cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A002743 Sum of logarithmic numbers.

Original entry on oeis.org

1, 1, 2, 24, -11, 1085, -2542, 64344, -56415, 4275137, -10660486, 945005248, -6010194555, 147121931021, 88135620922, 23131070531152, -120142133444319, 12007306976370081, -103897545509370542, 4923827766711915784, -19471338470911446283, 1203786171449486366205
Offset: 1

Views

Author

Keywords

References

  • J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * Sum[(-1)^k * DivisorSigma[1, n - k]/k!/(n - k), {k, 0, n - 1}]; Array[a, 22] (* Amiram Eldar, May 13 2020 *)
  • PARI
    a(n) = sum(k=1, n, (-1)^(n-k)*sigma(k)*(k-1)!*binomial(n, k)); \\ Michel Marcus, May 13 2020

Formula

a(n) = Sum_{k=1..n} (-1)^(n-k)*A000203(k)*(k-1)!*binomial(n, k). - Vladeta Jovovic, Feb 09 2003
E.g.f.: exp(-x) * Sum_{k>=1} x^k / (k*(1 - x^k)). - Ilya Gutkovskiy, Dec 11 2019
a(p) == -1 (mod p) for prime p. The pseudoprimes of this congruence are 6, 42, 1806, ... - Amiram Eldar, May 13 2020

Extensions

More terms from Jeffrey Shallit

A002744 Sum of logarithmic numbers.

Original entry on oeis.org

1, 0, 1, 10, -17, 406, -1437, 20476, -44907, 1068404, -5112483, 230851094, -1942311373, 31916614874, -27260241361, 3826126294680, -37957167335671, 2169009251237640, -25847377785179111, 858747698098918338, -5611513985867158697, 154094365406716365118
Offset: 1

Views

Author

Keywords

References

  • J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * Sum[(-1)^k * DivisorSigma[0, n - k]/k!/(n - k), {k, 0, n - 1}]; Array[a, 22] (* Amiram Eldar, May 13 2020 *)
  • PARI
    a(n) = sum(k=1, n, (-1)^(n-k)*numdiv(k)*(k-1)!*binomial(n, k)); \\ Michel Marcus, May 13 2020

Formula

a(n) = Sum_{k=1..n} (-1)^(n-k)*A000005(k)*(k-1)!*binomial(n, k). - Vladeta Jovovic, Feb 09 2003
E.g.f.: -exp(-x) * log(Product_{k>=1} (1 - x^k)^(1/k)). - Ilya Gutkovskiy, Dec 11 2019
a(p) == -2 (mod p) for prime p. The pseudoprimes of this congruence are 4, 6, 20, 42, 1806, ... - Amiram Eldar, May 13 2020

Extensions

Corrected and extended by Jeffrey Shallit
More terms from Vladeta Jovovic, Feb 09 2003

A002747 Logarithmic numbers.

Original entry on oeis.org

1, -2, 9, -28, 185, -846, 7777, -47384, 559953, -4264570, 61594841, -562923252, 9608795209, -102452031878, 2017846993905, -24588487650736, 548854382342177, -7524077221125234, 187708198761024553, -2859149344027588940, 78837443479630312281, -1320926996940746090302
Offset: 1

Views

Author

Keywords

Comments

abs(a(n)) is also the number of distinct routes starting from a point A and ending at a point B, without traversing any edge more than once, when there are n bi-directional edges connecting A and B. E.g., if there are 3 edges p, q and r from A to B, then the 9 routes starting from A and ending at B are p, q, r, pqr, prq, rpq, rqp, qpr and qrp. - Nikita Kiran, Sep 02 2022
Reducing the sequence modulo the odd integer 2*k + 1 results in a purely periodic sequence with period dividing 4*k + 2, For example, reduced modulo 5 the sequence becomes the purely periodic sequence [1, 3, 4, 2, 0, 4, 2, 1, 3, 0, 1, 3, 4, 2, 0, 4, 2, 1, 3, 0, ...] with period 10. - Peter Bala, Sep 12 2022

References

  • J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= n*`if`(n<2, n, (n-1)*a(n-2)-(-1)^n) end:
    seq(a(n), n=1..25);  # Alois P. Heinz, Jul 10 2013
  • Mathematica
    egf = x/Exp[x]/(1-x^2); a[n_] := SeriesCoefficient[egf, {x, 0, n}]*n!; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Jan 17 2014, after Vladeta Jovovic *)
    a[n_] := (Exp[-1] Gamma[1 + n, -1] - (-1)^n Exp[1] Gamma[1 + n, 1])/2;
    Table[a[n], {n, 1, 22}] (* Peter Luschny, Dec 18 2017 *)
  • PARI
    a(n) = (-1)^(n+1)*sum(k=0, n, binomial(n, k)*k!*(1-(-1)^k)/2); \\ Michel Marcus, Jan 13 2022

Formula

E.g.f.: x/exp(x)/(1-x^2). - Vladeta Jovovic, Feb 09 2003
a(n) = n*((n-1)*a(n-2)-(-1)^n). - Matthew Vandermast, Jun 30 2003
From Gerald McGarvey, Jun 06 2004: (Start)
For n odd, a(n) = n! * Sum_{i=0..n-1, i even} 1/i!.
For n even, a(n) = n! * Sum_{i=1..n-1, i odd} 1/i!.
For n odd, lim_{n->infinity} a(n)/n! = cosh(1).
For n even, lim_{n->infinity} a(n)/n! = sinh(1).
For n even, lim_{n->infinity} n*a(n)*a(n-1)/n!^2 = cosh(1)*sinh(1).
For signed values, Sum_{n>=1} a(n)/n!^2 = 0.
For unsigned values, Sum_{n>=1} a(n)/n!^2 = cosh(1)*sinh(1). (End)
a(n) = (-1)^(n-1)*Sum_{k=0..n} C(n, k)*k!*(1-(-1)^k)/2. - Paul Barry, Sep 14 2004
a(n) = (-1)^(n+1)*n*A087208(n-1). - R. J. Mathar, Jul 24 2015
a(n) = (exp(-1)*Gamma(1+n,-1) - (-1)^n*exp(1)*Gamma(1+n,1))/2 = (A000166(n) - (-1)^n*A000522(n))/2. - Peter Luschny, Dec 18 2017

Extensions

More terms from Jeffrey Shallit
More terms from Vladeta Jovovic, Feb 09 2003

A298374 Expansion of e.g.f. 1/(1 - x)^exp(-x).

Original entry on oeis.org

1, 1, 0, 0, 6, 15, 65, 595, 4004, 32865, 322307, 3316511, 37845214, 471644173, 6319617369, 91114344217, 1404670896264, 23050054222177, 401305630237239, 7387282161642715, 143360257370842146, 2925289119525173741, 62612350725688075941, 1402681525332544374325
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 18 2018

Keywords

Comments

Exponential transform of A002741.

Examples

			1/(1 - x)^exp(-x) = 1 + x/1! + 6*x^4/4! + 15*x^5/5! + 65*x^6/6! + 595*x^7/7! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(1/(1-x)^exp(-x),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[1/(1 - x)^Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x)^exp(-x))) \\ Seiichi Manyama, May 03 2022

Formula

a(n) ~ n! * n^(exp(-1)-1) / Gamma(exp(-1)). - Vaclav Kotesovec, May 04 2018

A260322 Triangle read by rows: T(n,k) = logarithmic polynomial G_k^(n)(x) evaluated at x=1.

Original entry on oeis.org

1, -1, 2, 2, -6, 6, 0, 24, -24, 24, 9, -80, 60, -120, 120, 35, 450, 240, 360, -720, 720, 230, -2142, -2310, -840, 2520, -5040, 5040, 1624, 17696, 9744, 21840, -6720, 20160, -40320, 40320, 13209, -112464, 91224, -184464, 15120, -60480, 181440, -362880, 362880
Offset: 1

Views

Author

N. J. A. Sloane, Jul 23 2015

Keywords

Examples

			Triangle begins:
    1;
   -1,     2;
    2,    -6,     6;
    0,    24,   -24,   24;
    9,   -80,    60, -120,  120;
   35,   450,   240,  360, -720,   720;
  230, -2142, -2310, -840, 2520, -5040, 5040;
  ...
		

Crossrefs

Rows, column sums give A002741, A002742, A002743, A002744.
Main diagonal gives A000142.

Programs

  • Maple
    A260322 := proc(n,r)
        if r = 0 then
            1 ;
        elif n > r+1 then
            0 ;
        else
            add( (-1)^(r-j*n)/(r-j*n)!/j,j=1..(r)/n) ;
            %*r! ;
        end if;
    end proc:
    for r from 1 to 20 do
        for n from 1 to r do
            printf("%a,",A260322(n,r)) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, Jul 24 2015
  • Mathematica
    T[n_, k_] := Which[n == 0, 1, k > n+1, 0, True,
       Sum[(-1)^(n-j*k)/(n-j*k)!/j, {j, 1, n/k}]] n!;
    Table[T[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 30 2023 *)

A260323 Triangle read by rows: T(n,k) = logarithmic polynomial G_k^(n)(x) evaluated at x=-1.

Original entry on oeis.org

1, 3, 2, 8, 6, 6, 24, 24, 24, 24, 89, 80, 60, 120, 120, 415, 450, 480, 360, 720, 720, 2372, 2142, 2730, 840, 2520, 5040, 5040, 16072, 17696, 10416, 21840, 6720, 20160, 40320, 40320, 125673, 112464, 151704, 184464, 15120, 60480, 181440, 362880, 362880
Offset: 1

Views

Author

N. J. A. Sloane, Jul 23 2015

Keywords

Examples

			Triangle begins:
1,
3,2,
8,6,6,
24,24,24,24,
89,80,60,120,120,
415,450,480,360,720,720,
2372,2142,2730,840,2520,5040,5040,
...
		

Crossrefs

Rows, column sums give A002104, A002742, A002745, A002746.

Programs

  • Maple
    A260323 := proc(n,r)
        if r = 0 then
            1 ;
        elif n > r+1 then
            0 ;
        else
            add( 1/(r-j*n)!/j,j=1..(r)/n) ;
            %*r! ;
        end if;
    end proc:
    for r from 1 to 20 do
        for n from 1 to r do
            printf("%a,",A260323(n,r)) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, Jul 24 2015
  • Mathematica
    T[n_, k_] := If[n == 0, 1, If[k > n+1, 0, Sum[1/(n - j*k)!/j, {j, 1, n/k}]]]*n!;
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 25 2023, after R. J. Mathar *)

A260325 Triangle read by rows: T(n,k) = logarithmic polynomial A_k^(n)(x) evaluated at x=-1.

Original entry on oeis.org

1, 2, 1, 5, 2, 2, 16, 9, 6, 6, 65, 28, 12, 24, 24, 326, 185, 140, 60, 120, 120, 1957, 846, 750, 120, 360, 720, 720, 13700, 7777, 2562, 5250, 840, 2520, 5040, 5040, 109601, 47384, 47096, 40656, 1680, 6720, 20160, 40320, 40320, 986410, 559953, 378072, 181944, 365904, 15120, 60480, 181440, 362880, 362880
Offset: 1

Views

Author

N. J. A. Sloane, Jul 23 2015

Keywords

Examples

			Triangle begins:
     1;
     2,   1;
     5,   2,   2;
    16,   9,   6,   6;
    65,  28,  12,  24,  24;
   326, 185, 140,  60, 120, 120;
  1957, 846, 750, 120, 360, 720, 720;
  ...
		

Crossrefs

Rows, column sums give A000522, A002747, A002750, A002751.
Main diagonal gives A000142.

Programs

  • Maple
    A260325 := proc(n,r)
        if r = 0 then
            1 ;
        elif n > r+1 then
            0 ;
        else
            add( 1/(r-j*n+1)!,j=1..(r+1)/n) ;
            %*r! ;
        end if;
    end proc:
    for r from 0 to 20 do
        for n from 1 to r+1 do
            printf("%a,",A260325(n,r)) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, Jul 24 2015
  • Mathematica
    T[n_, k_] := Which[n == 0, 1, k > n+1, 0, True, Sum[1/(n-j*k+1)!, {j, 1, (n+1)/k}]*n!];
    Table[T[n, k], {n, 0, 9}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Apr 25 2023 *)

A002742 Logarithmic numbers.

Original entry on oeis.org

2, -6, 24, -80, 450, -2142, 17696, -112464, 1232370, -9761510, 132951192, -1258797696, 20476388114, -225380451870, 4261074439680, -53438049741152, 1151146814425506, -16199301256675974, 391615698778725080, -6109914386833902960
Offset: 1

Views

Author

Keywords

Comments

From Peter Bala, Sep 06 2022: (Start)
Conjectures: Let k be a positive integer.
1) for n >= 1, a(n+2*k) - a(n) is divisible by 2*k; if true, then the reduction of the sequence modulo 2*k gives a periodic sequence with period dividing 2*k.
2) for n >= 1, a(n+2*k+1) + a(n) is divisible by 2*k+1; if true, then the reduction of the sequence modulo 2*k+1 gives a periodic sequence with period dividing 4*k + 2. (End)

References

  • J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002741.

Programs

  • Mathematica
    Table[(-1)^(n-1)Sum[Binomial[n+1,2k+1](n-2k)/(k+1)(2k+1)!,{k,0,n}],{n,0,100}] (* Emanuele Munarini, Dec 16 2017 *)
  • Maxima
    makelist((-1)^(n-1)*sum(binomial(n+1,2*k+1)*(n-2*k)/(k+1)*(2*k+1)!,k,0,n),n,0,12); /* Emanuele Munarini, Dec 16 2017 */
    
  • PARI
    first(n) = x='x+O('x^(n+1)); Vec(serlaplace((2*x/(1-x^2)+log(1-x^2))*exp(-x))) \\ Iain Fox, Dec 16 2017

Formula

E.g.f.: (2*x/(1-x^2)+log(1-x^2))*exp(-x). - Sean A. Irvine, Aug 11 2014
a(n) = 2*A002747(n) - a(n-1). - R. J. Mathar, Jul 24 2015
From Emanuele Munarini, Dec 16 2017: (Start)
a(n) = (-1)^(n-1)*Sum_{k=0..n} binomial(n+1,2*k+1)*((n-2*k)/(k+1))*(2*k+1)!.
a(n+3)+a(n+2)-(n+2)*(n+3)*a(n+1)-(n+2)*(n+3)*a(n) = 2*(-1)^n*(n+3).
(n+3)*a(n+4)+(2*n+7)*a(n+3)-(n+2)*(n+4)^2*a(n+2)-(n+3)*(n+4)*(2*n+5)*a(n+1)-(n+2)*(n+3)*(n+4)*a(n) = 0.
E.g.f.: A(x) = - D(exp(-x)*log(1-x^2)), where D is the derivative with respect to x. (End)
a(n) ~ n! * (exp(-1) - (-1)^n * exp(1)). - Vaclav Kotesovec, Dec 16 2017

Extensions

More terms from Jeffrey Shallit
More terms from Sean A. Irvine, Aug 11 2014

A002750 Sum of logarithmic numbers.

Original entry on oeis.org

1, 4, 15, 76, 373, 2676, 17539, 152860, 1383561, 14658148, 143131351, 2070738924, 24754959805, 341745565396, 5260157782923, 92358395065276, 1377499388715409, 27622124789948100, 476285499100204831, 10464946811144407948, 222724531608924013701
Offset: 0

Views

Author

Keywords

References

  • J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000203.

Programs

  • Maple
    a:= n-> n!*add(numtheory[sigma](m+1)/(n-m)!, m=0..n):
    seq(a(n), n=0..22);  # Alois P. Heinz, Sep 16 2021
  • Mathematica
    a[n_] := n!*Sum[DivisorSigma[1, m+1]/(n-m)!, {m, 0, n}];
    Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Nov 19 2024, after Alois P. Heinz *)

Formula

E.g.f.: F(x)/x*exp(x) where F(x) is o.g.f. for A000203(). a(n) = Sum_{m=1..n+1} A000203(m)*binomial(n, m-1)*(m-1)!. - Vladeta Jovovic, Feb 08 2003

Extensions

More terms from Jeffrey Shallit
More terms from Vladeta Jovovic, Feb 08 2003

A007116 Expansion of e.g.f. (1+x)^(exp(x)).

Original entry on oeis.org

1, 1, 2, 6, 18, 75, 295, 1575, 7196, 48993, 230413, 2164767, 8055938, 139431149, 70125991, 14201296057, -77573062280, 2389977322593, -28817693086263, 615493949444827, -10403976760589602, 215611836994976237
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    With[{nn=25},CoefficientList[Series[(1+x)^Exp[x],{x,0,nn}], x] Range[ 0,nn]!] (* Harvey P. Dale, Sep 21 2011 *)
  • Maxima
    a(n):=sum(sum(binomial(n,i)*k^i*stirling1(n-i,k),i,0,n-k),k,1,n); /* Vladimir Kruchinin, Jun 01 2011 */

Formula

a(n) = sum(k=1..n, sum(i=0..n-k, binomial(n,i)*k^i*Stirling1(n-i,k))), n>0, a(0)=1. - Vladimir Kruchinin, Jun 01 2011
|a(n)| ~ n!/(Gamma(-exp(-1))*n^(1+exp(-1))). - Vaclav Kotesovec, Jun 27 2013

Extensions

Definition and terms corrected, and more terms added by Joerg Arndt, Jun 01 2011
Previous Showing 11-20 of 36 results. Next