cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 52 results. Next

A202689 a(n) = (2n)! * (n+1)! / 2^(2n).

Original entry on oeis.org

1, 1, 9, 270, 18900, 2551500, 589396500, 214540326000, 115851776040000, 88626608670600000, 92614806060777000000, 128364121200236922000000, 230285233433225038068000000, 523898906060586961604700000000, 1485253398681764036149324500000000
Offset: 0

Views

Author

Keywords

Comments

a(n) is always an integer since a(n+1)/a(n) = n^3 + 7/2*n^2 + 7/2*n + 1 which is always an integer. [D. S. McNeil, Dec 22 2011]
To further follow the above comment from D. S. McNeil: a(n+1)/a(n) is given in A002414. [Alexander R. Povolotsky, Dec 23 2011]

Crossrefs

Cf. A002414.

Programs

Formula

a(n) = (2n)!(n+1)! / 2^(2n).
a(n+1) = a(n)*(n^3 + 7/2*n^2 + 7/2*n + 1).
a(n+1) = a(n)*A002414(n+1) for n >= 0.

A218326 Odd octagonal pyramidal numbers.

Original entry on oeis.org

1, 9, 135, 231, 765, 1045, 2275, 2835, 5049, 5985, 9471, 10879, 15925, 17901, 24795, 27435, 36465, 39865, 51319, 55575, 69741, 74949, 92115, 98371, 118825, 126225, 150255, 158895, 186789, 196765, 228811, 240219, 276705, 289641, 330855, 345415, 391645, 407925
Offset: 1

Views

Author

Ant King, Oct 27 2012

Keywords

Examples

			The sequence of octagonal pyramidal numbers A002414 begins 1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, … As the third odd term is 135, then a(3) = 135.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,9,135,231,765,1045,2275},38]

Formula

a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) + 384.
a(n) = (4*n-(-1)^n-1)*(4*n-(-1)^n-3)*(4*n-(-1)^n-4)/8.
G. f. x(1+8*x+123*x^2+72*x^3+159*x^4+16*x^5+5*x^6)/((1-x)^4*(1+x)^3).

A241747 Triangle read by rows: T(n,k) = (4*n+3)*(4*k+3).

Original entry on oeis.org

9, 21, 49, 33, 77, 121, 45, 105, 165, 225, 57, 133, 209, 285, 361, 69, 161, 253, 345, 437, 529, 81, 189, 297, 405, 513, 621, 729, 93, 217, 341, 465, 589, 713, 837, 961, 105, 245, 385, 525, 665, 805, 945, 1085, 1225, 117, 273, 429, 585, 741, 897, 1053, 1209, 1365, 1521
Offset: 0

Views

Author

Vincenzo Librandi, Apr 29 2014

Keywords

Comments

A016838(n) first diagonal.
A085027(n) second diagonal.
A017629(n) column k=0.
Row sums give the second bisection of A002414: 9, 70, 231, 540, 1045, 1794, 2835, 4216, ... [Bruno Berselli, May 08 2014]

Examples

			Triangle begins:
n\k |   0     1     2    3    4    5     6     7     8     9
----|--------------------------------------------------------
0   |   9;
1   |  21,   49;
2   |  33,   77,  121;
3   |  45,  105,  165, 225;
4   |  57,  133,  209, 285, 361;
5   |  69,  161,  253, 345, 437, 529;
6   |  81,  189,  297, 405, 513, 621,  729;
7   |  93,  217,  341, 465, 589, 713,  837,  961;
8   | 105,  245,  385, 525, 665, 805,  945, 1085, 1225;
9   | 117,  273,  429, 585, 741, 897, 1053, 1209, 1365, 1521;
.....
		

Crossrefs

Programs

  • Magma
    [(4*n+3)*(4*k+3): k in [0..n], n in [0..15]]; /* or, as triangle: */ [[(4*n+3)*(4*k+3): k in [0..n]]: n in [0..10]];
  • Mathematica
    t[n_, k_] := (4 n + 3) (4 k + 3); Table[t[n, k], {n, 0, 10}, {k, n}] // Flatten

Extensions

Edited by Alois P. Heinz and Bruno Berselli, May 08 2014

A269429 Alternating sum of octagonal pyramidal numbers.

Original entry on oeis.org

0, -1, 8, -22, 48, -87, 144, -220, 320, -445, 600, -786, 1008, -1267, 1568, -1912, 2304, -2745, 3240, -3790, 4400, -5071, 5808, -6612, 7488, -8437, 9464, -10570, 11760, -13035, 14400, -15856, 17408, -19057, 20808, -22662, 24624, -26695, 28880, -31180, 33600
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 26 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[((2 n^3 + 4 n^2 - 1) (-1)^n + 1)/4, {n, 0, 40}]
    LinearRecurrence[{-3, -2, 2, 3, 1}, {0, -1, 8, -22, 48}, 41]
  • PARI
    a(n)=(2*n^3 + 4*n^2 - 1)*(-1)^n\/4 \\ Charles R Greathouse IV, Jul 26 2016

Formula

G.f.: x*(1 - 5*x)/((x - 1)*(x + 1)^4).
a(n) = ((2*n^3 + 4*n^2 - 1)*(-1)^n + 1)/4.
a(n) = Sum_{k = 0..n} (-1)^k*A002414(k).
Sum_{n>=1} 1/a(n) = -0.906890389180715042293808708467278316660747358... . - Vaclav Kotesovec, Feb 26 2016

A290055 Expansion of x*(1 + 4*x + x^2)/((1 - x)^5*(1 + x)^4).

Original entry on oeis.org

0, 1, 5, 10, 26, 40, 80, 110, 190, 245, 385, 476, 700, 840, 1176, 1380, 1860, 2145, 2805, 3190, 4070, 4576, 5720, 6370, 7826, 8645, 10465, 11480, 13720, 14960, 17680, 19176, 22440, 24225, 28101, 30210, 34770, 37240, 42560, 45430, 51590, 54901, 61985, 65780, 73876, 78200, 87400, 92300, 102700, 108225, 119925, 126126
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 15 2017

Keywords

Comments

More generally, the generalized 4-dimensional figurate numbers are convolution of the sequence {1, 0, 2, 0, 3, 0, 4, 0, 5, 0, ...} with generalized polygonal numbers (A195152).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (1 + 4 x + x^2)/((1 - x)^5 (1 + x)^4), {x, 0, 51}], x]
    LinearRecurrence[{1, 4, -4, -6, 6, 4, -4, -1, 1}, {0, 1, 5, 10, 26, 40, 80, 110, 190}, 52]
  • PARI
    x='x+O('x^99); concat(0, Vec(x*(1+4*x+x^2)/((1-x)^5*(1 + x)^4))) \\ Altug Alkan, Aug 15 2017

Formula

G.f.: x*(1 + 4*x + x^2)/((1 - x)^5*(1 + x)^4).
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9).
Generalized 4-dimensional figurate numbers (A002419): (3*n - 1)*binomial(n + 2,3)/2, n = 0,+1,-3,+2,-4,+3,-5, ...
Convolution of the sequences A027656 and A001082 (with offset 0).
a(n) = (2*n+3+(-1)^n)*(2*n+7+(-1)^n)*(6*n^2+30*n+5-(2*n+5)*(-1)^n)/1536. - Luce ETIENNE, Nov 18 2017

A338496 Least number of octagonal pyramidal numbers needed to represent n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 7, 8, 9, 10, 3, 4, 5, 1, 2, 3, 4, 5, 6, 4, 5, 6, 2, 3, 4, 5, 6, 7, 5, 6, 7, 3, 4, 5, 6, 7, 8, 6, 7, 8, 4, 5, 6, 2, 3, 4, 5, 6, 7, 5, 6, 7, 3, 1, 2, 3, 4, 5, 6, 7, 8, 4, 2, 3, 4, 5, 6, 7, 8, 9, 5, 3, 4, 3, 4, 5, 6, 7, 8, 6, 4, 5, 4, 2, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 31 2020

Keywords

Crossrefs

A361226 Square array T(n,k) = k*((1+2*n)*k - 1)/2; n>=0, k>=0, read by antidiagonals upwards.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 0, 2, 5, 3, 0, 3, 9, 12, 6, 0, 4, 13, 21, 22, 10, 0, 5, 17, 30, 38, 35, 15, 0, 6, 21, 39, 54, 60, 51, 21, 0, 7, 25, 48, 70, 85, 87, 70, 28, 0, 8, 29, 57, 86, 110, 123, 119, 92, 36, 0, 9, 33, 66, 102, 135, 159, 168, 156, 117, 45
Offset: 0

Views

Author

Paul Curtz, Mar 05 2023

Keywords

Comments

The main diagonal is A002414.
The first upper diagonal is A160378(n+1).
The antidiagonals sums are A034827(n+2).
b(n) = (A034827(n+3) = 0, 2, 10, 30, 70, ...) - (A002414(n) = 0, 1, 9, 30, 70, ...) = 0, 1, 1, 0, 0, 5, 21, 56, ... .
b(n+2) = A299120(n). b(n+4) = A033275(n). b(n+4) - b(n) = A002492(n).

Examples

			The rows are
  0, 0,  1,  3,  6,  10,  15,  21, ...   = A161680
  0, 1,  5, 12, 22,  35,  51,  70, ...   = A000326
  0, 2,  9, 21, 38,  60,  87, 119, ...   = A005476
  0, 3, 13, 30, 54,  85, 123, 168, ...   = A022264
  0, 4, 17, 39, 70, 110, 159, 217, ...   = A022266
  ... .
Columns: A000004, A001477, A016813, A017197=3*A016777, 2*A017101, 5*A016873, 3*A017581, 7*A017017, ... (coefficients from A026741).
Difference between two consecutive rows: A000290. Hence A143844.
This square array read by antidiagonals leads to the triangle
  0
  0   0
  0   1   1
  0   2   5   3
  0   3   9  12   6
  0   4  13  21  22  10
  0   5  17  30  38  35  15
  ... .
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := k*((2*n + 1)*k - 1)/2; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 05 2023 *)
  • PARI
    a(n) = { my(row = (sqrtint(8*n+1)-1)\2, column = n - binomial(row + 1, 2)); binomial(column, 2) + column^2 * (row - column) } \\ David A. Corneth, Mar 05 2023
    
  • Python
    # Seen as a triangle:
    from functools import cache
    @cache
    def Trow(n: int) -> list[int]:
        if n == 0: return [0]
        r = Trow(n - 1)
        return [r[k] + k * k if k < n else r[n - 1] + n - 1 for k in range(n + 1)]
    for n in range(7): print(Trow(n)) # Peter Luschny, Mar 05 2023

Formula

Take successively sequences n*(n-1)/2, n*(3*n-1)/2, n*(5*n-1)/2, ... listed in the EXAMPLE section.
G.f.: y*(x + y)/((1 - y)^3*(1 - x)^2). - Stefano Spezia, Mar 06 2023
E.g.f.: exp(x+y)*y*(2*x + y + 2*x*y)/2. - Stefano Spezia, Feb 21 2024

A363288 a(n) = (2*n^3 - n^2 + 3*n - 2)/2.

Original entry on oeis.org

1, 8, 26, 61, 119, 206, 328, 491, 701, 964, 1286, 1673, 2131, 2666, 3284, 3991, 4793, 5696, 6706, 7829, 9071, 10438, 11936, 13571, 15349, 17276, 19358, 21601, 24011, 26594, 29356, 32303, 35441, 38776, 42314, 46061, 50023, 54206, 58616, 63259, 68141, 73268, 78646, 84281
Offset: 1

Views

Author

Wesley Ivan Hurt, May 25 2023

Keywords

Comments

For n >= 3, a(n) is the sum of all multiples of n XOR n-1 that are <= n^2.

Crossrefs

Programs

  • Magma
    [(2*n^3 - n^2 + 3*n - 2)/2 : n in [1..50]];
    
  • Mathematica
    Table[(2 n^3 - n^2 + 3 n - 2)/2, {n, 100}]
    LinearRecurrence[{4, -6, 4, -1}, {1, 8, 26, 61}, 50]
  • PARI
    a(n) = n^3 - 1 + (-n^2 + 3*n)/2 \\ Winston de Greef, Jun 01 2023

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = A002411(n) + (n-1)*A000217(n+1) - A046092(n-1).
a(n) = A162264(n-1) + 1 for n >= 2. - Hugo Pfoertner, Jun 02 2023
G.f.: x*(1 - 5*x + 2*x^2 - 4*x^3)/(1 - x)^4. - Stefano Spezia, Jun 03 2023

A378918 Indices of octagonal pyramidal numbers that are both octagonal and octagonal pyramidal.

Original entry on oeis.org

0, 1, 10, 18, 49785, 91839
Offset: 1

Views

Author

Kelvin Voskuijl, Dec 10 2024

Keywords

Examples

			10 is a term because the 10th octagonal pyramidal number (1045) is also the 19th octagonal number.
		

Crossrefs

Cf. A000567 (octagonal numbers), A002414 (octagonal pyramidal numbers).
Cf. A344376.
Cf. A378361 (octagonal indices).

Formula

A344376(n) = A002414(a(n)).

A386206 Triangle read by rows: T(n,k) = n^2 - k, with 0 <= k <= n.

Original entry on oeis.org

0, 1, 0, 4, 3, 2, 9, 8, 7, 6, 16, 15, 14, 13, 12, 25, 24, 23, 22, 21, 20, 36, 35, 34, 33, 32, 31, 30, 49, 48, 47, 46, 45, 44, 43, 42, 64, 63, 62, 61, 60, 59, 58, 57, 56, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 100, 99, 98, 97, 96, 95, 94, 93, 92, 91, 90
Offset: 0

Views

Author

Stefano Spezia, Jul 15 2025

Keywords

Examples

			The triangle begins as:
   0;
   1,  0;
   4,  3,  2;
   9,  8,  7,  6;
  16, 15, 14, 13, 12;
  25, 24, 23, 22, 21, 20;
  36, 35, 34, 33, 32, 31, 30;
  49, 48, 47, 46, 45, 44, 43, 42;
  64, 63, 62, 61, 60, 59, 58, 57, 56;
  ...
		

Crossrefs

Cf. A000290 (k=0), A002414 (row sums), A005563, A008865, A028347 (k=4), A028872 (k=3), A028875 (k=5), A279019 (diagonal).

Programs

  • Magma
    [[n^2-k: k in [0..n]]: n in [0..9]]; // Vincenzo Librandi, Jul 17 2025
  • Mathematica
    T[n_,k_]:=n^2-k; Table[T[n,k],{n,0,10},{k,0,n}]//Flatten

Formula

G.f.: x*(1 + x + 2*x*y^2 + 5*x^3*y^2 - x^2*y*(4 + 5*y))/((1 - x)^3*(1 - x*y)^3).
T(n,1) = A005563(n-1) for n > 0.
T(n,2) = A008865(n) for n > 1.
Previous Showing 41-50 of 52 results. Next