cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 50 results. Next

A246057 a(n) = (5*10^n - 2)/3.

Original entry on oeis.org

1, 16, 166, 1666, 16666, 166666, 1666666, 16666666, 166666666, 1666666666, 16666666666, 166666666666, 1666666666666, 16666666666666, 166666666666666, 1666666666666666, 16666666666666666, 166666666666666666, 1666666666666666666, 16666666666666666666, 166666666666666666666
Offset: 0

Views

Author

Vincenzo Librandi, Aug 13 2014

Keywords

Comments

a(k-1) = (10^k - 4)/6, together with b(k) = 3*a(k-1) + 2 = A093143(k) and c(k) = 2*a(k-1) + 1 = A002277(k) are k-digit numbers for k >= 1 satisfying the so-called curious cubic identity a(k-1)^3 + b(k)^3 + c(k)^3 = a(k)*10^(2*k) + b(k)*10^k + c(k) (concatenated a(k)b(k)c(k)). This k-family and the proof of the identity has been given in the introduction of the van der Poorten reference. Thanks go to S. Heinemeyer for bringing these identities to my attention. - Wolfdieter Lang, Feb 07 2017

Examples

			Curious cubic identities (see a comment and reference above): 1^3 + 5^3 + 3^3 = 153, 16^3 + 50^3 + 33^3 = 165033, 166^3 + 500^3 + 333^3 = 166500333, ... - _Wolfdieter Lang_, Feb 07 2017
		

Crossrefs

Cf. sequences with terms of the form 1k..k where the digit k is repeated n times: A000042 (k=1), A090843 (k=2), A097166 (k=3), A099914 (k=4), A099915 (k=5), this sequence (k=6), A246058 (k=7), A246059 (k=8), A067272 (k=9).

Programs

  • Magma
    [(5*10^n-2)/3: n in [0..20]];
    
  • Mathematica
    Table[(5 10^n - 2)/3, {n, 0, 20}]
  • PARI
    vector(50, n, (5*10^(n-1)-2)/3) \\ Derek Orr, Aug 13 2014

Formula

G.f.: (1 + 5*x)/((1 - x)*(1 - 10*x)).
a(n) = 11*a(n-1) - 10*a(n-2).
E.g.f.: exp(x)*(5*exp(9*x) - 2)/3. - Stefano Spezia, May 02 2025
a(n) = A323639(n+1)/2 = A086948(n+1)/12. - Elmo R. Oliveira, May 07 2025

A004722 Delete all digits 3 from the terms of the sequence of nonnegative integers.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 14, 15, 16, 17, 18, 19, 20, 21, 22, 2, 24, 25, 26, 27, 28, 29, 0, 1, 2, 4, 5, 6, 7, 8, 9, 40, 41, 42, 4, 44, 45, 46, 47, 48, 49, 50, 51, 52, 5, 54, 55, 56, 57, 58, 59, 60, 61, 62, 6, 64, 65, 66, 67, 68, 69, 70, 71, 72, 7, 74, 75, 76
Offset: 0

Views

Author

Keywords

Comments

Very similar to A004178, except that 3-repdigits (A002277) are completely removed from the sequence, whereas A004178 has 0's in their place. It is thus guaranteed that a(n) = n only when n < 3. - Alonso del Arte, Oct 18 2012

Crossrefs

Programs

  • MATLAB
    m=1;
    for u=0:1000
        v=dec2base(u,10)-'0'; v = v(v~=3);
        if length(v)>0;sol(m)=(str2num(strrep(num2str(v), ' ', ''))); m=m+1; end;
    end
    sol % Marius A. Burtea, May 07 2019
    
  • Mathematica
    endAt = 103; Delete[Table[FromDigits[DeleteCases[IntegerDigits[n], 3]], {n, 0, endAt}], Table[{(10^expo - 1)/3 + 1}, {expo, Floor[Log[10, endAt]]}]] (* Alonso del Arte, Apr 29 2019 *)
  • Python
    def A004722(n):
        l = len(str(n))
        m = (10**l-1)//3
        k = n + l - int(n+l < m)
        return 2 if k == m else int(str(k).replace('3','')) # Chai Wah Wu, Apr 20 2021

Formula

a(n) = n for -1 < n < 3;
a(n) = A004178(n + 1) for 2 < n < 32,
a(n) = A004178(n + 2) for 31 < n < 331,
a(n) = A004178(n + 3) for 330 < n < 3330,
a(n) = A004178(n + 4) for 3329 < n < 33329, etc. - Alonso del Arte, Oct 21 2012

Extensions

Sean A. Irvine pointed out erroneous terms in b-file and confirmed correction, Apr 28 2019
Name edited by Felix Fröhlich, Apr 29 2019

A086066 a(n) = Sum_{d in D(n)} 2^d, where D(n) = set of digits of n in decimal representation.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 3, 2, 6, 10, 18, 34, 66, 130, 258, 514, 5, 6, 4, 12, 20, 36, 68, 132, 260, 516, 9, 10, 12, 8, 24, 40, 72, 136, 264, 520, 17, 18, 20, 24, 16, 48, 80, 144, 272, 528, 33, 34, 36, 40, 48, 32, 96, 160, 288, 544, 65, 66, 68, 72, 80
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 08 2003

Keywords

Comments

For bitwise logical operations AND and OR:
a(m) = (a(m) AND a(n)) iff D(m) is a subset of D(n),
(a(m) AND a(n)) = 0 iff D(m) and D(n) are disjoint,
a(m) = (a(m) OR a(n)) iff D(n) is a subset of D(m),
a(m) = a(n) iff D(m) = D(n);
A086067(n) = A007088(a(n)).
From Reinhard Zumkeller, Sep 18 2009: (Start)
a(A052382(n)) mod 2 = 0; a(A011540(n)) mod 2 = 1;
for n > 0: a(A000004(n))=1, a(A000042(n))=2, a(A011557(n))=3, a(A002276(n))=4, a(A111066(n))=6, a(A002277(n))=8, a(A002278(n))=16, a(A002279(n))=32, a(A002280(n))=64, a(A002281(n))=128, a(A002282(n))=256, a(A002283(n))=512;
a(n) <= 1023. (End)

Examples

			n=242, D(242) = {2,4}: a(242) = 2^2 + 2^4 = 20.
		

Programs

  • Maple
    A086066 := proc(n) local d: if(n=0)then return 1: fi: d:=convert(convert(n,base,10),set): return add(2^d[j],j=1..nops(d)): end: seq(A086066(n),n=0..64); # Nathaniel Johnston, May 31 2011

A332130 a(n) = (10^(2n+1)-1)/3 - 3*10^n.

Original entry on oeis.org

0, 303, 33033, 3330333, 333303333, 33333033333, 3333330333333, 333333303333333, 33333333033333333, 3333333330333333333, 333333333303333333333, 33333333333033333333333, 3333333333330333333333333, 333333333333303333333333333, 33333333333333033333333333333, 3333333333333330333333333333333
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002277 (3*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332120 .. A332190 (variants with different repeated digit 2, ..., 9).
Cf. A332131 .. A332139 (variants with different middle digit 1, ..., 9).

Programs

  • Maple
    A332130 := n -> (10^(2*n+1)-1)/3-3*10^n;
  • Mathematica
    Array[ ((10^(2 # + 1)-1)/3 - 3*10^#) &, 15, 0]
  • PARI
    apply( {A332130(n)=10^(n*2+1)\3-3*10^n}, [0..15])
    
  • Python
    def A332130(n): return 10**(n*2+1)//3-3*10**n

Formula

a(n) = 3*A138148(n) = A002277(2n+1) - 3*10^n.
G.f.: 3*x*(101 - 200*x)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
E.g.f.: exp(x)*(10*exp(99*x) - 9*exp(9*x) - 1)/3. - Stefano Spezia, Jul 13 2024

A332139 a(n) = (10^(2*n+1)-1)/3 + 6*10^n.

Original entry on oeis.org

9, 393, 33933, 3339333, 333393333, 33333933333, 3333339333333, 333333393333333, 33333333933333333, 3333333339333333333, 333333333393333333333, 33333333333933333333333, 3333333333339333333333333, 333333333333393333333333333, 33333333333333933333333333333, 3333333333333339333333333333333
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002277 (3*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332129 .. A332189 (variants with different repeated digit 2, ..., 8).
Cf. A332130 .. A332138 (variants with different middle digit 0, ..., 8).

Programs

  • Maple
    A332139 := n -> (10^(2*n+1)-1)/3+6*10^n;
  • Mathematica
    Array[ (10^(2 # + 1)-1)/3 + 6*10^# &, 15, 0]
    LinearRecurrence[{111,-1110,1000},{9,393,33933},20] (* Harvey P. Dale, Sep 17 2020 *)
  • PARI
    apply( {A332139(n)=10^(n*2+1)\3+6*10^n}, [0..15])
    
  • Python
    def A332139(n): return 10**(n*2+1)//3+6*10**n

Formula

a(n) = 3*A138148(n) + 9*10^n = A002277(2n+1) + 6*10^n = 3*A332113(n).
G.f.: (9 - 606*x + 300*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A350814 Numbers m such that the largest digit in the decimal expansion of 1/m is 3.

Original entry on oeis.org

3, 30, 33, 75, 300, 303, 330, 333, 429, 750, 813, 3000, 3003, 3030, 3125, 3300, 3330, 3333, 4290, 4329, 7500, 7575, 8130, 30000, 30003, 30030, 30300, 30303, 31250, 33000, 33300, 33330, 33333, 42900, 43290, 46875, 75000, 75075, 75750, 76923, 81103, 81300, 300000
Offset: 1

Views

Author

Bernard Schott, Jan 30 2022

Keywords

Comments

If m is a term, 10*m is also a term.
3 is the only prime up to 2.6*10^8 (see comments in A333237).
Some subsequences:
{3, 30, 300, ...} = A093138 \ {1}.
{3, 33, 333, ...} = A002277 \ {0}.
{3, 33, 303, 3003, ...} = 3 * A000533.
{3, 303, 30303, 3030303, ...} = 3 * A094028.

Examples

			As 1/33 = 0.0303030303..., 33 is a term.
As 1/75 = 0.0133333333..., 75 is a term.
As 1/429 = 0.002331002331002331..., 429 is a term.
		

Crossrefs

Similar with largest digit k: A333402 (k=1), A341383 (k=2), A333237 (k=9).
Subsequences: A002277 \ {0}, A093138 \ {1}.
Decimal expansion: A010701 (1/3), A010674 (1/33).

Programs

  • Mathematica
    Select[Range[10^5], Max[RealDigits[1/#][[1]]] == 3 &] (* Amiram Eldar, Jan 30 2022 *)
  • Python
    from fractions import Fraction
    from itertools import count, islice
    from sympy import n_order, multiplicity
    def repeating_decimals_expr(f, digits_only=False):
        """ returns repeating decimals of Fraction f as the string aaa.bbb[ccc].
            returns only digits if digits_only=True.
        """
        a, b = f.as_integer_ratio()
        m2, m5 = multiplicity(2,b), multiplicity(5,b)
        r = max(m2,m5)
        k, m = 10**r, 10**n_order(10,b//2**m2//5**m5)-1
        c = k*a//b
        s = str(c).zfill(r)
        if digits_only:
            return s+str(m*k*a//b-c*m)
        else:
            w = len(s)-r
            return s[:w]+'.'+s[w:]+'['+str(m*k*a//b-c*m)+']'
    def A350814_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda m:max(repeating_decimals_expr(Fraction(1,m),digits_only=True)) == '3',count(max(startvalue,1)))
    A350814_list = list(islice(A350814_gen(),10)) # Chai Wah Wu, Feb 07 2022

Extensions

More terms from Amiram Eldar, Jan 30 2022

A180160 (sum of digits) mod (number of digits) of n in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 2
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 15 2010

Keywords

Comments

a(n) = A007953(n) mod A055642(n);
a(A061383(n)) = 0; a(A180157(n)) > 0;
a(repdigits)=0: a(A010785(n))=0: a(A002275(n))=0: a(A002276(n))=0: a(A002277(n))=0: a(A002278(n))=0: a(4(n))=0: a(A002279(n))=0: a(A002280(n))=0: a(A002281(n))=0: a(A002282(n))=0: a(A002283(n))=0;
A123522 gives smallest m such that a(m) = n.

Crossrefs

Programs

  • Mathematica
    A180160[n_] := If[n == 0, 0, Mod[Total[#], Length[#]] & [IntegerDigits[n]]];
    Array[A180160, 100, 0] (* Paolo Xausa, Jun 30 2024 *)
    Join[{0},Table[Mod[Total[IntegerDigits[n]],IntegerLength[n]],{n,110}]] (* Harvey P. Dale, Jul 30 2025 *)

A180593 Digital root of 3n.

Original entry on oeis.org

0, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6, 9, 3, 6
Offset: 0

Views

Author

Odimar Fabeny, Sep 10 2010

Keywords

Comments

Decimal expansion of 41/1110. - Enrique Pérez Herrero, Nov 13 2021

Crossrefs

Cf. A008585 (3*n), A010888 (digital root), A002277.

Programs

  • Mathematica
    digitalRoot[n_Integer?Positive] := FixedPoint[Plus@@IntegerDigits[#]&,n]; Table[If[n==0,0,digitalRoot[3*n]], {n,0,200}] (* Vladimir Joseph Stephan Orlovsky, May 02 2011 *)
    LinearRecurrence[{0,0,1},{0,3,6,9},120] (* Harvey P. Dale, Sep 03 2020 *)

Formula

a(n+1) = 3*A010882(n). - Reinhard Zumkeller, Oct 25 2010
G.f.: (-3*(1 + 2*x + 3*x^2))/(-1 + x^3) for n>0. - Alexander R. Povolotsky, Jun 13 2012
a(n) = A010888(A002277(n)). - Enrique Pérez Herrero, Nov 24 2022
a(n) = A010888(A008585(n)). - Michel Marcus, Nov 24 2022

Extensions

Edited by N. J. A. Sloane, Sep 23 2010

A281858 Curious cubic identities based on the Armstrong number 370.

Original entry on oeis.org

370, 336700, 333667000, 333366670000, 333336666700000, 333333666667000000, 333333366666670000000, 333333336666666700000000, 333333333666666667000000000, 333333333366666666670000000000, 333333333336666666666700000000000, 333333333333666666666667000000000000
Offset: 1

Views

Author

Wolfdieter Lang, Feb 08 2017

Keywords

Comments

See a comment in A067275, and the analog to the Armstrong number 153 = A005188(10) treated in A281857, 370 = A005188(11).

Examples

			n=1: 370 =  3^3 + 7^3 + 0^3; n=2: 336700 = 33^3 + 67^3 + (00)^3; n=3: 333667000 = 333^3 + 667^3 + (000)^3.
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits@ Join[ConstantArray[3, n], ReplacePart[ConstantArray[6, n], -1 -> 7], ConstantArray[0, n]], {n, 12}] (* Michael De Vlieger, Feb 08 2017 *)
  • PARI
    Vec(10*x*(37 - 7400*x + 100000*x^2) / ((1 - 10*x)*(1 - 100*x)*(1 - 1000*x)) + O(x^30)) \\ Colin Barker, Feb 08 2017

Formula

a(n) = A002277(n)^3 + A067275(n+1)^3 + 0(n)^3, n >= 1, with 0(n) standing for n 0's.
From Colin Barker, Feb 08 2017: (Start)
G.f.: 10*x*(37 - 7400*x + 100000*x^2) / ((1 - 10*x)*(1 - 100*x)*(1 - 1000*x)).
a(n) = 10^n*(1 + 10^n + 100^n) / 3.
a(n) = 1110*a(n-1) - 111000*a(n-2) + 1000000*a(n-3) for n>3. (End)

A281857 Numbers occurring in a curious cubic identity.

Original entry on oeis.org

153, 165033, 166500333, 166650003333, 166665000033333, 166666500000333333, 166666650000003333333, 166666665000000033333333, 166666666500000000333333333, 166666666650000000003333333333, 166666666665000000000033333333333, 166666666666500000000000333333333333
Offset: 1

Views

Author

Wolfdieter Lang, Feb 07 2017

Keywords

Comments

See A246057 for the van der Poorten et al. reference and a comment.
153 is the Armstrong number A005188(10). [Typo corrected by Jeremy Tan, Feb 25 2023]

Examples

			1^3 + 5^3 + 3^3 = 153, 16^3 + 50^3 + 33^3 = 165033, 166^3 + 500^3 + 333^3 = 166500333, ...
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits@ Join[ReplacePart[ConstantArray[6, n], 1 -> 1], ReplacePart[ConstantArray[0, n], 1 -> 5], ConstantArray[3, n]], {n, 12}] (* Michael De Vlieger, Feb 08 2017 *)
  • PARI
    Vec(9*x*(17 - 550*x + 33500*x^2) / ((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)) + O(x^15)) \\ Colin Barker, Feb 08 2017
    
  • PARI
    a(n) = (((10^n - 4)/6)^3) + ((10^n/2)^3) + (((10^n - 1)/3)^3) \\ Jean-Jacques Vaudroz, Aug 11 2024

Formula

a(n) = A246057(n-1)^3 + A093143(n)^3 + A002277(n)^3, n >= 1.
From Colin Barker, Feb 08 2017: (Start)
G.f.: 9*x*(17 - 550*x + 33500*x^2) / ((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)).
a(n) = (-2 + 2^(1+n)*5^n - 100^n + 1000^n) / 6.
a(n) = 1111*a(n-1) - 112110*a(n-2) + 1111000*a(n-3) - 1000000*a(n-4) for n>4. (End)
Previous Showing 21-30 of 50 results. Next