cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 39 results. Next

A088502 Numbers n such that (n^2 - 5)/4 is prime.

Original entry on oeis.org

5, 7, 9, 11, 13, 17, 19, 21, 23, 27, 31, 33, 39, 41, 43, 49, 53, 57, 61, 63, 71, 77, 79, 83, 89, 91, 93, 97, 101, 107, 109, 111, 113, 119, 121, 129, 131, 133, 137, 141, 153, 167, 171, 173, 179, 187, 189, 193, 201, 203, 207, 229, 231, 241, 251, 253, 261, 263, 269
Offset: 1

Views

Author

Pierre CAMI, Nov 13 2003

Keywords

Comments

Under Bunyakovsky's conjecture this sequence is infinite. - Charles R Greathouse IV, Dec 28 2011

Examples

			(23*23 - 5)/4 = 131, 131 is prime, 23 is the 9th n of the sequence.
		

Crossrefs

Programs

Formula

a(n) = 2*A002328(n) - 1 = Sqrt(A110013(n)). - Ray Chandler, Sep 07 2005

A078179 a(n) is the smallest prime of the form n^k + n - 1 with k >= 2.

Original entry on oeis.org

5, 11, 19, 29, 41, 349, 71, 89, 109, 131, 20747, 181, 2177953337809371149, 239, 271, 83537, 5849, 379, 419, 461, 2494357909, 279863, 599, 15649, 701, 19709, 811, 420707233300229, 929, 991
Offset: 2

Views

Author

Reinhard Zumkeller, Nov 20 2002

Keywords

Examples

			349 = A000040(70) = 7^3+7-1 and 7^2+7-1 = 5*11, therefore a(7) = 349.
		

Crossrefs

Programs

Formula

a(n) = n^A078178(n) + n - 1.

Extensions

More terms from Benoit Cloitre, Nov 20 2002
Offset corrected by Reinhard Zumkeller, Jul 16 2014

A126435 Primes of the form n^7-n-1.

Original entry on oeis.org

2097143, 1801088519, 21869999969, 42618442943, 78364164059, 137231006639, 194754273839, 435817657169, 678223072799, 1174711139783, 1727094849479, 3938980639103, 4398046511039, 4902227890559, 6722988818363, 19203908986079
Offset: 1

Views

Author

Artur Jasinski, Dec 26 2006

Keywords

Comments

All terms end in 3 or 9. - Robert Israel, Jul 22 2019

Crossrefs

Programs

  • Maple
    map(t -> t^7-t-1, select(t -> isprime(t^7-t-1), [$1..10^4])); # Robert Israel, Jul 22 2019
  • Mathematica
    k = 7; a = {}; Do[If[PrimeQ[x^k - x - 1], AppendTo[a, x^k - x - 1]], {x, 1, 100}]; a
    Select[Table[n^7-n-1,{n,80}],PrimeQ] (* Harvey P. Dale, Jun 20 2020 *)

A126437 Primes of the form k^8-k-1.

Original entry on oeis.org

1679609, 5764793, 99999989, 4294967279, 282429536453, 377801998307, 5352009260441, 16815125390579, 39062499999949, 72301961339081, 83733937890569, 281474976710591, 513798374428571, 1113034787454899
Offset: 1

Views

Author

Artur Jasinski, Dec 26 2006

Keywords

Crossrefs

Programs

  • Mathematica
    k = 8; a = {}; Do[If[PrimeQ[x^k - x - 1], AppendTo[a, x^k - x - 1]], {x, 1, 100}]; a
    Select[Table[k^8-k-1,{k,80}],PrimeQ] (* Harvey P. Dale, Nov 06 2021 *)

A140869 Triangle read by rows where T(m,n) = floor((2mn+m+n-2)/2), m >= n >= 1.

Original entry on oeis.org

1, 2, 5, 4, 7, 11, 5, 10, 14, 19, 7, 12, 18, 23, 29, 8, 15, 21, 28, 34, 41, 10, 17, 25, 32, 40, 47, 55, 11, 20, 28, 37, 45, 54, 62, 71, 13, 22, 32, 41, 51, 60, 70, 79, 89, 14, 25, 35, 46, 56, 67, 77, 88, 98, 109, 16, 27, 39, 50, 62, 73, 85, 96, 108, 119, 131, 17, 30, 42, 55, 67, 80, 92, 105, 117, 130, 142, 155
Offset: 1

Views

Author

Vincenzo Librandi, Jan 16 2009

Keywords

Comments

Conjecture: If h does not belong to the sequence, then 4*h+5 is prime. - Vincenzo Librandi, Nov 18 2012
First column: A001651; second column: A047215; third column: A047345. - Vincenzo Librandi, Nov 18 2012

Examples

			Triangle begins:
1;
2,  5;
4,  7,  11;
5,  10, 14, 19;
7,  12, 18, 23, 29;
8,  15, 21, 28, 34, 41;
10, 17, 25, 32, 40, 47, 55; etc.
		

Crossrefs

Programs

A237527 Numbers n of the form p^2-p-1 = A165900(p), for prime p, such that n^2-n-1 = A165900(n) is also prime.

Original entry on oeis.org

5, 155, 505, 2755, 3421, 6805, 11341, 27721, 29755, 31861, 44309, 49505, 52211, 65791, 100171, 121451, 134321, 185329, 195805, 236681, 252505, 258571, 292139, 325469, 375155, 380071, 452255, 457651, 465805, 563249, 676505, 1041419, 1061929
Offset: 1

Views

Author

Derek Orr, Feb 09 2014

Keywords

Comments

All numbers are congruent to 1 mod 10, 5 mod 10, or 9 mod 10.
A subsequence of A165900 and A028387. - M. F. Hasler, Mar 01 2014

Examples

			5 = 3^2-3-1 (3 is prime) and 5^2-5-1 = 19 is also prime. So, 5 is a member of this sequence.
		

Crossrefs

Programs

  • PARI
    s=[]; forprime(p=2, 40000, n=p^2-p-1; if(isprime(n^2-n-1), s=concat(s, n))); s \\ Colin Barker, Feb 10 2014
  • Python
    import sympy
    from sympy import isprime
    {print(n**2-n-1) for n in range(10**4) if isprime(n) and isprime((n**2-n-1)**2-(n**2-n-1)-1)}
    

Formula

a(n) = A165900(A230026(n)). - M. F. Hasler, Mar 01 2014

A126438 Primes of the form n^9-n-1.

Original entry on oeis.org

509, 262139, 10077689, 387420479, 68719476719, 118587876479, 1207269217769, 7625597484959, 10578455953379, 129961739795039, 327381934393919, 1628413597910399, 1953124999999949, 5416169448144839, 10077695999999939
Offset: 1

Views

Author

Artur Jasinski, Dec 26 2006

Keywords

Crossrefs

Programs

  • Mathematica
    k = 9; a = {}; Do[If[PrimeQ[x^k - x - 1], AppendTo[a, x^k - x - 1]], {x, 1, 100}]; a
    Select[Table[n^9-n-1,{n,100}],PrimeQ] (* Harvey P. Dale, Mar 09 2016 *)

A171771 Primes of form n^6-(n+1)^5.

Original entry on oeis.org

971, 431441, 838949, 2614691, 6770161, 43845881, 570523321, 9244951889, 33640090481, 41402933641, 81303824909, 126165366289, 137240997911, 346860978491, 372445245449, 525200678549, 726938163649, 774170449439
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Dec 18 2009

Keywords

Comments

(1) It is conjectured that sequence is infinite.
(2) p=97=prime(25) is the smallest prime such that (p-1)^6-p^5 and p^6-(p+1)^5 are primes.

Examples

			4^6-5^5=971 and 9^6-10^5=431441 are prime.
		

References

  • Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications 2005
  • Derrick H. Lehmer, Guide to Tables in the Theory of Numbers Washington, D.C. 1941

Crossrefs

Programs

  • Mathematica
    Select[Table[n^6-(n+1)^5,{n,3,100}],PrimeQ] (* Harvey P. Dale, Mar 06 2019 *)

Extensions

Edited by D. S. McNeil, Nov 21 2010

A230026 Primes p such that f(f(p)) is prime, where f(n) = n^2-n-1 = A165900(n).

Original entry on oeis.org

3, 13, 23, 53, 59, 83, 107, 167, 173, 179, 211, 223, 229, 257, 317, 349, 367, 431, 443, 487, 503, 509, 541, 571, 613, 617, 673, 677, 683, 751, 823, 1021, 1031, 1093, 1103, 1109, 1123, 1201, 1231, 1289, 1301, 1319, 1361, 1373, 1427, 1451
Offset: 1

Views

Author

Derek Orr, Feb 23 2014

Keywords

Comments

Note that f(f(f(n))) = (-1 + 4*n - 3*n^3 + n^4)*(1 + n - 3*n^2 - n^3 + n^4) is always composite. - Zak Seidov, Nov 10 2014

Examples

			3 is prime and (3^2-3-1)^2-(3^2-3-1)-1 = 19 is also prime. So, 3 is a member of this sequence.
		

Crossrefs

Programs

  • Python
    import sympy
    from sympy import isprime
    def f(x):
        return x**2-x-1
    {p for p in range(10**4) if isprime(p) and isprime(f(f(p)))}
    
  • Sage
    f = lambda x: x^2-x-1
    [p for p in primes(1452) if is_prime(f(f(p)))] # Peter Luschny, Mar 02 2014

Formula

A237527(n) = A165900(a(n)). - M. F. Hasler, Mar 01 2014

A236387 Numbers n such that sigma(n) is an oblong number.

Original entry on oeis.org

5, 6, 11, 19, 20, 26, 28, 29, 30, 39, 40, 41, 46, 51, 55, 58, 71, 86, 89, 99, 104, 109, 114, 116, 117, 125, 131, 135, 158, 177, 181, 201, 202, 203, 209, 216, 226, 236, 239, 245, 271, 278, 306, 336, 340, 352, 377, 379, 398, 410, 411, 419, 428, 442, 447, 461
Offset: 1

Views

Author

Joseph L. Pe, Jan 24 2014

Keywords

Comments

An oblong number (A002378) is of the form k(k+1) where k is a natural number.
The subsequence of prime terms is A002327 (primes of form n^2 - n - 1). - Michel Marcus, Jan 09 2015

Examples

			sigma(40) = 90 = 9*10, an oblong number; so 40 is a term of the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500], IntegerQ@ Sqrt[1+4*DivisorSigma[1, #]] &] (* Giovanni Resta, Jan 24 2014 *)

Extensions

a(12)-a(56) from Giovanni Resta, Jan 24 2014
Previous Showing 21-30 of 39 results. Next