A090301
a(n) = 15*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 15.
Original entry on oeis.org
2, 15, 227, 3420, 51527, 776325, 11696402, 176222355, 2655031727, 40001698260, 602680505627, 9080209282665, 136805819745602, 2061167505466695, 31054318401746027, 467875943531657100, 7049193471376602527
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 15*a(3) + a(2) = 15*3420 + 227 = ((15+sqrt(229))/2)^4 + ((15-sqrt(229))/2)^4 = 51526.9999805 + 0.0000194 = 51527.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14), this sequence (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22),
A090314 (m=23),
A090316 (m=24),
A330767 (m=25),
A087281 (m=29),
A087287 (m=76),
A089772 (m=199).
-
m:=15;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 31 2019
-
m:=15; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 31 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 15*I/2)), n = 0..20); # G. C. Greubel, Dec 31 2019
-
LucasL[Range[20]-1, 15] (* G. C. Greubel, Dec 31 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 15*I/2) ) \\ G. C. Greubel, Dec 31 2019
-
[2*(-I)^n*chebyshev_T(n, 15*I/2) for n in (0..20)] # G. C. Greubel, Dec 31 2019
A090306
a(n) = 17*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 17.
Original entry on oeis.org
2, 17, 291, 4964, 84679, 1444507, 24641298, 420346573, 7170533039, 122319408236, 2086600473051, 35594527450103, 607193567124802, 10357885168571737, 176691241432844331, 3014108989526925364, 51416544063390575519
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 17*a(3) + a(2) = 17*4964 + 291=((17+sqrt(293))/2)^4 + ((17-sqrt(293))/2)^4 = 84678.999988190 + 0.000011809 = 84679.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16), this sequence (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22),
A090314 (m=23),
A090316 (m=24),
A330767 (m=25).
-
m:=17;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
-
m:=17; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 17*I/2)), n = 0..20); # G. C. Greubel, Dec 30 2019
-
LinearRecurrence[{17,1},{2,17},30] (* Harvey P. Dale, Jan 24 2018 *)
LucasL[Range[20]-1, 17] (* G. C. Greubel, Dec 30 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 17*I/2) ) \\ G. C. Greubel, Dec 30 2019
-
[2*(-I)^n*chebyshev_T(n, 17*I/2) for n in (0..20)] # G. C. Greubel, Dec 30 2019
A286185
Number of connected induced (non-null) subgraphs of the Möbius ladder graph with 2n nodes.
Original entry on oeis.org
3, 15, 55, 173, 511, 1451, 4019, 10937, 29371, 78055, 205679, 538149, 1399607, 3621315, 9327723, 23931633, 61186163, 155949119, 396369831, 1004904733, 2541896559, 6416348251, 16165611043, 40657256617, 102090514731, 255968753175, 640899345631, 1602640560533
Offset: 1
Cf.
A020873 (wheel),
A059020 (ladder),
A059525 (grid),
A286139 (king),
A286182 (prism),
A286183 (antiprism),
A286184 (helm),
A286186 (friendship),
A286187 (web),
A286188 (gear),
A286189 (rook),
A285765 (queen).
-
a[n_] := Block[{g = CirculantGraph[2 n, {1, n}]}, -1 + ParallelSum[ Boole@ ConnectedGraphQ@ Subgraph[g, s], {s, Subsets@ Range[2 n]}]]; Array[a, 8]
A051927
Number of independent vertex sets in the n-prism graph Y_n = K_2 X C_n (n > 2).
Original entry on oeis.org
3, 1, 7, 13, 35, 81, 199, 477, 1155, 2785, 6727, 16237, 39203, 94641, 228487, 551613, 1331715, 3215041, 7761799, 18738637, 45239075, 109216785, 263672647, 636562077, 1536796803, 3710155681, 8957108167, 21624372013, 52205852195
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, pp. 400-401.
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, Prism Graph
- Eric Weisstein's World of Mathematics, Vertex Cover
- Index entries for linear recurrences with constant coefficients, signature (1,3,1).
-
I:=[3, 1, 7]; [n le 3 select I[n] else Self(n-1) + 3*Self(n-2) + Self(n-3): n in [1..30]]; // Vincenzo Librandi, May 04 2013
-
A051927 := x -> (1+sqrt(2))^x+(-1)^x+(1-sqrt(2))^x;
seq(simplify(A051927(i)),i=0..28); # Peter Luschny, Aug 13 2012
-
CoefficientList[Series[(3 - 2 x - 3 x^2) / ((1 - 2 x - x^2) (1 + x)), {x, 0, 40}], x] (* Vincenzo Librandi, May 04 2013 *)
Table[LucasL[n, 2] + (-1)^n, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
LinearRecurrence[{1, 3, 1}, {1, 7, 13}, {0, 20}] (* Eric W. Weisstein, Sep 27 2017 *)
-
a(n)=polcoeff((3-2*x-3*x^2)/(1-2*x-x^2)/(1+x)+x*O(x^n),n)
-
x='x+O('x^66); Vec( (3-2*x-3*x^2)/((1-2*x-x^2)*(1+x)) ) \\ Joerg Arndt, May 04 2013
-
def A051927(x) : return (1+sqrt(2))^x+(-1)^x+(1-sqrt(2))^x
[A051927(i).round() for i in (0..28)] # Peter Luschny, Aug 13 2012
A084128
a(n) = 4*a(n-1) + 4*a(n-2), a(0)=1, a(1)=2.
Original entry on oeis.org
1, 2, 12, 56, 272, 1312, 6336, 30592, 147712, 713216, 3443712, 16627712, 80285696, 387653632, 1871757312, 9037643776, 43637604352, 210700992512, 1017354387456, 4912221519872, 23718303629312, 114522100596736, 552961616904192, 2669934870003712
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (4,4).
-
[2^(n-1)*Evaluate(DicksonFirst(n,-1), 2): n in [0..40]]; // G. C. Greubel, Oct 13 2022
-
a:=proc(n) option remember; if n=0 then 1 elif n=1 then 2 else
4*a(n-1)+4*a(n-2); fi; end: seq(a(n), n=0..40); # Wesley Ivan Hurt, Jan 31 2017
a := n -> (2*I)^n*ChebyshevT(n, -I):
seq(simplify(a(n)), n = 0..23); # Peter Luschny, Dec 03 2023
-
CoefficientList[Series[(2 z - 1)/(4 z^2 + 4 z - 1), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
Table[2^(n-1) LucasL[n, 2], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 07 2016 *)
LinearRecurrence[{4,4},{1,2},30] (* Harvey P. Dale, Mar 01 2018 *)
-
a(n)=if(n<0,0,polsym(4+4*x-x^2,n)[n+1]/2)
-
[lucas_number2(n,4,-4)/2 for n in range(0, 23)] # Zerinvary Lajos, May 14 2009
A090309
a(n) = 20*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 20.
Original entry on oeis.org
2, 20, 402, 8060, 161602, 3240100, 64963602, 1302512140, 26115206402, 523606640180, 10498248010002, 210488566840220, 4220269584814402, 84615880263128260, 1696537874847379602, 34015373377210720300
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 20*a(3) + a(2) = 20*8060 + 402 = (10+sqrt(101))^4 + (10-sqrt(101))^4 = 161601.999993811 + 0.000006188 = 161602.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19), this sequence (m=20),
A090310 (m=21),
A090313 (m=22),
A090314 (m=23),
A090316 (m=24),
A330767 (m=25).
-
m:=20;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
-
m:=20; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 10*I)), n = 0..20); # G. C. Greubel, Dec 30 2019
-
LinearRecurrence[{20,1},{2,20},20] (* Harvey P. Dale, Nov 19 2015 *)
LucasL[Range[20]-1,20] (* G. C. Greubel, Dec 30 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 10*I) ) \\ G. C. Greubel, Dec 30 2019
-
[2*(-I)^n*chebyshev_T(n, 10*I) for n in (0..20)] # G. C. Greubel, Dec 30 2019
A090310
a(n) = 21*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 21.
Original entry on oeis.org
2, 21, 443, 9324, 196247, 4130511, 86936978, 1829807049, 38512885007, 810600392196, 17061121121123, 359094143935779, 7558038143772482, 159077895163157901, 3348193836570088403, 70471148463135014364
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 21*a(3) + a(2) = 21*9324 + 443 = ((21+sqrt(445))/2)^4 + ((21-sqrt(445))/2)^4 = 196246.9999949043 + 0.0000050956 = 196247.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20), this sequence (m=21),
A090313 (m=22),
A090314 (m=23),
A090316 (m=24),
A330767 (m=25).
-
m:=21;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
-
m:=21; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 21*I/2)), n = 0..20); # G. C. Greubel, Dec 30 2019
-
LinearRecurrence[{21,1},{2,21},40] (* or *) CoefficientList[ Series[ (2-21x)/(1-21x-x^2),{x,0,40}],x] (* Harvey P. Dale, Apr 24 2011 *)
LucasL[Range[20]-1,21] (* G. C. Greubel, Dec 30 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 21*I/2) ) \\ G. C. Greubel, Dec 30 2019
-
[2*(-I)^n*chebyshev_T(n, 21*I/2) for n in (0..20)] # G. C. Greubel, Dec 30 2019
A090305
a(n) = 16*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 16.
Original entry on oeis.org
2, 16, 258, 4144, 66562, 1069136, 17172738, 275832944, 4430499842, 71163830416, 1143051786498, 18359992414384, 294902930416642, 4736806879080656, 76083812995707138, 1222077814810394864, 19629328849962024962
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 16*a(3) + a(2) = 16*4144 + 258 = (8+sqrt(65))^4 + (8-sqrt(65))^4 = 66561.99998497... + 0.00001502... = 66562.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15), this sequence (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22),
A090314 (m=23),
A090316 (m=24),
A330767 (m=25),
A087281 (m=29),
A087287 (m=76),
A089772 (m=199).
-
m:=16;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 31 2019
-
m:=16; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 31 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 8*I)), n = 0..20); # G. C. Greubel, Dec 31 2019
-
LinearRecurrence[{16,1},{2,16},40] (* or *) With[{c=Sqrt[65]}, Simplify/@ Table[(c-8)((8+c)^n-(8-c)^n (129+16c)),{n,20}]] (* Harvey P. Dale, Oct 31 2011 *)
LucasL[Range[20]-1, 16] (* G. C. Greubel, Dec 31 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 8*I) ) \\ G. C. Greubel, Dec 31 2019
-
[2*(-I)^n*chebyshev_T(n, 8*I) for n in (0..20)] # G. C. Greubel, Dec 31 2019
A090307
a(n) = 18*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 18.
Original entry on oeis.org
2, 18, 326, 5886, 106274, 1918818, 34644998, 625528782, 11294163074, 203920464114, 3681862517126, 66477445772382, 1200275886420002, 21671443401332418, 391286257110403526, 7064824071388595886
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 18*a(3) + a(2) = 18*5886 + 326 = (9+sqrt(82))^4 + (9-sqrt(82))^4 = 106273.9999905903 + 0.000009406 = 106274.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17), this sequence (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22),
A090314 (m=23),
A090316 (m=24),
A330767 (m=25).
-
m:=18;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
-
m:=18; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 9*I)), n = 0..20); # G. C. Greubel, Dec 30 2019
-
LinearRecurrence[{18,1},{2,18},25] (* or *) CoefficientList[ Series[ (2-18x)/(1-18x-x^2),{x,0,25}],x] (* Harvey P. Dale, Apr 22 2011 *)
LucasL[Range[20]-1, 18] (* G. C. Greubel, Dec 30 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 9*I) ) \\ G. C. Greubel, Dec 30 2019
-
[2*(-I)^n*chebyshev_T(n, 9*I) for n in (0..20)] # G. C. Greubel, Dec 30 2019
A090308
a(n) = 19*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 19.
Original entry on oeis.org
2, 19, 363, 6916, 131767, 2510489, 47831058, 911300591, 17362542287, 330799604044, 6302555019123, 120079344967381, 2287810109399362, 43588471423555259, 830468767156949283, 15822495047405591636
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 19*a(3) + a(2) = 19*6916 + 363 = ((19+sqrt(365))/2)^4 + ((19-sqrt(365))/2)^4 = 131766.9999924108 + 0.0000075891 = 131767.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18), this sequence (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22),
A090314 (m=23),
A090316 (m=24),
A330767 (m=25).
-
m:=19;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
-
m:=19; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 19*I/2)), n = 0..20); # G. C. Greubel, Dec 30 2019
-
LucasL[Range[20]-1,20] (* G. C. Greubel, Dec 30 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 19*I/2) ) \\ G. C. Greubel, Dec 30 2019
-
[2*(-I)^n*chebyshev_T(n, 19*I/2) for n in (0..20)] # G. C. Greubel, Dec 30 2019
Comments