincenzo Librandi, Jan 07 2018 *)

A119344 Integer lengths of Theodorus-primes: numbers n such that the concatenation of the first n decimal digits of the Theodorus's constant sqrt(3) is prime.

Original entry on oeis.org

2, 3, 19, 111, 116, 641, 5411, 170657
Offset: 1

Views

Author

Eric W. Weisstein, May 15 2006

Keywords

Examples

			sqrt(3) = 1.732050807568877..., so
a(1) = 2 (17 with 2 decimal digits is the 1st prime in the decimal expansion),
a(2) = 3 (173 with 3 decimal digits is the 2nd prime in the decimal expansion).
		

Crossrefs

Cf. A119343 (Theodorus-primes).
Cf. A002194 (decimal expansion of sqrt(3)).

Programs

  • Mathematica
    nn = 1000; digs = RealDigits[Sqrt[3], 10, nn][[1]]; n = 0; t = {}; Do[n = 10*n + digs[[d]]; If[PrimeQ[n], AppendTo[t, d]], {d, nn}]; t (* T. D. Noe, Dec 05 2011 *)
    Module[{nn=171000,c},c=RealDigits[Sqrt[3],10,nn][[1]];Select[Range[ nn], PrimeQ[ FromDigits[Take[c,#]]]&]] (* Harvey P. Dale, May 13 2017 *)

Extensions

Edited by Charles R Greathouse IV, Apr 27 2010
a(8) = 170657 from Eric W. Weisstein, Aug 18 2013
Previous Showing 61-70 of 218 results. Next