cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 185 results. Next

A186677 Total number of positive integers below 10^n requiring 16 positive biquadrates in their representation as sum of biquadrates.

Original entry on oeis.org

0, 4, 47, 288, 587, 874, 1178, 1487, 1803, 2089, 2388
Offset: 1

Views

Author

Martin Renner, Feb 25 2011

Keywords

Comments

A114322(n) + A186649(n) + A186651(n) + A186653(n) + A186655(n) + A186657(n) + A186659(n) + A186661(n) + A186663(n) + A186665(n) + A186667(n) + A186669(n) + A186671(n) + A186673(n) + A186675(n) + a(n) + A186680(n) + A186682(n) + A186684(n) = A002283(n).

Crossrefs

Extensions

a(5)-a(6) from Lars Blomberg, May 08 2011
a(7) from Charles R Greathouse IV, May 08 2011
a(8)-a(9) from Hiroaki Yamanouchi, Oct 13 2014
a(10)-a(11) from Giovanni Resta, Apr 29 2016

A186680 Total number of positive integers below 10^n requiring 17 positive biquadrates in their representation as sum of biquadrates.

Original entry on oeis.org

0, 3, 33, 63, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65
Offset: 1

Views

Author

Martin Renner, Feb 25 2011

Keywords

Comments

A114322(n) + A186649(n) + A186651(n) + A186653(n) + A186655(n) + A186657(n) + A186659(n) + A186661(n) + A186663(n) + A186665(n) + A186667(n) + A186669(n) + A186671(n) + A186673(n) + A186675(n) + A186677(n) + a(n) + A186682(n) + A186684(n) = A002283(n)
a(n) = 65 for n >= 5. - Nathaniel Johnston, May 09 2011
Continued fraction expansion of (826055+sqrt(4229))/2503382. - Bruno Berselli, May 10 2011

Crossrefs

Programs

  • Mathematica
    PadRight[{0, 3, 33, 63}, 100, 65] (* Paolo Xausa, Jul 31 2024 *)

Formula

G.f.: x^2*(3+30*x+30*x^2+2*x^3)/(1-x). - Bruno Berselli, May 10 2011

Extensions

a(5)-a(6) from Lars Blomberg, May 08 2011
a(7) from Charles R Greathouse IV, May 08 2011
Terms after a(7) from Nathaniel Johnston, May 09 2011

A186682 Total number of positive integers below 10^n requiring 18 positive biquadrates in their representation as sum of biquadrates.

Original entry on oeis.org

0, 2, 19, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24
Offset: 1

Views

Author

Martin Renner, Feb 25 2011

Keywords

Comments

A114322(n) + A186649(n) + A186651(n) + A186653(n) + A186655(n) + A186657(n) + A186659(n) + A186661(n) + A186663(n) + A186665(n) + A186667(n) + A186669(n) + A186671(n) + A186673(n) + A186675(n) + A186677(n) + A186680(n) + a(n) + A186684(n) = A002283(n)
a(n) = 24 for n >= 4. - Nathaniel Johnston, May 09 2011
Continued fraction expansion of (185-sqrt(145))/355. - Bruno Berselli, May 10 2011

Crossrefs

Cf. A046049.

Programs

  • Mathematica
    PadRight[{0, 2, 19}, 100, 24] (* Paolo Xausa, Jul 30 2024 *)

Formula

G.f.: x^2*(2+17*x+5*x^2)/(1-x). - Bruno Berselli, May 10 2011

Extensions

a(5)-a(6) from Lars Blomberg, May 08 2011
a(7) from Charles R Greathouse IV, May 08 2011
Terms after a(7) from Nathaniel Johnston, May 09 2011

A102347 Number of distinct prime factors of 10^n - 1.

Original entry on oeis.org

1, 2, 2, 3, 3, 5, 3, 5, 3, 5, 3, 7, 4, 5, 6, 7, 3, 8, 2, 8, 7, 7, 2, 10, 6, 7, 5, 9, 6, 13, 4, 12, 6, 7, 8, 11, 4, 4, 6, 12, 5, 14, 5, 11, 9, 7, 3, 13, 5, 11, 8, 10, 5, 12, 9, 13, 6, 9, 3, 20, 8, 6, 13, 16, 8, 14, 4, 11, 6, 13, 3, 17, 4, 8, 12, 7, 9, 15, 7, 16, 10, 8, 4, 21, 8, 9, 10, 15, 6, 21, 13
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Feb 20 2005

Keywords

Crossrefs

Programs

  • Maple
    A102347 := proc(n)
        10^n-1 ;
        A001221(%) ;
    end proc: # R. J. Mathar, Dec 02 2016
  • Mathematica
    Table[PrimeNu[10^n-1],{n,100}] (* The program will take a long time to execute *) (* Harvey P. Dale, Jan 18 2015 *)
  • PARI
    a(n) = omega(10^n-1); \\ Michel Marcus, Apr 22 2017

Formula

a(n) = A001221(A002283(n)) = A001221(10^n - 1).
a(n) = A001221(R_n) + (n^2 mod 3) = A095370(n) + (n^2 mod 3), where R_n = (10^n-1)/9 = A002275(n). That is, a(n) = A095370(n) for n=3k; otherwise a(n) = A095370(n) + 1. - Lekraj Beedassy, Jun 09 2006

Extensions

Terms to a(280) and a(323)-a(352) in b-file from Max Alekseyev, Dec 28 2011, Apr 26 2022
a(281)-a(322) in b-file from Ray Chandler, Apr 22 2017

A070528 Number of divisors of 10^n-1 (999...999 with n digits).

Original entry on oeis.org

3, 6, 8, 12, 12, 64, 12, 48, 20, 48, 12, 256, 24, 48, 128, 192, 12, 640, 6, 384, 256, 288, 6, 2048, 96, 192, 96, 768, 96, 16384, 24, 6144, 128, 192, 384, 5120, 24, 24, 128, 6144, 48, 49152, 48, 4608, 1280, 192, 12, 16384, 48, 3072, 512, 1536, 48, 12288, 768
Offset: 1

Views

Author

Henry Bottomley, May 02 2002

Keywords

Examples

			a(7)=12 since the divisors of 9999999 are 1, 3, 9, 239, 717, 2151, 4649, 13947, 41841, 1111111, 3333333, 9999999.
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0,#]&/@(10^Range[60]-1) (* Harvey P. Dale, Jan 14 2011 *)
    Table[DivisorSigma[0, 10^n - 1], {n, 60}] (* T. D. Noe, Aug 18 2011 *)
  • PARI
    a(n) = numdiv(10^n - 1); \\ Michel Marcus, Sep 08 2015

Formula

a(n) = A000005(A002283(n)).
a(n) = Sum_{d|n} A059892(d).
a(n) = A070529(n)*(A007949(n)+3)/(A007949(n)+1).

Extensions

Terms to a(280) in b-file from Hans Havermann, Aug 19 2011
a(281)-a(322) in b-file from Ray Chandler, Apr 22 2017
a(323)-a(352) in b-file from Max Alekseyev, May 04 2022

A332190 a(n) = 10^(2n+1) - 1 - 9*10^n.

Original entry on oeis.org

0, 909, 99099, 9990999, 999909999, 99999099999, 9999990999999, 999999909999999, 99999999099999999, 9999999990999999999, 999999999909999999999, 99999999999099999999999, 9999999999990999999999999, 999999999999909999999999999, 99999999999999099999999999999, 9999999999999990999999999999999
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002283 (9*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332120 .. A332180 (variants with different repeated digit 2, ..., 8).
Cf. A332191 .. A332197, A181965 (variants with different middle digit 1, ..., 8).

Programs

  • Maple
    A332190 := n -> 10^(2*n+1)-1-9*10^n;
  • Mathematica
    Array[10^(2 # + 1)-1-9*10^# &, 15, 0]
    LinearRecurrence[{111,-1110,1000},{0,909,99099},20] (* Harvey P. Dale, May 28 2021 *)
  • PARI
    apply( {A332190(n)=10^(n*2+1)-1-9*10^n}, [0..15])
    
  • Python
    def A332190(n): return 10**(n*2+1)-1-9*10^n

Formula

a(n) = 9*A138148(n) = A002283(2n+1) - A011557(n).
G.f.: 9*x*(101 - 200*x)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332197 a(n) = 10^(2n+1) - 1 - 2*10^n.

Original entry on oeis.org

7, 979, 99799, 9997999, 999979999, 99999799999, 9999997999999, 999999979999999, 99999999799999999, 9999999997999999999, 999999999979999999999, 99999999999799999999999, 9999999999997999999999999, 999999999999979999999999999, 99999999999999799999999999999, 9999999999999997999999999999999
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Comments

According to Kamada, n = 118 and n = 145126 are the only known indices of primes (the so-called palindromic near-repdigit or wing primes).

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002283 (9*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only).
Cf. A332190 .. A332196, A181965 (variants with different middle digit 0, ..., 8).
Cf. A332117 .. A332187 (variants with different repeated digit 1, ..., 9).

Programs

  • Maple
    A332197 := n -> 10^(n*2+1)-1-2*10^n;
  • Mathematica
    Array[ 10^(2 # + 1) -1 -2*10^# &, 15, 0]
    Table[FromDigits[Join[PadRight[{},n,9],{7},PadRight[{},n,9]]],{n,0,20}] (* or *) LinearRecurrence[{111,-1110,1000},{7,979,99799},20] (* Harvey P. Dale, Mar 03 2023 *)
  • PARI
    apply( {A332197(n)=10^(n*2+1)-1-2*10^n}, [0..15])
    
  • Python
    def A332197(n): return 10**(n*2+1)-1-2*10^n

Formula

a(n) = 9*A138148(n) + 7*10^n.
G.f.: (7 + 202*x - 1100*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A061439 Largest number whose cube has n digits.

Original entry on oeis.org

2, 4, 9, 21, 46, 99, 215, 464, 999, 2154, 4641, 9999, 21544, 46415, 99999, 215443, 464158, 999999, 2154434, 4641588, 9999999, 21544346, 46415888, 99999999, 215443469, 464158883, 999999999, 2154434690, 4641588833, 9999999999
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Comments

a(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + A130130(n) = A002283(n).

Examples

			a(5) = 46 because 46^3 = 97336 has 5 digits, while 47^3 = 103823 has 6 digits.
		

Crossrefs

a(n) is one more than the corresponding term of A018005. Cf. A061435.

Programs

  • Maple
    Digits := 100:
    A061439 := n->ceil(10^(n/3))-1:
    seq (A061439(n), n=1..40);
  • Mathematica
    t={}; i=0; Do[i=i+1; While[IntegerLength[i^3]<=n,i++]; AppendTo[t,i-1],{n,20}]; t (* Jayanta Basu, May 19 2013 *)

Formula

a(n) = ceiling(10^(n/3)) - 1. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 30 2003

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001
Typo in Maple program fixed by Martin Renner, Jan 31 2011

A178630 a(n) = 18*((10^n - 1)/9)^2.

Original entry on oeis.org

18, 2178, 221778, 22217778, 2222177778, 222221777778, 22222217777778, 2222222177777778, 222222221777777778, 22222222217777777778, 2222222222177777777778, 222222222221777777777778, 22222222222217777777777778, 2222222222222177777777777778, 222222222222221777777777777778
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2010

Keywords

Examples

			n=1: ..................... 18 = 9 * 2;
n=2: ................... 2178 = 99 * 22;
n=3: ................. 221778 = 999 * 222;
n=4: ............... 22217778 = 9999 * 2222;
n=5: ............. 2222177778 = 99999 * 22222;
n=6: ........... 222221777778 = 999999 * 222222;
n=7: ......... 22222217777778 = 9999999 * 2222222;
n=8: ....... 2222222177777778 = 99999999 * 22222222;
n=9: ..... 222222221777777778 = 999999999 * 222222222.
		

Crossrefs

Programs

Formula

a(n) = 18*A002477(n) = A002283(n)*A002276(n).
a(n)=((A002276(n-1)*10 + 1)*10^(n-1) + A002281(n-1))*10 + 8.
G.f.: 18*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Ilya Gutkovskiy, Feb 24 2017
From Elmo R. Oliveira, Jul 30 2025: (Start)
E.g.f.: 2*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/9.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 3. (End)

A181965 a(n) = 10^(2n+1) - 10^n - 1.

Original entry on oeis.org

8, 989, 99899, 9998999, 999989999, 99999899999, 9999998999999, 999999989999999, 99999999899999999, 9999999998999999999, 999999999989999999999, 99999999999899999999999, 9999999999998999999999999, 999999999999989999999999999, 99999999999999899999999999999, 9999999999999998999999999999999
Offset: 0

Views

Author

Ivan Panchenko, Apr 04 2012

Keywords

Comments

n 9's followed by an 8 followed by n 9's.
See A183187 = {26, 378, 1246, 1798, 2917, ...} for the indices of primes.

Crossrefs

Cf. (A077794-1)/2 = A183187 (indices of primes).
Cf. A002275 (repunits R_n = (10^n-1)/9), A002283 (9*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332190 .. A332197 (variants with different middle digit 0, ..., 7).

Programs

  • Maple
    A181965 := n -> 10^(2*n+1)-1-10^n; # M. F. Hasler, Feb 08 2020
  • Mathematica
    Array[10^(2 # + 1) - 1- 10^# &, 15, 0] (*  M. F. Hasler, Feb 08 2020 *)
    Table[With[{c=PadRight[{},n,9]},FromDigits[Join[c,{8},c]]],{n,0,20}] (* Harvey P. Dale, Jun 07 2021 *)
  • PARI
    apply( {A181965(n)=10^(n*2+1)-1-10^n}, [0..15]) \\ M. F. Hasler, Feb 08 2020
    
  • Python
    def A181965(n): return 10**(n*2+1)-1-10^n # M. F. Hasler, Feb 08 2020

Formula

From M. F. Hasler, Feb 08 2020: (Start)
a(n) = 9*A138148(n) + 8*10^n = A002283(2n+1) - A011557(10^n).
G.f.: (8 + 101*x - 1000*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2. (End)

Extensions

Edited and extended to a(0) = 8 by M. F. Hasler, Feb 10 2020
Previous Showing 41-50 of 185 results. Next