cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 221 results. Next

A331941 Hardy-Littlewood constant for the polynomial x^2 + 1.

Original entry on oeis.org

6, 8, 6, 4, 0, 6, 7, 3, 1, 4, 0, 9, 1, 2, 3, 0, 0, 4, 5, 5, 6, 0, 9, 6, 3, 4, 8, 3, 6, 3, 5, 0, 9, 4, 3, 4, 0, 8, 9, 1, 6, 6, 5, 5, 0, 6, 2, 7, 8, 7, 9, 7, 7, 8, 9, 6, 8, 1, 1, 7, 0, 7, 3, 6, 6, 3, 9, 2, 1, 1, 1, 3, 3, 5, 8, 6, 8, 5, 1, 1, 5, 8, 6, 3, 8, 5, 9
Offset: 0

Views

Author

Hugo Pfoertner, Feb 02 2020

Keywords

Examples

			0.686406731409123004556096348363509434089166550627879778968117...
		

References

  • Henri Cohen, Number Theory, Vol II: Analytic and Modern Tools, Springer (Graduate Texts in Mathematics 240), 2007.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.1, p. 85.

Crossrefs

Programs

  • PARI
    \\ See Belabas, Cohen link. Run as HardyLittlewood2(x^2+1)/2 after setting the required precision.

Formula

Equals (1/2)*Product_{p=primes} (1 - Kronecker(-4,p)/(p - 1)).
Equals A199401/2.

A084712 Smallest prime of the form (2n)^k + 1, or 0 if no such number exists.

Original entry on oeis.org

3, 5, 7, 0, 11, 13, 197, 17, 19, 401, 23, 577, 677, 29, 31, 0, 1336337, 37
Offset: 1

Views

Author

Amarnath Murthy, Jun 10 2003

Keywords

Comments

It has not been proved that a(19), a(25), a(31), a(34), a(43) and a(46) are 0; if these values do exist, they have > 4000 digits. The other zeros are definite. - David Wasserman, Jan 03 2005
a((p-1)/2) = p for primes p > 2, or a(n) = 2n+1 for n = (p-1)/2. All other positive a(n) belong to A002496 = primes of form m^2 + 1. Corresponding positive exponents k are powers of 2. They are listed in A079706. - Alexander Adamchuk, Sep 17 2006
Because k must be a power of 2, numbers of the form (2n)^k+1 are called generalized Fermat numbers with base 2n. These numbers, like the regular Fermat numbers, are seldom prime. I checked n=19, 25, 31, 34, 43, 46 with k up to 2^16 without finding any primes. - T. D. Noe, May 13 2008
Comments from N. J. A. Sloane, Jan 27 2024: (Start)
As pointed out by Max Alekseyev, the previous version violated the OEIS rules, since a(19) has not been confirmed. I therefore removed the terms starting at a(19).
The previous DATA line read:
3, 5, 7, 0, 11, 13, 197, 17, 19, 401, 23, 577, 677, 29, 31, 0, 1336337, 37, 0, 41, 43, 197352587024076973231046657, 47, 5308417, 0, 53, 2917, 3137, 59, 61, 0, 0, 67, 0, 71, 73, 5477, 1238846438084943599707227160577, 79, 40960001, 83, 7057, 0, 89
The old b-file has been changed to an a-file.
(End)

Examples

			a(7) = 197 = 14^2 + 1 as 14 + 1 = 15 is not a prime.
		

Crossrefs

Programs

  • Mathematica
    Table[k=1; While[p=1+(2n)^k; k<1024 && !PrimeQ[p], k=2k]; If[k==1024, 0, p], {n,44}] (* T. D. Noe, May 13 2008 *)

Extensions

More terms from David Wasserman, Jan 03 2005
Edited by N. J. A. Sloane, Jan 27 2024 at the suggestion of Max Alekseyev

A134407 Numbers n such that n^2 + 1 is composite.

Original entry on oeis.org

3, 5, 7, 8, 9, 11, 12, 13, 15, 17, 18, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 88
Offset: 1

Views

Author

Jani Melik, Jan 18 2008

Keywords

Examples

			a(1)=3, because 3^2 + 1 = 10 is composite,
a(2)=5, because 5^2 + 1 = 26 is composite,
a(3)=7, because 7^2 + 1 = 50 is composite.
		

Crossrefs

Programs

  • Maple
    ts_fn2:=proc(n) local i,tren,ans; ans:=[ ]: for i from 1 to n do tren := i^(2)+1: if (isprime(tren) = false) then ans:=[ op(ans), i ]: fi od: RETURN(ans) end: ts_fn2(200);
  • Mathematica
    Select[Range@100,!PrimeQ[#^2+1]&] (* Vladimir Joseph Stephan Orlovsky, Feb 03 2012 *)
  • PARI
    is(n)=!isprime(n^2+1) \\ Charles R Greathouse IV, Sep 15 2014

Formula

a(n) ~ n. - Charles R Greathouse IV, Sep 15 2014

A206328 Primes of the form n^2+1 such that (n+2)^2+1 is also prime.

Original entry on oeis.org

5, 17, 197, 577, 2917, 15377, 41617, 147457, 215297, 401957, 414737, 509797, 1196837, 1308737, 1378277, 1547537, 1623077, 1726597, 1887877, 2446097, 2604997, 2802277, 2835857, 3857297, 4218917, 4343057, 4384837, 5779217, 6022117, 6421157, 7096897, 8031557
Offset: 1

Views

Author

Michel Lagneau, Feb 06 2012

Keywords

Comments

Primes corresponding to A096012 and subset of A002496.
For n > 1, a(n) ==7 (mod 10) because n ==4 (mod 10).
Conjecture: this sequence is infinite.

Examples

			For n = 4, n^2 + 1 = 17 is prime and  (n+2)^2 + 1 = 37 is also prime => 17 is in the sequence.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 4000 do: x:=n^2+1:y:=(n+2)^2+1:if type(x,prime)=true and type(y,prime)=true then printf(`%d, `,x): else fi:od:
  • Mathematica
    Select[Partition[Range[3000]^2+1,3,1],AllTrue[{#[[1]],#[[3]]},PrimeQ]&][[All,1]] (* Harvey P. Dale, Jan 16 2023 *)

A260120 Least integer k > 0 such that (prime(k*n)-1)^2 = prime(j*n)-1 for some j > 0.

Original entry on oeis.org

1, 2, 14, 1, 12, 9, 30, 198, 69, 83, 66, 132, 44, 15, 4, 99, 71, 88, 339, 230, 10, 33, 167, 66, 42, 22, 126, 442, 318, 1185, 29, 289, 37, 174, 157, 44, 146, 301, 171, 403, 2, 5, 26, 699, 573, 144, 338, 33, 2032, 1212, 404, 11, 135, 267, 380, 221, 447, 159, 898, 1397
Offset: 1

Views

Author

Zhi-Wei Sun, Jul 17 2015

Keywords

Comments

Conjecture: a(n) exists for any n > 0. In general, if a,b,c and m are integers with a > 0, gcd(a,b,c-m) = 1 and c == (a+b+1)*(m+1) (mod 2) such that b^2-4a*(c-m) is not a square and gcd(a*m-b,b^2+b-a*c-1) is not divisible by 3, then for any positive integer n there are two elements x and y of the set {prime(k*n)+m: k = 1,2,3,...} with a*x^2+b*x+c = y.
This implies the conjecture in A259731.

Examples

			a(3) = 14 since (prime(14*3)-1)^2 = 180^2 = prime(3477)-1 = prime(1159*3)-1.
a(63) = 5162 since (prime(5162*63)-1)^2 = 4642456^2 = 21552397711936 = prime(726521033763)-1 = prime(11532079901*63)-1.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    P[n_,p_]:=PrimeQ[p]&&Mod[PrimePi[p],n]==0
    Do[k=0;Label[aa];k=k+1; If[P[n,(Prime[k*n]-1)^2+1],Goto[bb]];Goto[aa];Label[bb];Print[n, " ", k];Continue,{n,1,60}]

A056898 a(n) = smallest number m such that m^2+n is prime.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 3, 4, 1, 0, 7, 2, 9, 2, 1, 0, 1, 0, 3, 2, 3, 6, 1, 0, 3, 2, 1, 0, 1, 0, 3, 4, 1, 0, 5, 2, 3, 4, 1, 0, 5, 2, 9, 2, 1, 0, 1, 0, 3, 2, 3, 6, 1, 0, 9, 2, 1, 0, 1, 0, 3, 2, 5, 6, 1, 0, 3, 4, 1, 0, 5, 2, 9, 4, 1, 0, 7, 4, 3, 2, 3, 6, 1, 0, 3, 2
Offset: 1

Views

Author

Henry Bottomley, Jul 05 2000

Keywords

Examples

			a(8) = 3 since 3^2+8 = 17 which is prime.
		

Crossrefs

Programs

Formula

a(n) = sqrt(A056896(n)-n) = sqrt(A056897(n)).
For p a prime: a(p) = 0 (and a(p-1) = 1 if p<>3).

A056909 Primes of the form k^2+6.

Original entry on oeis.org

7, 31, 127, 367, 631, 967, 1231, 3727, 4231, 6247, 7927, 8287, 11887, 17167, 21031, 22807, 30631, 34231, 39607, 48847, 72367, 108247, 109567, 126031, 160807, 185767, 198031, 231367, 235231, 261127, 265231, 279847, 290527, 323767, 354031, 366031, 373327, 421207
Offset: 1

Views

Author

Henry Bottomley, Jul 07 2000

Keywords

Comments

a(n) mod 120 = 7 or 31 for all n.

Examples

			a(2)=127 since 11^2+6=127 which is prime.
		

Crossrefs

Programs

  • Magma
    [a: n in [0..700] | IsPrime(a) where a is n^2+6]; // Vincenzo Librandi, Nov 30 2011
    
  • Mathematica
    Intersection[Table[n^2+6,{n,0,10^2}],Prime[Range[9*10^3]]] (* or *) For[i=6,i<=6,a={};Do[If[PrimeQ[n^2+i],AppendTo[a,n^2+i]],{n,0,100}];Print["n^2+",i,",",a];i++ ] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
    Select[Table[n^2+6,{n,0,7000}],PrimeQ] (* Vincenzo Librandi, Nov 30 2011 *)
  • PARI
    list(lim)=my(v=List(),t); forstep(k=1,sqrtint(lim\1-6),2, if(isprime(t=k^2+6), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Nov 06 2024

Formula

a(n) = 36*A056910(n)^2 + 12*A056910(n) + 7.
a(n) >> n^2 log n. - Charles R Greathouse IV, Nov 06 2024

A062325 Numbers k for which phi(prime(k)) is a square.

Original entry on oeis.org

1, 3, 7, 12, 26, 45, 55, 79, 106, 123, 211, 252, 422, 446, 595, 723, 907, 1019, 1101, 1448, 1595, 1687, 1797, 1849, 1949, 2058, 2393, 2516, 2703, 2819, 3146, 3339, 3477, 3626, 4353, 4437, 4590, 5153, 5398, 5653, 5836, 6276, 6543, 6736, 6911, 7207, 7695
Offset: 1

Views

Author

Jason Earls, Jul 05 2001

Keywords

Comments

Also A002496 indexed by A000040.

Examples

			79 is in the sequence because the 79th prime is 401 and phi(401) is 400 = 20^2.
595 is in the sequence because the 595th prime is 4357 and phi(4357) is 4356 = 66^2.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Position[Table[IntegerQ[Sqrt[Prime[w]-1]], {w, 1, 25000}], True]]
    Flatten[Position[EulerPhi[Prime[Range[8000]]],?(IntegerQ[Sqrt[#]]&)]] (* _Harvey P. Dale, Apr 23 2014 *)
  • PARI
    for(n=1,1600, if(issquare(eulerphi(prime(n))),print(n)))
    
  • PARI
    { default(primelimit, 2*10^8); n=m=0; forprime (p=2, 2*10^8, m++; if (issquare(eulerphi(p)), write("b062325.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 05 2009

Formula

a(n) = A000720(A002496(n)).
A000040(a(n)) = A002496(n).

Extensions

More terms from Labos Elemer, Jul 09 2001

A083849 a(n) is the largest prime of the form x^2 + 1 <= 2^n.

Original entry on oeis.org

2, 2, 5, 5, 17, 37, 101, 197, 401, 677, 1601, 3137, 8101, 15877, 32401, 62501, 122501, 246017, 512657, 1020101, 2073601, 4137157, 8386817, 16695397, 33339077, 66977857, 133772357, 268304401, 536663557, 1073610757, 2146098277
Offset: 1

Views

Author

Harry J. Smith, May 05 2003

Keywords

Comments

It is conjectured that this sequence is increasing, but this has never been proved.
It is easily shown that all terms greater than 5 end in 1 or 7.

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 17.
  • P. Ribenboim, The Little Book of Big Primes. Springer-Verlag, 1991, p. 190.

Crossrefs

Programs

  • PARI
    a(n) = my(last = 2^n+1); while ((p = precprime(last-1)) && (! issquare(p-1)), last = p;); p \\ Michel Marcus, Jun 14 2013
    
  • PARI
    a(n)=my(k=sqrtint(2^n-1)); while(!isprime(k^2+1), k--); k^2+1 \\ Charles R Greathouse IV, Nov 29 2013

A090693 Positive numbers n such that n^2 - 2n + 2 is a prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 15, 17, 21, 25, 27, 37, 41, 55, 57, 67, 75, 85, 91, 95, 111, 117, 121, 125, 127, 131, 135, 147, 151, 157, 161, 171, 177, 181, 185, 205, 207, 211, 225, 231, 237, 241, 251, 257, 261, 265, 271, 281, 285, 301, 307, 315, 327, 341, 351, 385, 387, 397
Offset: 1

Views

Author

Giovanni Teofilatto, Dec 19 2003

Keywords

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta,UTET, CittaStudiEdizioni, Milano 1997

Crossrefs

A002496 gives primes, A062325 gives prime index. Cf. A001912.
A005574(n+1) + 1.

Programs

  • Mathematica
    a={};Do[If[PrimeQ[n^2-2n+2],AppendTo[a,n]],{n,1000}];a (* Peter J. C. Moses, Apr 02 2013 *)
    Select[Range[400],PrimeQ[#^2-2#+2]&] (* Harvey P. Dale, May 10 2013 *)
  • Python
    # Python 3.2 or higher required.
    from itertools import accumulate
    from sympy import isprime
    A090693_list = [i for i,n in enumerate(accumulate(range(10**5),lambda x,y:x+2*y-3)) if i > 0 and isprime(n+2)] # Chai Wah Wu, Sep 23 2014

Formula

a(n) = A005574(n)+1.

Extensions

Corrected and extended by Ray Chandler, Dec 28 2003
Definition corrected by Chai Wah Wu, Sep 23 2014
Previous Showing 51-60 of 221 results. Next